Functional analysis

Lecture 9.

April 22. 2021

A detour

Theorem. (*Classical Fourier theorem*.) Assume *f* : [−π, π] → IR

satisfies the *Dirichlet condition*s. Do you remember??

Then $\forall x \in [-\pi, \pi]$:

$$
f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx)),
$$
 with

$$
a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx, \qquad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx.
$$

Corollary. The trig. system is complete in $\mathcal{L}^2[-\pi,\pi]$.

→ Moreover, the coefficients ARE KNOWN.

"Extension" to a Hilbert space

 $(H, \langle \cdot, \cdot \rangle)$ is a Hilbert space. (Can you recall the definition?) Let $(\varphi_k) \subset H$ be an ON system:

$$
\langle \varphi_k, \varphi_j \rangle = \delta_{k,j} = \begin{cases} 1 & \text{if } k = j, \\ 0 & \text{if } k \neq j. \end{cases}
$$

Theorem. *Assume, that for an f H we have*

$$
f=\sum_{k=1}^{\infty}c_k\varphi_k.
$$

Then $c_k = \langle f, \varphi_k \rangle$. *I.e. the coefficients can be recovered from f.*

HW. Check it for the trigonometric system in $H = \mathcal{L}^2[-\pi, \pi]$

Proof of Theorem.

Let us define $s_n:=\sum^n c_k\varphi_k,$ the partial sum. *k*=1 Then $\lim_{n\to\infty}$ $||f - s_n|| = 0.$

It follows, that for any $\varphi \in H$

$$
\lim_{n\to\infty}\langle f-s_n,\varphi\rangle=0.\quad \text{(Why?)}\Longrightarrow\quad \langle f,\varphi\rangle=\lim_{n\to\infty}\langle s_n,\varphi\rangle
$$

Let us choose $\varphi=\varphi_j$ for a fixed *j*. If $n\geq j,$ then

$$
\langle s_n, \varphi_j \rangle = \left\langle \sum_{k=1}^n c_k \varphi_k, \varphi_j \right\rangle = ??? = \sum_{k=1}^n c_k \langle \varphi_k, \varphi_j \rangle = c_j.
$$

 $\textsf{Thus}\,\, \lim\limits_{n\to\infty}\langle \bm{s}_n,\varphi_j\rangle=c_j,$ and indeed: $\bm{c}_j=\langle f,\varphi_j\rangle.$

Remark. If $(φ_n) ⊂ H$ is complete, then *every* $f ∈ H: ∃(c_n)$

$$
f=\sum_{n=1}^{\infty}c_n\varphi_n.
$$

Corollary. $(H, \langle \cdot, \cdot \rangle)$ is a Hilbert space. (E.g. $H = \mathcal{L}^2[-\pi, \pi]$).

Let $(\varphi_k) \subset H$ be a complete ON system.

It means, that *every* $f \in H: \exists (c_n)$

$$
f=\sum_{n=1}^{\infty}c_n\varphi_n.
$$

From the previous Theorem. it follows, that

 $c_n = \langle f, \varphi_n \rangle$.

Fourier series expansion

Let $(φ_n)$ ⊂ *H* be a complete ON system. For any $f ∈ H$ we define

FOURIER COEFFICIENTS of f with respect to (φ_n) **as**

$$
\overline{\langle f,\varphi_n\rangle}, n=1,2,\ldots
$$

FOURIER SERIES EXPANSION of *f* with respect to (φ_n) as

$$
\sum_{n=1}^{\infty} \langle f, \varphi_n \rangle \cdot \varphi_n.
$$

Notation. With $c_n = \langle f, \varphi_n \rangle$ we write $f \sim \sum_{n=1}^{\infty} c_n \varphi_n$, . *n*=1

It is a *formal definition* yet. Why?

Sum of the Fourier series

Theorem. If (φ_n) is a *complete ON system*, then

$$
f=\sum_{n=1}^{\infty}\langle f,\varphi_n\rangle\varphi_n.
$$

I.e. the sum of Fourier series gives back the original function.

Analogy. V is a *finite dim.* vector space. $v_1, \ldots, v_n \in V$ is a BASIS, if

1. these vectors are *linearly independent*,

2.
$$
\forall v \in V
$$
 can be written as $v = \sum_{k=1}^{n} c_k v_k$ (i.e. a generator system).

In infinite dimensional Hilbert space BASIS ≡ *complete ON system.*

Parseval equality Try to recall "the original" one

Theorem. Let f_fH .

1. $(\varphi_n) \subset H$ is an *ON system*. Then

$$
\sum_{n=1}^{\infty} c_n^2 \leq ||f||^2, \qquad c_n = \langle f, \varphi_n \rangle.
$$

2. (φ_n) is ON *and complete* $\iff \sum^{\infty} c_n^2 = ||f||^2$. *n*=1

The latter identity is called PARSEVAL EQUALITY.

