Functional analysis

Lecture 6.

March 18. 2021

Review. Lebesgue integral

The *basic step* was: define the integral for simple functions.

$$s(x) = \sum_{k=1}^{n} c_k \cdot \chi_{E_k}(x), \qquad E_k \cap E_j = \emptyset, \quad c_k \in \mathbb{R}.$$

Let $E \in \mathcal{M}$. Then the Lebesgue integral of *s* over *E* is:

$$\int_{E} s \, dm = \sum_{k=1}^{n} c_k m(E \cap E_k).$$
 Geometric meaning?

We extended it to measurable functions: $\int_{E} f \, dm \sqrt{.}$ How?

Notation. $\mathcal{L}(E)$ is the set of \mathcal{L} -integrable functions over E.

Review. Main properties of the Lebesgue integral

1. If *E* is measurable, *f* is measurable & bounded a.e. $\Rightarrow \exists \int_{E} f dm$.

2. If
$$f \in \mathcal{L}(E)$$
 and $f = g$ a.e. $\Rightarrow \int_{E} f \, dm = \int_{E} g \, dm$.

3. Assume $f \in \mathcal{R}[a, b]$ i.e. Riemann integrable. Then $f \in \mathcal{L}[a, b]$,

$$\int_{a}^{b} f(x) \, dx = \int_{[a,b]} f \, dm.$$

What is the meaning of the two integrals?

Advantages of \mathcal{L} integral

Advantage 1. More functions are Lebesgue integrable.

E.g. the Dirichlet function is not Riemann integrable. $f : [0, 1] \rightarrow \mathbb{R}$:

$$f(x) = \begin{cases} 1 & \text{if } x \in [0, 1], \text{ rational} \\ \\ 0 & \text{if } x \in [0, 1], \text{ irrational} \end{cases}$$

 $\int_{0}^{1} f(x) dx \quad Why?$

Nevertheless, as f = 0 a.e. it is Lebesgue integrable, and

$$\int_{[0,1]} f \, dm = \int_{[0,1]} 0 \, dm = 0.$$

Advantages of \mathcal{L} integrals, cont.

Advantage 2. Easy to interchange with the limit.

The fact, that the pointwise limit and the Lebesgue integral

are interchangeable

is a key property.

This property makes \mathcal{L} intergal **more useful** than \mathcal{R} integral.

In \mathcal{R} integrals the uniform limit and the integral are interchangeable.

We state two basic results.

Lebesgue's Monotone Convergence thm.

Theorem. $E \in \mathcal{M}$ is a measurable set.

Assume $0 \leq (f_n)$ is a measurable function sequence, that is \nearrow a.e..

Define the pointwise limit: $f(x) := \lim_{n \to \infty} f_n(x)$.

Then

$$\int_{E} f \, dm = \lim_{n \to \infty} \int_{E} f_n \, dm. \tag{1}$$

Remark. In the case of the Riemann integral (1) is true IF ONLY

the convergence is uniform .

Lebesgue's Dominated Convergence thm.

Theorem. $E \in \mathcal{M}$ is a measurable set.

(*f_n*) are measurable, $\lim_{n\to\infty} f_n(x) = f(x)$ for a.e. (*Pointwise limit.*) Assume $\exists g \in \mathcal{L}(E)$:

 $|f_n(x)| \le g(x)$, for a.e. $x \in E$, $\forall n$.

Then

$$\int_{E} f \, dm = \lim_{n \to \infty} \int_{E} f_n \, dm$$

No need for uniform convergence!

Lebesgue's function spaces

$\mathcal{L}^{p}(R)$ function space

Let $p \ge 1$ be a real number, and R = [a, b].

Definition. The $\mathcal{L}^{p}(R)$ function set is defined as:

$$\mathcal{L}^p(R) = \{f: R \to \mathbb{R} \text{ measurable}, \int\limits_R |f|^p dm < \infty\}.$$

These are the "BIG ELL p" spaces. Recall the "little ell p spaces"

(Short notation is \mathcal{L}^{p} , with general set *R*.)

