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Complete systems in L2(X )

Review
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Review. Completeness of functions.

(fk ) ⊂ L2(X ). It is a COMPLETE SYSTEM, if

1. they are linearly independent,

2. ∀f εL2(X ): f =
∞∑

k=1

ck fk with some (cn) ⊂ IR.

Analogy. Let V be a finite dimensional vector space. Assume

1. v1, . . . , vnεV are linearly independent,

2. ∀vεV can be written as v =
n∑

k=1

ck vk (i.e. a generator system).

Remember? It was called: BASIS OF THE VECTOR SPACE.

In infinite dimension we need also convergence in the infinite sum.
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Two complete systems in L2[−π, π]. Review.

1. Trigonometric system:
(

1√
2π
,
cos(kx)√

π
,
sin(kx)√

π
: kεIN

)
2. Polynomial system:

(
1, x , x2, ...xk , ... : k = 1,2, ...

)
.

Then ∀f εL2(X ): f =
∑

k

αk fk , where (fn) is the complete system.

−→ Is it possible to get the αk coefficients for a given f?

1. ⇒ formula
√

2. ⇒ existence theorem  NO FORMULA.
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Difference: guess???

1. The functions in the trigonometric system are orthogonal.

2. The functions in the polinomial systems are not orthogonal , e.g.

〈x4, x2〉 =
∫ 1

−1
x4x2dx =

[
x7

7

]1

−1
=

2
7
6= 0

Next step: Let’s orthogonalize the polynomials!
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For simplicity let X = [a,b] ⊂ IR and consider L2 = L2[a,b].

Theorem. Assume (fn) ⊂ L2 are linearly independent.

Then there exists another (ϕn) ⊂ L2 system of functions s.t:

1. (ϕn) is ON (⇒ linearly independent too.)

2. ∀n: fn =
n∑

k=1

αknϕk , such that αnn 6= 0.

3. ∀n: ϕn =
n∑

k=1

βknfk , such that βnn 6= 0.

Moreover (ϕn) is unique up to the sign.
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Remark. Properties 2. and 3. imply that linear subspace spanned by

{ϕ1, ..., ϕn} and {f1, ..., fn}

are the same. Why?

Proof. (Sketch) We use the Gram-Schmidt orthogonalization (G-S)

(Visualization: f εL2 is a ”vector” )

STEP 1. Define

ϕ1 :=
f1
‖f1‖

.

Why this way?
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STEP 2. Our dual purpose is:

1. {ϕ1, ϕ2} should be ON,

2. f2 can be written as f2 = α12ϕ1 + α22ϕ2 with some α12, α22.

The method is the following: try to follow by ”drawing”

1. Project f2 onto ϕ1: f2|ϕ1 = 〈f2, ϕ1〉 · ϕ1.

2. Subtract it form f2: ϕ̂2 := f2 − 〈f2, ϕ1〉 · ϕ1,⇒ ϕ̂2⊥ϕ1.

(What is still missing?)

3. Normalize:

ϕ2 =
ϕ̂2

‖ϕ̂2‖
=

f2 − 〈f2, ϕ1〉ϕ1

‖f2 − 〈f2, ϕ1〉ϕ1‖
=⇒ ‖ϕ2‖ = 1, ϕ1⊥ϕ2.

√
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GENERAL STEP. Assume ϕ1, ..., ϕn−1: as requested.
√

.

fn is the ”new” element. ϕn =?

1. Project fn onto {ϕ1, ..., ϕn−1}. I.e.

min
c1,...,cn−1

∥∥∥∥∥fn −
n−1∑
k=1

ckϕk

∥∥∥∥∥ =? =⇒ ck = 〈fn, ϕk 〉

2. Subtract it form fn. Finish it yourself. ϕ̂n := . . .

3. Normalize:

ϕn =
ϕ̂n

‖ϕ̂n‖
=

fn −
n−1∑
k=1

〈fn, ϕk 〉ϕk∥∥∥∥∥fn −
n−1∑
k=1

〈fn, ϕk 〉ϕk

∥∥∥∥∥
⇒ ‖ϕn‖ = 1, ϕn⊥{ϕ1, ..., ϕn−1}.
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Summary : starting from a linearly independent system (fn) ⊂ L2

the construction of the ON system (ϕn) ⊂ L2 is done.
√

Corollary. (fn) is complete ⇐⇒ (ϕn) is complete.