1.
$$
\sum_{n=1}^{\infty} c_n^2 \le ||f||^2 \quad \text{with} \quad c_n = \langle f, \varphi_n \rangle
$$

Proof. Let us define $s_n := \sum_{n=1}^n$ *k*=1 *ck*ϕ*^k* . Geometrically it is *try to finish... the projection of f onto span* $\{\varphi_1, ..., \varphi_n\}$. Thus $(f - s_n) \perp s_n$.

Then, by the Pythagorean theorem:

$$
||f||^2 = ||f - s_n||^2 + ||s_n||^2 \implies ||s_n||^2 \le ||f||^2 \quad \forall n.
$$

For $k \neq j$ use orthogonality: $c_k \varphi_k \bot c_j \varphi_j$, thus $\|s_n\|^2 = \sum_{k=1}^n c_k^2$. *k*=1

Finally, with $n \to \infty$ $\sqrt{ }$

$$
2.\sum_{n=1}^{\infty} c_n^2 = \|f\|^2 \qquad \Longleftrightarrow \qquad (\varphi_n) \quad \text{is complete,}
$$

Proof. To verify a proposition with \iff inside has two parts.

Part A. \leftarrow Assume (φ_n) is *complete*.

On the previous slide we have seen, that:

$$
||f||^2 = ||f - s_n||^2 + ||s_n||^2.
$$
 (1)

From the completeness of (φ_n) follows, that $f = \sum^{\infty} c_n \varphi_n$ *n*=1

thus $\lim_{n\to\infty}$ $||f - s_n||^2 = 0$.

From [\(1\)](#page-9-0) we get

$$
||f||^2 = \lim_{n \to \infty} ||s_n||^2 = \sum_{k=1}^{\infty} c_k^2 \sqrt{2}
$$

$$
\sum_{n=1}^{\infty} c_n^2 = ||f||^2 \qquad \Longrightarrow \quad (\varphi_n) \quad \text{is complete}
$$

Part B. Assuming $||f||^2 = \sum_{n=1}^{\infty}$ *k*=1 c_k^2 ∀*f*, prove (φ_n) is COMPLETE.

Do it Yourself. HW.

Lemma.

 (φ_n) is complete \iff $\langle f, \varphi_n \rangle = 0 \quad \forall n \implies f = 0.$

Generalized Parseval equality

Theorem. Let (φ_n) be a complete ON system in *H*.

 $f, g \in H$ are arbitrary elements, with Fourier series expansions:

$$
f=\sum_{n=1}^{\infty}c_n\varphi_n,\qquad g=\sum_{n=1}^{\infty}d_n\varphi_n
$$

Then

$$
\langle f,g\rangle = \sum_{k=1}^\infty c_k d_k \quad \text{equivalently} \quad \langle f,g\rangle = \sum_{k=1}^\infty \langle f,\varphi_k\rangle \langle g,\varphi_k\rangle,
$$

where $c = (c_k)$ and $d = (d_k)$ are the Fourier coefficients of f and g.

A classical example

 $H = \mathcal{L}^2[-\pi, \pi]$. An orthogonal system is:

 $(1, \cos(kx), \sin(kx) : k = 1, 2, ...)$

After normalization we get:

$$
\left(\frac{1}{\sqrt{2\pi}}, \frac{\cos(kx)}{\sqrt{\pi}}, \frac{\sin(kx)}{\sqrt{\pi}} \ : \ k = 1, 2, \ldots\right)
$$

Thus the Fourier coefficients of $f\epsilon \mathcal{L}^{2}[-\pi,\pi]$ are:

$$
\int_{-\pi}^{\pi} \frac{\cos(kx)}{\sqrt{\pi}} f(x) dx = \alpha_k, \qquad \int_{-\pi}^{\pi} \frac{\sin(kx)}{\sqrt{\pi}} f(x) dx = \beta_k.
$$
 (2)

Thus the Fourier series of *f* is:

$$
\alpha_0 \cdot \frac{1}{\sqrt{2\pi}} + \sum_{n=1}^{\infty} \left(\alpha_k \cdot \frac{\cos(kx)}{\sqrt{\pi}} + \beta_k \cdot \frac{\sin(kx)}{\sqrt{\pi}} \right)
$$

Substituting [\(2\)](#page-12-0) we get $a_k = \frac{\alpha_k}{\sqrt{\pi}}$, and $b_k = \frac{\beta_k}{\sqrt{\pi}}$.

Moreover, the trigonometric system is complete, Parseval equation√ 14 / 23

Special case:
$$
H = \mathcal{L}^2(R)
$$

Corollary. Consider a (φ_n) complete ON system in $\mathcal{L}^2(R)$.

For any $f\epsilon \mathcal{L}^2(R)$ it is possible to assign $(c_n)\epsilon \ell^2$, using (φ_n) such that

$$
||f||_{\mathcal{L}^2} = ||(c_n)||_{\ell^2} \quad \text{and} \quad \langle f, g \rangle_{\mathcal{L}^2} = \langle c, d \rangle_{\ell^2} \quad \forall g \in \mathcal{L}^2(R).
$$

The other direction is the following important Thm.