Proposition. \mathcal{L}^{p} is a vector space.

Proof. Think: What do we have to prove?

1. If
$$f \in \mathcal{L}^p$$
, $c \in \mathbb{R} \Rightarrow \int_R |c \cdot f|^p dm = |c|^p \int_R |f|^p dm < \infty$. $c f \in \mathcal{L}^p \checkmark$
2. $f, g \in \mathcal{L}^p \xrightarrow{?} f + g \in \mathcal{L}^p$

Trick: $|f(x) + g(x)| \le 2 \max(|f(x)|, |g(x)|)$. Use it:

 $|f(x) + g(x)|^{p} \leq 2^{p} \max(|f(x)|, |g(x)|)^{p} \leq 2^{p} \left(|f(x)|^{p} + |g(x)|^{p}\right)$ Integrate: $\int_{R} |f + g|^{p} dm \leq 2^{p} \left(\int_{R} |f|^{p} dm + \int_{R} |g|^{p} dm\right) < \infty. \quad \checkmark$

The proof is finished.

Please stop for a while, and understand up to this point:

 $\mathcal{L}^p(R) = \{ f : R \to \mathbb{R} \text{ is measurable}, \quad \int_{\underline{-}} |f|^p dm < \infty \}$

is a vector space

Norm in $\mathcal{L}^{p}(R)$?

Review.
$$\ell^{p} = \{(x_{n}) : \sum_{n=1}^{\infty} |x_{n}|^{p} < \infty\}$$
, the norm $||x||_{p} = (\sum |x_{n}|^{p})^{1/p}$.

Similarly, let's try

$$\|f\|_p = \left(\int\limits_R |f|^p dm\right)^{1/p}.$$

Is it really a norm?

- Nonnegative? answer? $\sqrt{}$
- Non degenerative? answer?

$$\|f\|_{\rho} = 0 \quad \iff \quad f = 0 \qquad ?$$

NOT. Why?

Norm in $\mathcal{L}^{p}(R)$?

For the Dirichlet function *f* we have $||f||_{\rho} = 0$, but $f \neq 0!$

In \mathcal{L}^p we'll IDENTIFY functions that are identical a.e..

I.e. new definition of \mathcal{L}^p : equivalence classes:

If
$$f = g$$
 a.e. $\epsilon \mathcal{L}^{p} \implies "f = g"$

Then
$$||f||_p = \left(\int\limits_R |f|^p dm\right)^{1/p}$$
 is a norm, indeed.

Verify, that
$$\int_{R} |f| dm = 0 \Longrightarrow f = 0$$
 a.e.

Triangle inequality in \mathcal{L}^{p} spaces

Theorem. (Minkovskii-inequality) For all $1 \le p < +\infty$:

 $\|f+g\|_{p} \leq \|f\|_{p} + \|g\|_{p}$

Proof. If p = 1, use the original triangle inequality:

 $\forall x: \qquad |f(x)+g(x)|\leq |f(x)|+|g(x)|.$

Then integrate

$$\|f + g\|_{1} \leq \int_{R} |f| dm + \int_{R} |g| dm = \|f\|_{1} + \|g\|_{1} \sqrt{2}$$

For p > 1 the proof is very hard...

\mathcal{L}^{∞} space

How to define the $\mathcal{L}^{p}(R)$ Lebesgue space for $p = \infty$?

Do you have an idea, how to do it? Think of ℓ^∞

Let $p = +\infty$. We will define the function space

 $\mathcal{L}^{\infty}(R)$

Essentially bounded function

- $f: \boldsymbol{R}
 ightarrow \mathbb{C}$ is called ESSENTIALLY BOUNDED, if
 - ▶ $\exists M \in \mathbb{R}$ constant, and
 - ► $\exists E \in \mathcal{M}, m(E) = 0$, such that $|f(x)| \leq M, \quad \forall x \notin E.$

If f is essentially bouded, then the essential supremum is

ess sup $f := \inf\{M \mid \exists E, m(E) = 0 : |f(x)| \le M, \forall x \notin E\}$

Essential supremum. Example.