Definition. A (ϕn) COMPLETE ON system is called ON BASIS.
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ON system of polynomials
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EXAMPLE. Apply the Thm. for X = [−1,1].

In L2([−1,1]) the system
(
1, x , x2, ...xn, ...), is lin. independent.

G-S orthogonalization =⇒ a system of functions
(
P0,P1, ...Pn, ...

)
s.t.

1. Pn(x) =
n∑

k=0

βknxk , where βnn 6= 0.

I.e. Pn is a polynomial of degree exactly n .

2. 〈Pn,Pm〉 = 0 for n 6= m. I.e.∫ 1

−1
Pn(x) · Pm(x)dx = 0 for n 6= m,

∫ 1

−1
P2

n (x)dx = 1.

Definition. These are the LEGENDRE POLYNOMIALS.
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Corollary. As
(
1, x , x2, ...xk , ... : k = 1,2, ...

)
is complete,

the Legendre polynomial system is complete ON system.

I.e. the Legendre polynomials are an ON BASIS in L2([−1,1])

Try to write down the first 2 (or 3) Legendre polynomial.

Theorem. The Legendre polynomials can be written as:

Pn(x) = cn ·
dn

dxn (x
2 − 1)n= cn ·

(
(x2 − 1)n

)(n)

,

where cn is the normalizing constant, cn =

√
2n + 1

2
· 1

2n · n!
.
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Pn(x) = cn ·
dn

dxn (x
2 − 1)n

To prove the formula we have to see two main properties of (Pn):

1. Pn is a polynomial of degree n.

2. Pn⊥Pm for n 6= m.

Proof. (Sketch)

1. (x2 − 1)n is a polynomial of degree 2n. Finish it.

2. Trick : See that for all k ≤ m < n〈
Pn, xk

〉
=

∫ 1

−1

dn

dxn (x
2 − 1)n · xk dx = 0.

Why is it enough to verify orthogonality of Pn,Pm?
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Remark. You may find as ”Legendre polynomial system”

(pn) polynomials with different cn main coefficients.

The reason is, that normalization might be different to L2-norm.

The two most important property is, that

1. pn IS POLYNOMIAL OF DEGREE n,

2. for n 6= m: pn and pm ORTHOGONAL, i.e. 〈pn,pm〉 = 0.
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Up to this point we considered L2(X ,M,m), m is the Lebesgue
meas.

We extend the results to L2 with general measure.

R ⊂ R. The measure will be given by a ”weight function” % : R → R+,

that is Lebesgue integrable.

A ⊂ R is a subset.

The measure of A is defined:

m%(A) :=
∫

A
%dm.

A possible ”meaning” : Imagine a wire with variable thickness.

The measure of A ⊂ R is the weight of that part of the wire.
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Weighted L2 space

The integral w.r.t the measure m% over an E measurable set is:∫
E

f dm% =

∫
E

f%dm.

Formally we can write ”dm% = %dm”.

The WEIGHTED L2 SPACE is L2
%(R):

L2
%(R) = {f : R → IR :

∫
R

f 2 dm% =

∫
R

f 2 %dm <∞},

also considering m%-a.e. functions identical.
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L2
%(R) space

L2
%(R) is a Hilbert space, with inner product:

〈f ,g〉% :=
∫

R
f g %dm,

In L2
%(R) the norm is defined as:

‖f‖%,2 =

(∫
R
|f |2 %dm

)1/2

.

Thus in this space orthogonality means:

f⊥g ≡
∫

R
f g %dm = 0.
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In L2
%(R) let us consider the linearly independent system

{1, x , x2, . . . } ⊂ L2
%(R),

(assuming these functions are part of the space.)

