Functional analysis

Lecture 9.

April 22. 2021
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A detour

Theorem. (Classical Fourier theorem.) Assume f : [-m, 7] — R
satisfies the Dirichlet conditions.
Then Vxe[—m, 7]:
= EO + kz_; ay cos(kx) + by sin(kx)), with
ax = f/ f(x) cos(kx) dx, bk = 1/ f(x) sin(kx) dx.

s s

Corollary. The trig. system is complete in £2[—x, 7].

— Moreover, the coefficients ARE KNOWN.
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"Extension” to a Hilbert space

(H, (-,-)) is a Hilbert space. (Can you recall the definition?)

Let (¢x) C H be an ON system:

1 if k=],

o) = Ok =
(w 21) = O {o it k).

Theorem. Assume, that for an feH we have

f= ZCképk.
k=1

Then ¢, = (f, pk). l.e. the coefficients can be recovered from f.

HW. Check it for the trigonometric system in H = £2[—r, ]
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Proof of Theorem.

n
Let us define s, := ) _ ¢k, the partial sum.
k=1

Then lim ||f —sy]| = 0.
n—oo
It follows, that for any peH
lim (f — sp, ) = 0. = (f,p) = lim (55, ¢)

n—oo n—oo

Let us choose ¢ = ; for afixed j. If n > j, then

n
Sna% <Z Ck@k7¢/> = Z Ck (@k; 99,'> = Gj.

k=1

Thus lim (sn, ¢j) = ¢j, and indeed: ¢; = (f, ¢;).
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Remark. If (y,) C H is complete, then every feH: 3(c)

o0
f= Z Cnipn-
n=1

Corollary. (H,(-,-)) is a Hilbert space. (E.g. H = L2[—x, 7).
Let (¢x) C H be a complete ON system.

It means, that every feH: 3(cy)
f: Z Cn@n.
n=1

From the previous Theorem. it follows, that

cn = {f,n).
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Fourier series expansion

Let (pn) C H be a complete ON system. For any feH we define

> FOURIER COEFFICIENTS of f with respect to () as
<f599n> ’ n= 17 25"'

» FOURIER SERIES EXPANSION of f with respect to (¢,) as

> (f.on)-
n=1

Notation. With ¢, = (f,,) we write f ~ " ¢, ¢y, .

n=1

It is a formal definition yet.
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Sum of the Fourier series

Theorem. If (p,) is a complete ON system, then

f=> {f,0n) ¢n.

n=1

I.e. the sum of Fourier series gives back the original function.

Analogy. V is a finite dim. vector space. vy, ..., VeV is a BASIS, if

1. these vectors are linearly independent,

n

2. YveV can be written as v = _ ¢, v (i.e. a generator system).

k=1

In infinite dimensional Hilbert space BASIS = complete ON system.
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Parseval equality

Theorem. Let feH.

1. (vn) C His an ON system. Then

Yoca<Ififs, = (f o)
n=1

2. (¢n) is ON and complete < " c5 = ||f||*.

n=1

The latter identity is called PARSEVAL EQUALITY.
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1.Y < |fIP with ¢, =(f, )
n=1

n
Proof. Let us define s, := Z ckox. Geometrically it is iry fo finish...
k=1
the projection of f onto span{1, ..., on}. Thus (f — s,)Lsp.

Then, by the Pythagorean theorem:

IFIZ = 1If = snll® + Isnll®> = [Isall® < [IfI* V¥n.
n

For k # j use orthogonality: cxk LGy, thus [|s,]2 = > cf.
k=1

Finally, with n — oo /
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2.y ch=|f|? — (¢n) iscomplete,
n=1

Proof. To verify a proposition with <= inside has two parts.
Part A. <= Assume () is complete.

On the previous slide we have seen, that:

£l = 1 — sall + l|snl®. (1)

From the completeness of (¢,) follows, that f = Z Cnn,
n=1
thus lim ||f — s,||2 = 0.
n—oo
From (1) we get

o0
: 2
I = Jim sl = 3= kv
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> ek =|If|P —  (¢,) is complete

n=1

Part B. Assuming ||f||? = Z c2 Vf, prove () is COMPLETE.

k=1
Do it Yourself. HW.
Lemma.
(¢n) is complete = (f,on)=0 Yn = f=0.
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Generalized Parseval equality

Theorem. Let (¢,,) be a complete ON system in H.

f, geH are arbitrary elements, with Fourier series expansions:

f= Z Cn¥n, g= Z dnen
n=1 n=1
Then
f,9) = _cdi equivalently (f,g) =" (f,ox)(9. %),
k=1 k=1

where ¢ = (¢x) and d = (dx) are the Fourier coefficients of f and g.
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A classical example

H = £?[—,n]. An orthogonal system is:
(1, cos(kx), sin(kx) : k=1,2,..)

