Functional analysis

Lecture 6.

March 18. 2021

Review. Lebesgue integral

The *basic step* was: define the integral for simple functions.

$$
s(x) = \sum_{k=1}^n c_k \cdot \chi_{E_k}(x), \qquad E_k \cap E_j = \emptyset, \quad c_k \in \mathbb{R}.
$$

Let $E \in \mathcal{M}$. Then the Lebesque integral of *s* over *E* is:

$$
\int\limits_{E} s \, dm = \sum_{k=1}^{n} c_k m(E \cap E_k).
$$
 Geometric meaning?

We extended it to measurable functions: *∫ f dm*√. How? *E*

Notation. $\mathcal{L}(E)$ is the set of \mathcal{L} -integrable functions over E.

Review. Main properties of the Lebesgue integral

1. If *E* is measurable, *f* is measurable & bounded a.e. $\Rightarrow \exists \int f dm$. *E*

2. If
$$
f \in \mathcal{L}(E)
$$
 and $f = g$ a.e. $\Rightarrow \int_{E} f dm = \int_{E} g dm$.

3. Assume $f \in \mathcal{R}[a, b]$ i.e. Riemann integrable. Then $f \in \mathcal{L}[a, b]$,

$$
\int_{a}^{b} f(x) dx = \int_{[a,b]} f dm.
$$

What is the meaning of the two integrals?

Advantages of $\mathcal L$ integral

Advantage 1. More functions are Lebesgue integrable.

E.g. the Dirichlet function is not Riemann integrable. $f:[0,1] \to \mathbb{R}$:

$$
f(x) = \begin{cases} 1 & \text{if } x \in [0, 1], \text{ rational} \\ 0 & \text{if } x \in [0, 1], \text{ irrational} \end{cases}
$$

 $\frac{1}{\sqrt{2}}$ $\int_{1}^{1} f(x) dx$ 0 *f*(*x*)*dx Why*?

Nevertheless, as $f = 0$ a.e. it is Lebesgue integrable, and

$$
\int_{[0,1]} f dm = \int_{[0,1]} 0 dm = 0.
$$

Advantages of $\mathcal L$ integrals, cont.

Advantage 2. Easy to interchange with the *limit*.

The fact, that the pointwise limit and the Lebesque integral

are interchangeable

is a key property.

This property makes $\mathcal L$ intergal **more useful** than $\mathcal R$ integral.

In R integrals the uniform limit and the integral are interchangeable.

We state two basic results.

Lebesgue's Monotone Convergence thm.

Theorem. $E \in \mathcal{M}$ is a measurable set.

Assume $0 \lt (f_n)$ is a measurable function sequence, that is \nearrow a.e..

Define the pointwise limit: $f(x) := \lim_{n \to \infty} f_n(x)$.

Then

$$
\int_{E} f dm = \lim_{n \to \infty} \int_{E} f_n dm.
$$
\n(1)

Remark. In the case of the *Riemann integral* [\(1\)](#page-5-0) is true IF ONLY

the convergence is uniform .

Lebesgue's Dominated Convergence thm.

Theorem. $E \in \mathcal{M}$ is a measurable set.

 (f_n) are measurable, $\lim\limits_{n\to\infty}f_n(x)=f(x)$ for a.e. (*Pointwise limit*.) Assume ∃*g*∈*L*(*E*):

 $|f_n(x)| \le g(x)$, for a.e. *x€E*, ∀*n*.

Then

$$
\int\limits_{E} f dm = \lim\limits_{n \to \infty} \int\limits_{E} f_n dm
$$

No need for **uniform** convergence!

Lebesgue's function spaces

\mathcal{L}^p (R) function space

Let $p \ge 1$ be a real number, and $R = [a, b]$.

Definition. The $\mathcal{L}^p(R)$ *function set* is defined as:

$$
\mathcal{L}^p(R) = \{f: R \to \mathbb{R} \text{ measurable}, \int\limits_R |f|^p dm < \infty\}.
$$

These are the "BIG ELL p" spaces. Recall the "little ell p spaces"

(Short notation is \mathcal{L}^p , with general set R .)