Let us orthogonalize and normalize this system.

−→We get ON polynomials in L2
%(R).
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Example 1. Let us consider R = (−1,1).

The CHEBYSHEV POLYNOMIALS of the first kind,

and of the second kind are defined by the weight functions:

%1(x) =
1√

1− x2
, %2(x) =

√
1− x2.

Proposition. These polynomials are (without normalization):

Tn(x) = cos (n · arccos(x)) , Un(x) =
sin
(
(n + 1) arccos(x)

)
sin ( arccos(x) )

.
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These polynomials can be written using x = cos(θ):

Tn(x) = cos (nθ) , Un(x) =
sin ((n + 1)θ)

sin (θ)
.

Verify, that Tn(x) and Un(x) are polynomial of degree exactly n.

(Left as an exercise.)

Let’s verify the orthogonality. I.e. for m 6= n:

〈Tn,Tm〉ρ =
∫ 1

−1
Tn(x)Tm(x)

1√
1− x2

dx = 0,

〈Un,Um〉ρ =
∫ 1

−1
Un(x)Um(x)

√
1− x2 dx = 0.

(Left as an exercise.)
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Example 2. Let us consider R = R.

THE HERMITE POLYNOMIALS are defined with the weight function:

%(x) = e−x2
.

As
∫

R
(xk )2dm% =

∫ ∞
−∞

(xk )2e−x2
dx <∞, we get xkεL2

%(IR).

After orthogonalization we get:

Hn(x) = (−1)nex2
· dn

dxn

(
e−x2

)
.

Verify, that Hn(x) is polynomial of degree exactly n.
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Questions.

I Why are these systems of orthogonal polynomials important?

I What can we use the ON polynomials for?
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+1 example in L2[0,1]

This example gives an ON system in L2[0,1].

They are called Haar-functions.

The functions are not polynomials, but this is the

simplest WAVELET FAMILY.

(More details on that can be found in the in the book.)

The functions are defined in blocks.

Hn,k with n = 0,1,2, . . . and k = 1, ...,2n.

For all indices Hn,k : [0,1]→ IR.
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Haar functions

For n = 0 there are: H0,0 and H0,1.

H0,0(x) ≡ 1. This is an ”extra” element

H0,1(x) =


1 if 0 ≤ x < 1/2

− 1 if 1/2 ≤ x ≤ 1

H0,1(x) is the so called mother wavelet.

Easy to check, that ‖H0,0‖ = ‖H0,1‖ = 1 and H0,0⊥H0,1. DO IT.
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Haar functions, 1st block.

For n = 1 there are 2 functions: H1,1 and H1,2.

H1,1(x) =


√

2 if 0 ≤ x < 1/4

−
√

2 if 1/4 ≤ x < 1/2

0 if 1/2 ≤ x < 1

H1,2(x) =


0 if 0 ≤ x < 1/2
√

2 if 1/2 ≤ x < 3/4

−
√

2 if 3/4 ≤ x < 1

Easy to check, that ‖H1,k‖ = 1 and H1,1⊥H1,2. DO IT.
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Haar functions, nth block.

For n ≥ 1 divide [0,1] into 2n equal parts with points
k
2n . Let’s define:

Hn,k (x) =



√
2n if

k − 1
2n ≤ x <

k − 1/2
2n

−
√

2n if
k − 1/2

2n ≤ x <
k
2n

0 otherwise

, n ≥ 1, 1 ≤ k ≤ 2n.

The nonzero part is the ”mother wavelet”, squished and stretched.

Easy to check, that ‖Hn,k‖ = 1 and Hn,k⊥Hn,j for j 6= k . DO IT.
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E.g. Haar functions H2,k

As an example, here
are the graphs of the

H2,k

Haar functions for
k = 1,2,3,4.

Proposition.

1. (Hn,k ) is ON. (We have ’almost’ seen it.)

2. This ON system is complete. (Not trivial to prove.)
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