Functional analysis

Lecture 5.

March 11. 2021

Review. Measure space

 (X, \mathcal{R}, μ) is called *measure space*, if

- *X* is an arbitrary set,
- $\mathcal{R} \subset 2^X$ is a σ algebra.

.

Elements of R are *measurable sets*.

• $\mu : \mathcal{R} \to \mathbb{R}^+ \cup \{+\infty\}$ is a measure,

i.e. it is a σ -additive set function, nonegative.

$$
\mu\left(\bigcup_{k=1}^{\infty} A_k\right)=\sum_{k=1}^{\infty} \mu(A_k) \quad \text{if} \quad A_i\cap A_j=\emptyset, \ i\neq j.
$$

Measure spaces. Examples.

1. $X = N$. $R = 2^N$, all subsets. $\mu(\pmb{A}):=\#(\pmb{A})=$ \int \int $\overline{\mathcal{L}}$ |*A*| if it is finite $+ \infty$ if it is not finite

2. $X = \{x_1, x_2, \ldots, x_n, \ldots\}$, (or finite). $\mathcal{R} = 2^X$.

 $p_1, p_2, \ldots, p_n, \ldots$ are nonnegative numbers s.t.

$$
\sum_{k=1}^{\infty}p_k=1.
$$

The measure is defined for $A \subset X$:

$$
\mu(A):=\sum_{X_i\in A}p_i.
$$

.

Lebesgue measure on **R**.

1.
$$
\mathcal{I} = \{ \text{ finite intervals} \}.
$$
 $m(I) = b - a$.
\n2. $\mathcal{E} = \left\{ A \subset \mathbb{R} : A = \bigcup_{k=1}^{n} I_k, I_k \in \mathcal{I} \text{ are disjoint} \right\}, \text{ simple sets.}$
\n
$$
m(A) = \sum_{k=1}^{n} m(I_k).
$$
\n3. $A \subset \mathbb{R} : m^*(A) = \inf \left\{ \sum_{k=1}^{\infty} m(I_k) : A \subset \bigcup_{k=1}^{\infty} I_k, I_k \in \mathcal{I} \right\}.$

4. *"Heuristics"*: ∃M σ-algebra:

$$
\mathcal{E} \subset \mathcal{M} \subset 2^R, \qquad m^*|_{\mathcal{M}} \text{ is } \sigma \text{ -additive}.
$$

m ≡ *Lebesgue-measure*. M ≡ *Lebesgue-measurable sets*

Next step.

Extension of Lebesgue measure to Rⁿ.

Change 1. (*i.e. measure of finite intervals*) to

1^{*} Elements of *I* are $I = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$, with measure $m(I) = \prod_{k=1}^{n} (b_k - a_k)$. $k-1$

Then, "everything is the same..."

Purpose of measure: new concept of integral

Review of the Riemann integral.

• Motivation: $f : [a, b] \to \mathbb{R}^+$ bounded function.

How much is the area under the graph of *f*?

• Approximations of the area:

The **Riemann integral**:

$$
\int_{a}^{b} f(x) dx := \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k^*) \Delta x_k,
$$

(*The* lim *is independent of the choice of x*[∗] *k* [*xk*−1, *x^k*]*.*)

One shortcoming of the Riemann integral.

Define $f_n : [0, 1] \rightarrow \mathbb{R}$ by: $f_n(x) =$ $\sqrt{ }$ \int \mathcal{L} 1, if $x = \frac{k}{n}$ $\frac{m}{m}$, $k = 1, 2, \ldots m$, $m \le n$ 0, otherwise. Then \int_1^1 0 $f_n(x)dx = 0$ for all $n = 1, 2, \ldots$. But:

$$
\lim_{n\to\infty}f_n(x)=f(x)=\begin{cases}1,&\text{if }x\in\mathbb{Q},\\0,&\text{if }x\in\mathbb{Q}^*,\end{cases}\qquad \qquad \nexists \int_0^1f(x)dx.
$$

Remark. The limit function is called *Dirichlet function*.