Proposition. \mathcal{L}^p is a vector space.

Proof. Think: What do we have to prove?

1. If
$$
f \in \mathbb{C}^p
$$
, $c \in \mathbb{R}$ $\Rightarrow \int_R |c \cdot f|^p dm = |c|^p \int_R |f|^p dm < \infty$. $c f \in \mathbb{C}^p \vee$
\n2. $f, g \in \mathbb{C}^p \xrightarrow{?} f + g \in \mathbb{C}^p$

Trick: $|f(x) + g(x)| \leq 2 \max(|f(x)|, |g(x)|)$. Use it:

 $|f(x) + g(x)|^p \leq 2^p \max(|f(x)|, |g(x)|)^p \leq 2^p (|f(x)|^p + |g(x)|^p)$ $Integrate: \int |f+g|^p dm \leq 2^p$ *R* $\sqrt{ }$ \mathcal{L} $\int |f|^p dm + \int |g|^p dm$ *R R* \setminus $\Big\} < \infty.$

The proof is finished.

Please stop for a while, and understand up to this point:

 $\mathcal{L}^p(R) = \{f: R \to \mathbb{R} \text{ is measurable, }$ *R* $|f|^p dm < \infty$

is a vector space

Norm in $\mathcal{L}^p(R)$?

Review.
$$
\ell^p = \{(x_n) : \sum_{n=1}^{\infty} |x_n|^p < \infty\}
$$
, the norm $||x||_p = (\sum |x_n|^p)^{1/p}$.

Similarly, let's try

$$
||f||_p = \left(\int_R |f|^p dm\right)^{1/p}.
$$

Is it really a norm?

- Nonnegative? answer? [√]
- Non degenerative? answer?

$$
||f||_p = 0 \iff f = 0 \quad ?
$$

NOT. Why?

Norm in $\mathcal{L}^p(R)$?

For the Dirichlet function *f* we have $||f||_p = 0$, but $f \neq 0!$

In \mathcal{L}^p we'll **IDENTIFY** functions that are identical $a.e.,$

I.e. new definition of L^p : equivalence classes:

If
$$
f = g
$$
 a.e. $\epsilon \mathcal{L}^p \implies "f = g"$

Then
$$
||f||_p = \left(\int_R |f|^p dm\right)^{1/p}
$$
 is a norm, indeed.

Verify, that
$$
\int_R |f| dm = 0 \Longrightarrow f = 0
$$
 a.e.

Triangle inequality in \mathcal{L}^p spaces

Theorem. (Minkovskii-inequality) For all $1 < p < +\infty$:

 $||f + g||_p \leq ||f||_p + ||g||_p$

Proof. If $p = 1$, use the *original triangle inequality*:

∀x : $|f(x) + g(x)| \le |f(x)| + |g(x)|$.

Then integrate

$$
||f+g||_1 \leq \int_R |f| dm + \int_R |g| dm = ||f||_1 + ||g||_1 \sqrt{2}
$$

For $p > 1$ the proof is very hard...

\mathcal{L}^{∞} space

How to define the $\mathcal{L}^p (R)$ Lebesgue space for $\boldsymbol{p} = \infty$?

Do you have an idea, how to do it? Think of ℓ^{∞}

Let $p = +\infty$. We will define the function space

 $\mathcal{L}^{\infty}(R)$

Essentially bounded function

- $f: R \to \mathbb{C}$ is called ESSENTIALLY BOUNDED, if
	- **►** ∃*M*_€**R** constant, and
	- \blacktriangleright $\exists E \in \mathcal{M}$, $m(E) = 0$, such that $|f(x)| \leq M$, $\forall x \neq \in$.

If *f* is essentially bouded, then the *essential supremum* is

 $\text{ess sup } f := \inf \{ M \mid \exists E, m(E) = 0 : |f(x)| \le M, \forall x \notin E \}$

Essential supremum. Example.

