Functional analysis

Lecture 9.

April 22. 2021

A detour

Theorem. (*Classical Fourier theorem.*) Assume $f : [-\pi, \pi] \rightarrow \mathbb{R}$ satisfies the *Dirichlet conditions*. Do you remember??

Then $\forall \mathbf{x} \epsilon [-\pi, \pi]$:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx)), \text{ with}$$
$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) \, dx, \qquad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) \, dx.$$

Corollary. The trig. system is complete in $\mathcal{L}^2[-\pi,\pi]$.

 \longrightarrow Moreover, the coefficients ARE KNOWN.

"Extension" to a Hilbert space

 $(H, \langle \cdot, \cdot \rangle)$ is a Hilbert space. (Can you recall the definition?) Let $(\varphi_k) \subset H$ be an ON system:

$$\langle \varphi_k, \varphi_j \rangle = \delta_{k,j} = \begin{cases} 1 & \text{if } k = j, \\ 0 & \text{if } k \neq j. \end{cases}$$

Theorem. Assume, that for an $f \in H$ we have

$$f=\sum_{k=1}^{\infty}c_k\varphi_k.$$

Then $c_k = \langle f, \varphi_k \rangle$. I.e. the coefficients can be recovered from *f*.

HW. Check it for the trigonometric system in $H = \mathcal{L}^2[-\pi, \pi]$

Proof of Theorem.

Let us define $s_n := \sum_{k=1}^n c_k \varphi_k$, the partial sum. Then $\lim_{n \to \infty} \|f - s_n\| = 0.$

It follows, that for any $\varphi \epsilon H$

$$\lim_{n\to\infty} \langle f - s_n, \varphi \rangle = 0. \quad (Why?) \Longrightarrow \quad \langle f, \varphi \rangle = \lim_{n\to\infty} \langle s_n, \varphi \rangle$$

Let us choose $\varphi = \varphi_j$ for a fixed *j*. If $n \ge j$, then

$$\langle \boldsymbol{s}_n, \boldsymbol{\varphi}_j \rangle = \left\langle \sum_{k=1}^n \boldsymbol{c}_k \varphi_k, \boldsymbol{\varphi}_j \right\rangle = ??? = \sum_{k=1}^n \boldsymbol{c}_k \langle \varphi_k, \boldsymbol{\varphi}_j \rangle = \boldsymbol{c}_j.$$

Thus $\lim_{n\to\infty} \langle s_n, \varphi_j \rangle = c_j$, and indeed: $c_j = \langle f, \varphi_j \rangle$.

Remark. If $(\varphi_n) \subset H$ is complete, then *every* $f \in H$: $\exists (c_n)$

$$f=\sum_{n=1}^{\infty}c_n\varphi_n.$$

Corollary. $(H, \langle \cdot, \cdot \rangle)$ is a Hilbert space. (E.g. $H = \mathcal{L}^2[-\pi, \pi]$).

Let $(\varphi_k) \subset H$ be a complete ON system.

It means, that *every* $f \in H$: $\exists (c_n)$

$$f=\sum_{n=1}^{\infty}c_n\varphi_n.$$

From the previous Theorem. it follows, that

 $\mathbf{C}_{\mathbf{n}} = \langle \mathbf{f}, \varphi_{\mathbf{n}} \rangle.$

Fourier series expansion

Let $(\varphi_n) \subset H$ be a complete ON system. For any $f \in H$ we define

• FOURIER COEFFICIENTS of f with respect to (φ_n) as

$$\langle f, \varphi_n \rangle$$
, $n = 1, 2, \dots$

FOURIER SERIES EXPANSION of *f* with respect to (φ_n) as

$$\sum_{n=1}^{\infty} \langle f, \varphi_n \rangle \cdot \varphi_n.$$

Notation. With $c_n = \langle f, \varphi_n \rangle$ we write $f \sim \sum_{n=1}^{\infty} c_n \varphi_n$, .

It is a formal definition yet. Why?

Sum of the Fourier series

Theorem. If (φ_n) is a *complete ON system*, then

$$f = \sum_{n=1}^{\infty} \langle f, \varphi_n \rangle \varphi_n.$$

I.e. the sum of Fourier series gives back the original function.

Analogy. V is a finite dim. vector space. $v_1, \ldots, v_n \in V$ is a BASIS, if

1. these vectors are linearly independent,

2.
$$\forall v \in V$$
 can be written as $v = \sum_{k=1}^{n} c_k v_k$ (i.e. a generator system).

In infinite dimensional Hilbert space BASIS \equiv complete ON system.

Parseval equality Try to recall "the original" one

Theorem. Let $f \in H$.