 $\overline{\mathsf{Theorem.}}$ (*Riesz-Fisher thm.*) Let (d_k) $\epsilon \ell^2$, i.e. $\sum^\infty d_k^2 < \infty$. Then *k*=1

 $\exists! f \epsilon \mathcal{L}^2(R)$, such that $\|f\|^2 = \sum_{k=1}^\infty \frac{1}{k^2}$ *k*=1 d_k^2 , and it's Fourier coefficients are d_k .

Proof. (*Hint*) A "candidate" is $f := \sum_{n=0}^{\infty}$ *k*=1 $d_k \varphi_k$. It is OK. Finish the proof.

\mathcal{L}^2 and ℓ^2

Corollary. $\mathcal{L}^2(R)$ és ℓ^2 are isometrically isomorphic.

The linear isometry is based an any (φ_n) complete ON system, using the Fourier coefficients: $f \leftrightarrow (c_n)$.

This assignment is

- 1. *one-by one*,
- 2. *linear*,
- 3. *inner product reserving* (also norm-reserving)

Definition. (c_n) are the COORDINATES of f w.r.t (φ_n)

$$
\mathcal{L}^2
$$
 and ℓ^2

PLEASE STOP FOR A WHILE, AND UNDERSTAND THIS POINT.

 $\mathcal{L}^2(R)$ and ℓ^2 are the "same".

Here $\mathcal{L}^2(R) = \mathcal{L}^2(R,\mathcal{R},\mu)!$

Example.
$$
H = \mathcal{L}^2[-1, 1]
$$

In $\mathcal{L}^2[-1,1]$ a complete ON system are the Legendre polynomials.

We have seen some elements of $(P_n(x))$:

$$
P_0(x) = \frac{1}{\sqrt{2}}, \quad P_1(x) = \sqrt{\frac{3}{2}}x, \quad P_2(x) = \text{it was a HW} \quad \dots
$$

Then every $f \epsilon \mathcal{L}^2[-1,1]$ can be written as

$$
f(x) = \sum_{n=0}^{\infty} c_n P_n(x), \quad \text{with} \quad c_n = \int_{-1}^{1} f(x) P_n(x) dx.
$$

Thus every $f \in \mathcal{L}^2[-1,1]$ can be approximated by a polynomial of

degree *n* with KNOWN coefficients. Can you recall sg. similar?

An example in $H=\mathcal{L}^2[0,1],$ Haar functions

This example for an ON system in $\mathcal{L}^2[0,1]$ are H AAR-FUNCTIONS.

This is the simplest WAVELET FAMILY.

They are defined in blocks.

 $H_{n,k} : [0,1] \to \mathbb{R}$, with $n = 0, 1, 2, \ldots k = 1, \ldots, 2^n$.

The "zero element" is $H_{0,0}(x) = 1$. The *mother wavelet* is

$$
H_{0,1}(x) = \begin{cases} 1 & \text{if } & 0 \leq x < 1/2 \\ & \\ -1 & \text{if } & 1/2 \leq x \leq 1 \end{cases}
$$

Haar functions, *n th* block.

For $n \geq 1$ divide $[0, 1]$ into 2ⁿ equal parts with points $\frac{k}{2^n}$. Let's define for $1 \leq k \leq 2^n$:

$$
H_{n,k}(x) = \begin{cases} \sqrt{2^n} & \text{if } \frac{k-1}{2^n} \leq x < \frac{k-1/2}{2^n} \\ -\sqrt{2^n} & \text{if } \frac{k-1/2}{2^n} \leq x < \frac{k}{2^n} \\ 0 & \text{otherwise} \end{cases}
$$

The nonzero part is the "mother wavelet", *squished* and *stretched*.

 $\textsf{Easy to check, that } \|H_{n,k}\|=1 \text{ and } H_{n,k}\bot H_{n,j} \text{ for } j\neq k. \text{ DO IT.}$

Theorem. This ON system is **complete**. (Not trivial to prove.)

.

E.g. Haar functions $H_{2,k}$

E.g. Haar function $H_{3,5}$

For example $H_{3,5}$ is the following:

$$
H_{3,5}(x) = \begin{cases} 2^{3/2} & \text{if } \frac{1}{2} \leq x < \frac{1}{2} + \frac{1}{2^4} \\ -2^{3/2} & \text{if } \frac{1}{2} + \frac{1}{2^4} \leq x < \frac{5}{2^3}, \\ 0 & \text{otherwise} \end{cases}
$$

Draw it!

Excercise. $||H_{3,5}|| = ?$

Corollary

Let us consider $f \in \mathcal{L}^2[0,1]$.

Then for any $\varepsilon > 0$ the function *f* can be approximated by

$$
F_N = \sum_{n=0}^N \sum_{k=1}^{2^n} c_{k,n} H_{k,n}
$$

such that *the error is less then* ε:

 $||f - F_N||_2 < \varepsilon$.