After normalization we get:

( 1 cos(kx) sin(kx) k:1,2,...>

Ver' Wm T oVT
Thus the Fourier coefficients of fe£2[—x, 7] are:

T; Coi%x) F(x)dx = o, [ T; S"‘\(/’;X) fx)dx = Br. (2

Thus the Fourier series of f is:
cos(k. sin(kx)
+ E ( + Bk - N )

Substituting (2) we get ax = T and by 517(?

Moreover, the trigonometric system is complete, Parseval equationy/ 14,23




Special case: H = £?(R)

Corollary. Consider a (¢,) complete ON system in £2(R).

For any fe£2(R) it is possible to assign (c,)ef?, using (¢n) such that

Ifllzz = ll(co)lle and  (f,g)rz = (c,d)rz VgeL?(R).
The other direction is the following important Thm.

Theorem. (Riesz-Fisher thm.) Let (dk)e(?, i.e. > df < co. Then
k=1

Jife£2(R), such that ||f||2 = Z d?, and it's Fourier coefficients are d.
k=1

Proof. (Hint) A "candidate” is f := Z dkpk. Itis OK.
k=1
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£2 and (2

Corollary. £2(R) és ¢? are isometrically isomorphic.
The linear isometry is based an any (¢,) complete ON system,
using the Fourier coefficients: f <+— (cn).
This assignment is
1. one-by one,
2. linear,

3. inner product reserving (also norm-reserving)

Definition. (c,) are the COORDINATES of f w.r.t (¢p)
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£2 and (2

PLEASE STOP FOR A WHILE, AND UNDERSTAND THIS POINT.

L2(R) and ¢2 are the "same”.

Here £2(R) = L2(R, R, )"
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Example. H = £2[-1,1]

In £2[—1, 1] a complete ON system are the Legendre polynomials.

We have seen some elements of (Py(x)):

Po(x) = \}E’ Pi(x) = \/gx, Ps(x) =

Then every fe£?[—1, 1] can be written as
o0 1
f(x) =Y caPa(x), with c,= / f(x)Pn(x) dx.
n=0 =1

Thus every fe£2[—1, 1] can be approximated by a polynomial of

degree n with KNOWN coefficients.
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An example in H = £2]0, 1], Haar functions

This example for an ON system in £2]0, 1] are HAAR-FUNCTIONS.

This is the simplest WAVELET FAMILY.

They are defined in blocks.

Hox:[0,1] = R, with n=0,1,2,.. k=1, .2"

The "zero element” is Hy o(x) = 1. The mother wavelet is

1 if 0<x<1/2 “F
H071 (X) =

—1 it 1/2<x<1 o o
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Haar functions, n' block.

. . k
For n > 1 divide [0, 1] into 2" equal parts with points on°

Let’'s define for 1 < k < 2™

. — k—1/2

ven if k2n1§x< 2n/

k—1/2 k

Hok(x) =4 _yn it zn/ <x<g

0 otherwise
The nonzero part is the "mother wavelet”, squished and stretched.

Easy to check, that ||[H,, «|| = 1 and H, x LHp,  for j # k.

Theorem. This ON system is complete. (Not trivial to prove. )
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E.g. Haar functions Hb

As an example, here
are the graphs of the

Ho

Haar functions for
k=1,2,3,4.

Hy, Hy2
2k — 2k —
Ll L1 L1
1 1
2 2F -
Hys Hyy
2 — 2 -
[ R |

I T I
1
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E.g. Haar function Hs 5

For example Hs s is the following:

Hz 5(x)

Excercise. |Hz 5] =7

—2%2 iS4 <x<

0 otherwise
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Corollary
Let us consider fe£2]0, 1].

Then for any ¢ > 0 the function f can be approximated by

N 27

Fn=>_>"cknHrn

n=0 k=1

such that the error is less then ¢

IIf — Fnll2 < e.
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