Let's see the Dirichlet function. $f : [0, 1] \rightarrow \mathbb{R}$:

$$f(x) = \begin{cases} 1 & \text{if } x \in [0, 1], \text{ rational} \\ \\ 0 & \text{if } x \in [0, 1], \text{ irrational} \end{cases}$$

Try to "draw" this function. Obviously $\sup f = \max f = 1$.

Then ess sup f = 0.

Difference between sup and ess sup?

Example. Let us consider two function over R = [-1, 1].

$$f(x) = x^{2}, \qquad g(x) = \begin{cases} x^{2} & \text{if } x \neq 0, x \neq \pm \frac{1}{2} \\ 2 & \text{if } x = 0 \\ 4 & \text{if } x = \pm \frac{1}{2} \end{cases}$$

BUT f = g a.e. and thus: ess sup f = ess sup g = 1.

Definition of \mathcal{L}^{∞}

Definition. $\mathcal{L}^{\infty}(R)$ FUNCTION SPACE is the set of functions defined

over *R*, that are *essentially bounded*.

Again, we'll consider a.e. equal functions identical.

 $\mathcal{L}^{\infty}(\mathbf{R}) = \{ f : \mathbf{R} \to \mathbb{C} \text{ is measurable, essentially bounded} \}.$

 $\mathcal{L}^{\infty}(R)$ is a vector space. Check it!

It is a normed space with norm: (Guess??)

 $\|f\|_{\infty} := \operatorname{ess \, sup } f.$

The relation of $\mathcal{L}^{p}(R)$ spaces.

Assume $m(R) < \infty$ (e.g. R = [a, b]).

Then

$$\forall f \in \mathcal{L}^{\infty}(R) \implies f \in \mathcal{L}^{p}(R) \quad \forall p \geq 1.$$

In general, we also have in the case of R = [a, b]:

$$1 \leq p < q$$
: $\forall f \in \mathcal{L}^q(R) \implies f \in \mathcal{L}^p(R).$

Thus $\mathcal{L}^{\infty}(R) \subset \mathcal{L}^{p}(R) \subset \mathcal{L}^{1}(R)$ for all p > 1.

Remark. The background of the notation $\mathcal{L}^{\infty}(R)$ is:

$$\lim_{\rho\to\infty}\|f\|_{\rho}=\|f\|_{\infty}.$$

Completeness

Theorem. (Riesz)

For any $1 \le p \le +\infty \mathcal{L}^{p}(R)$ is COMPLETE.

Rewiew. Completeness of $\mathcal{L}^{p}(R)$ means: All $(f_{n}) \subset \mathcal{L}^{p}(R)$

Cauchy sequences are convergent, i.e.

 $\exists \lim f_n = f \in \mathcal{L}^p(X).$

Thus $\mathcal{L}^{p}(R)$ is always a Banach space.

The proof is very HARD.

$C^{2}[a, b]$ again

Recall, that $C^{2}[a, b] = \{f : [a, b] \rightarrow \mathbb{R}, \text{ continuous}\}$, with norm

$$\|f\|_2 = \left(\int\limits_a^b f^2(x)dx\right)^{1/2}$$

(same as Lebesgue int.)

We have seen, that "unfortunately"

 $C^{2}[a, b]$ is not complete.

But, every $f[a, b] \rightarrow \mathbb{R}$ continuous function: $f \in \mathcal{L}^2[a, b]$. (Why?).

Thus $C^{2}[a, b] \subset \mathcal{L}^{2}[a, b]$. And $\mathcal{L}^{2}[a, b]$ is COMPLETE.

"Completing C²[a, b]"

We have "completed" $C^{2}[a, b]$ with the limits of it's Cauchy sequences.

The most important Lebesue space is $\mathcal{L}^2[a, b]$.

It is a HILBERT space. The infinite dimensional companion of \mathbb{R}^n .

Focus on
$$p = 2$$

 $\mathcal{L}^{2}[a, b] = \{f : [a, b] \to \mathbb{R}, \text{ meas.}, \int_{[a, b]} f^{2} dm < \infty\}, + a.e. equality.$