1. $(\varphi_n) \subset H$ is an *ON system*. Then

$$\sum_{n=1}^{\infty} \boldsymbol{c}_n^2 \leq \|\boldsymbol{f}\|^2, \qquad \boldsymbol{c}_n = \langle \boldsymbol{f}, \varphi_n \rangle \; .$$

2. (φ_n) is ON and complete $\iff \sum_{n=1}^{\infty} c_n^2 = \|f\|^2$.

The latter identity is called PARSEVAL EQUALITY.

1.
$$\sum_{n=1}^{\infty} c_n^2 \le ||f||^2$$
 with $c_n = \langle f, \varphi_n \rangle$

Proof. Let us define $s_n := \sum_{k=1}^n c_k \varphi_k$. Geometrically it is *try to finish*... *the projection of f onto* span{ $\varphi_1, ..., \varphi_n$ }. Thus $(f - s_n) \perp s_n$.

Then, by the Pythagorean theorem:

$$||f||^2 = ||f - s_n||^2 + ||s_n||^2 \implies ||s_n||^2 \le ||f||^2 \quad \forall n.$$

For $k \neq j$ use orthogonality: $c_k \varphi_k \perp c_j \varphi_j$, thus $||s_n||^2 = \sum_{k=1}^n c_k^2$.

Finally, with $n \to \infty \sqrt{}$

2.
$$\sum_{n=1}^{\infty} c_n^2 = ||f||^2 \iff (\varphi_n)$$
 is complete,

Proof. To verify a proposition with \iff inside has two parts.

Part A. \leftarrow Assume (φ_n) is complete.

On the previous slide we have seen, that:

$$||f||^{2} = ||f - s_{n}||^{2} + ||s_{n}||^{2}.$$
 (1)

 \sim

From the completeness of (φ_n) follows, that $f = \sum_{n=1}^{\infty} c_n \varphi_n$,

thus $\lim_{n\to\infty} \|f-s_n\|^2 = 0.$

From (1) we get

$$\|f\|^2 = \lim_{n \to \infty} \|s_n\|^2 = \sum_{k=1}^{\infty} c_k^2 \sqrt{1-|s_n|^2}$$

$$\sum_{n=1}^{\infty} c_n^2 = \|f\|^2 \qquad \Longrightarrow \quad (\varphi_n) \quad \text{is complete}$$

Part B. Assuming $||f||^2 = \sum_{k=1}^{\infty} c_k^2 \forall f$, prove (φ_n) is COMPLETE.

Do it Yourself. HW.

Lemma.

 (φ_n) is complete $\iff \langle f, \varphi_n \rangle = 0 \quad \forall n \implies f = 0.$

Generalized Parseval equality

Theorem. Let (φ_n) be a complete ON system in *H*.

 $f, g \in H$ are arbitrary elements, with Fourier series expansions:

$$f=\sum_{n=1}^{\infty}c_n\varphi_n, \qquad g=\sum_{n=1}^{\infty}d_n\varphi_n$$

Then

$$\langle f, g \rangle = \sum_{k=1}^{\infty} c_k d_k$$
 equivalently $\langle f, g \rangle = \sum_{k=1}^{\infty} \langle f, \varphi_k \rangle \langle g, \varphi_k \rangle$,

where $c = (c_k)$ and $d = (d_k)$ are the Fourier coefficients of *f* and *g*.

A classical example

 $H = \mathcal{L}^2[-\pi, \pi]$. An orthogonal system is:

 $(1, \cos(kx), \sin(kx) : k = 1, 2, ...)$

After normalization we get:

$$\left(\frac{1}{\sqrt{2\pi}},\frac{\cos(kx)}{\sqrt{\pi}},\frac{\sin(kx)}{\sqrt{\pi}}: k = 1,2,...\right)$$

Thus the Fourier coefficients of $f \in \mathcal{L}^2[-\pi, \pi]$ are:

$$\int_{-\pi}^{\pi} \frac{\cos(kx)}{\sqrt{\pi}} f(x) dx = \alpha_k, \qquad \int_{-\pi}^{\pi} \frac{\sin(kx)}{\sqrt{\pi}} f(x) dx = \beta_k.$$
(2)

Thus the Fourier series of f is:

$$\alpha_0 \cdot \frac{1}{\sqrt{2\pi}} + \sum_{n=1}^{\infty} \left(\alpha_k \cdot \frac{\cos(kx)}{\sqrt{\pi}} + \beta_k \cdot \frac{\sin(kx)}{\sqrt{\pi}} \right)$$

Substituting (2) we get $a_k = \frac{\alpha_k}{\sqrt{\pi}}$, and $b_k = \frac{\beta_k}{\sqrt{\pi}}$.

Moreover, the trigonometric system is complete, Parseval equation $\sqrt{14/23}$

Special case:
$$H = \mathcal{L}^2(R)$$

Corollary. Consider a (φ_n) complete ON system in $\mathcal{L}^2(R)$.