Let's see the Dirichlet function. $f : [0, 1] \rightarrow \mathbb{R}$:

$$
f(x) = \begin{cases} 1 & \text{if } x \in [0, 1], \text{ rational} \\ 0 & \text{if } x \in [0, 1], \text{ irrational} \end{cases}
$$

Try to "draw" this function. Obviously $\sup f = \max f = 1$.

Then $\text{ess sup } f = 0$.

Difference between sup and ess sup?

Example. Let us consider two function over $R = [-1, 1]$.

$$
f(x) = x^{2}, \qquad g(x) = \begin{cases} x^{2} & \text{if } x \neq 0, x \neq \pm \frac{1}{2} \\ 2 & \text{if } x = 0 \end{cases}
$$

$$
\text{sup } f = 1,
$$

$$
\text{sup } f = 1,
$$

$$
\text{sup } g = 4.
$$

BUT $f = g$ *a.e.* and thus: ess sup $f = \text{ess sup } g = 1$.

Definition of \mathcal{L}^{∞}

Definition. $\mathcal{L}^{\infty}(R)$ FUNCTION SPACE is the set of functions defined

over *R*, that are *essentially bounded*.

Again, we'll consider a.e. equal functions identical.

 $\mathcal{L}^{\infty}(R) = \{f : R \to \mathbb{C} \text{ is measurable, essentially bounded}\}.$

 $\mathcal{L}^{\infty}(R)$ is a vector space. Check it!

It is a normed space with norm: (Guess??)

 $||f||_{\infty}$:= ess sup *f*.

The relation of $\mathcal{L}^p(R)$ spaces.

Assume $m(R) < \infty$ (e.g. $R = [a, b]$).

Then

 $\forall f \epsilon \mathcal{L}^{\infty}(R) \implies f \epsilon \mathcal{L}^{p}(R) \quad \forall p \geq 1.$

In general, we also have in the case of $R = [a, b]$:

 $1 \leq p < q: \quad \forall f \in \mathcal{L}^q(R) \implies f \in \mathcal{L}^p(R).$

Thus $\mathcal{L}^\infty (R) \subset \mathcal{L}^p (R) \subset \mathcal{L}^1 (R)$ for all $p>1.$

Remark. The background of the notation $\mathcal{L}^{\infty}(R)$ is:

 $\lim_{p\to\infty}$ $||f||_p = ||f||_{\infty}$.

Can you recall something similar?

Completeness

Theorem. (Riesz)

For any $1 \leq p \leq +\infty$ $\mathcal{L}^p(R)$ is COMPLETE.

Rewiew. Completeness of $L^p(R)$ means: All $(f_n) \subset L^p(R)$

Cauchy sequences are convergent, i.e.

 \exists lim $f_n = f \in \mathcal{L}^p(X)$.

Thus L *p* (*R*) is always a Banach space.

The proof is very HARD.

C 2 [*a*, *b*] again

Recall, that $C^2[a,b] = \{f : [a,b] \to \mathbb{R}, \text{ } \text{ } \text{ continuous}\},$ with norm

$$
||f||_2 = \left(\int_a^b f^2(x)dx\right)^{1/2}
$$

(same as Lebesgue int.)

We have seen, that "unfortunately"

 $C^2[a, b]$ is not complete.

But, every $f[a, b] \to \mathbb{R}$ continuous function: $f \in \mathcal{L}^2[a, b]$. (Why?).

Thus $C^2[a,b] \subset \mathcal{L}^2[a,b]$. And $\mathcal{L}^2[a,b]$ is COMPLETE.

"Completing *C* 2 [*a*, *b*]"

We have "completed" $C^2[a,b]$ with the limits of it's Cauchy sequences.

The most important Lebesue space is $\mathcal{L}^2[a,b]$.

It is a HILBERT space. The infinite dimensional companion of Rⁿ.

$$
\text{Focus on } \boxed{p=2}
$$
\n
$$
\mathcal{L}^2[a,b] = \{f : [a,b] \to \mathbb{R}, \text{ meas.}, \int_{[a,b]} f^2 \, dm < \infty\}, +a.e. \text{ equality.}
$$