For any $f \in \mathcal{L}^2(\mathbb{R})$ it is possible to assign $(c_n) \in \ell^2$, using (φ_n) such that

$$\|f\|_{\mathcal{L}^2} = \|(c_n)\|_{\ell^2}$$
 and $\langle f, g \rangle_{\mathcal{L}^2} = \langle c, d \rangle_{\ell^2} \quad \forall g \in \mathcal{L}^2(R).$

The other direction is the following important Thm.

Theorem. (*Riesz-Fisher thm.*) Let $(d_k)\epsilon\ell^2$, i.e. $\sum_{k=1}^{\infty} d_k^2 < \infty$. Then

 $\exists ! f \in \mathcal{L}^2(\mathbf{R}), \text{ such that } ||f||^2 = \sum_{k=1}^{\infty} d_k^2, \text{ and it's Fourier coefficients are } d_k.$

Proof. (*Hint*) A "candidate" is $f := \sum_{k=1}^{\infty} d_k \varphi_k$. It is OK. Finish the proof.

\mathcal{L}^2 and ℓ^2

Corollary. $\mathcal{L}^2(R)$ és ℓ^2 are isometrically isomorphic.

The linear isometry is based an any (φ_n) complete ON system, using the Fourier coefficients: $f \leftrightarrow (c_n)$.

This assignment is

- 1. one-by one,
- 2. linear,
- 3. inner product reserving (also norm-reserving)

Definition. (c_n) are the COORDINATES of f w.r.t (φ_n)

$$\mathcal{L}^2$$
 and ℓ^2

PLEASE STOP FOR A WHILE, AND UNDERSTAND THIS POINT.

 $\mathcal{L}^2(R)$ and ℓ^2 are the "same".

Here $\mathcal{L}^2(R) = \mathcal{L}^2(R, \mathcal{R}, \mu)!$

Example.
$$H = \mathcal{L}^2[-1, 1]$$

In $\mathcal{L}^2[-1, 1]$ a complete ON system are the Legendre polynomials.

We have seen some elements of $(P_n(x))$:

$$P_0(x) = \frac{1}{\sqrt{2}}, \quad P_1(x) = \sqrt{\frac{3}{2}}x, \quad P_2(x) = \text{it was a HW} \quad \dots$$

Then every $f \in \mathcal{L}^2[-1, 1]$ can be written as

$$f(x) = \sum_{n=0}^{\infty} c_n P_n(x)$$
, with $c_n = \int_{-1}^{1} f(x) P_n(x) dx$.

Thus every $f \in \mathcal{L}^2[-1, 1]$ can be approximated by a polynomial of

degree n with KNOWN coefficients. Can you recall sg. similar?

An example in $H = \mathcal{L}^2[0, 1]$, Haar functions

This example for an ON system in $\mathcal{L}^2[0, 1]$ are HAAR-FUNCTIONS.

This is the simplest WAVELET FAMILY.

They are defined in blocks.

 $H_{n,k}: [0,1] \to \mathbb{R}$, with $n = 0, 1, 2, \dots k = 1, \dots, 2^n$.

The "zero element" is $H_{0,0}(x) = 1$. The *mother wavelet* is

Haar functions, *n*th block.

For $n \ge 1$ divide [0, 1] into 2^n equal parts with points $\frac{k}{2^n}$. Let's define for $1 \le k \le 2^n$:

$$H_{n,k}(x) = \begin{cases} \sqrt{2^{n}} & \text{if } \frac{k-1}{2^{n}} \le x < \frac{k-1/2}{2^{n}} \\ -\sqrt{2^{n}} & \text{if } \frac{k-1/2}{2^{n}} \le x < \frac{k}{2^{n}} \\ 0 & \text{otherwise} \end{cases}$$

The nonzero part is the "mother wavelet", squished and stretched.

Easy to check, that $||H_{n,k}|| = 1$ and $H_{n,k} \perp H_{n,j}$ for $j \neq k$. DO IT.

Theorem. This ON system is complete. (Not trivial to prove.)

E.g. Haar functions $H_{2,k}$

E.g. Haar function $H_{3,5}$

For example $H_{3,5}$ is the following:

$$H_{3,5}(x) = \begin{cases} 2^{3/2} & \text{if} \quad \frac{1}{2} \le x < \frac{1}{2} + \frac{1}{2^4} \\ -2^{3/2} & \text{if} \quad \frac{1}{2} + \frac{1}{2^4} \le x < \frac{5}{2^3}, \\ 0 & \text{otherwise} \end{cases}$$

Draw it!

Excercise. $||H_{3,5}|| = ?$

Corollary

Let us consider $f \in \mathcal{L}^2[0, 1]$.

Then for any $\varepsilon > 0$ the function *f* can be approximated by

$$F_N = \sum_{n=0}^N \sum_{k=1}^{2^n} c_{k,n} H_{k,n}$$

such that *the error is less then* ε :

 $\|f-F_N\|_2<\varepsilon.$