Measurable functions

An $f : \mathbb{R} \to \mathbb{R}$ function is MEASURABLE, if:

$\{x : f(x) < a\} \in \mathcal{M}$ $\forall a \in \mathbb{R}$

Equivalent statements are: write \leq or $>$ or $>$ instead of $<$

If *f* is measurable, then the sets $\{x : f(x) = a\} \in M$ for all $a \in \mathbb{R}$.

Measurable functions. Examples.

1. Continuous functions.

The key: If *f* is cont., then $\{x : f(x) > a\}$ is open.

- 2. Continuous functions with finite number of discontinuities.
- 3. Dirichlet function.
- 4. Characteristic function χ_E , where $E \in \mathcal{M}$:

$$
\chi_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \nmid E \end{cases}
$$

Properties of measurable functions

Proposition. If *f* and *g* are measurable, then

- $f + g$ is measurable,
- \bullet $f \cdot g$ is measurable.
- \bullet min(f, g) is measurable, etc.

"Usual ways of combining functions preserves measurability"

Remark. The set of *measurable functions* is quite attractive...

Simple functions

s(*x*) is SIMPLE function, if the image is finite: $R_s = \{c_1, \ldots, c_n\}$. Denote $E_k = \{x : s(x) = c_k\}$. Trivially $E_k \cap E_j = \emptyset$, $k \neq j$.

Thus $s(x)$ can be written as:

$$
s(x) = \sum_{k=1}^n c_k \cdot \chi_{E_k}(x).
$$

The simple function *s* is measurable \iff $E_k \in \mathcal{M}$.

Also called:

STEP FUNCTION.

Lebesgue integral for simple functions

Instead of *"piecewise constant"*, consider *"simple"*.

Let $E_k \in \mathcal{M}, k = 1, 2, \ldots n, E_k \cap E_j = \emptyset$. $c_k \in \mathbb{R}$.

$$
s(x) = \sum_{k=1}^n c_k \cdot \chi_{E_k}(x) = \begin{cases} c_k & \text{if } x \in E_k \\ 0 & \text{if } x \in E_k \end{cases}
$$

 $E_εM$. The integral of *s* over *E* w.r.t measure *m* is:

$$
\int\limits_{E} s \; dm = \sum_{k=1}^n c_k m(E \cap E_k).
$$

Example. $E = [0, 1]$. $E_0 = [0, 1] \cap \mathbb{Q}$.

 $s(x) := \chi_{E_0}(x), \quad m(E_0) = 0 \Rightarrow$ $\int s dm = 0 \sqrt{2}$ *E*

s(*x*) is the *Dirichlet function*.

Preparation of the extension of the integral

Proposition. $f \geq 0$ measurable.

Then $\exists(s_n) \nearrow$ monotone increasing sequence of *simple functions*:

$$
\lim_{n\to\infty} s_n(x) = f(x) \qquad \forall x.
$$

Sketch of the proof.

We construct the sequence of simple functions.

 $n \in \mathbb{N}$. Let's define

$$
E_k := \{x : \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n}\}, \quad F_n := \{x : f(x) \ge n\}.
$$
\n
$$
s_n(x) = \begin{cases} n & \text{if } x \in F_n \\ \frac{k-1}{2^n} & \text{if } x \in E_k \end{cases} \implies s_n(x) \to f(x).
$$

Lebesgue integral, extension

 $f \geq 0$ is measurable. $E \in \mathcal{M}$.

The Lebesgue integral of *f* over *E* w.r.t measure *m* is:

$$
\int\limits_E f \, dm = \sup \left\{ \int\limits_E s \, dm : s \, simple, \, s(x) \leq f(x). \right\}
$$

Remark. This value can be $+\infty$ (!)

Lebesgue integral extension, last step

f is an *arbitrary* measurable function. Write it as $f = f_{+} - f_{-}$

$$
f_{+}(x) = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ 0 & \text{otherwise} \end{cases}
$$

$$
f_{-}(x) = \begin{cases} -f(x) & \text{if } f(x) < 0 \\ 0 & \text{otherwise} \end{cases}
$$

 $f = f_{+} - f_{-}$ where $f_{+} > 0$ and $f_{-} > 0$ are measurable.

These integrals are well defined:

$$
\int_E f_+ dm, \qquad \int_E f_- dm.
$$

f is called LEBESGUE INTEGRABLE, if both integrals are finite.

The Lebesgue integral of *f* over *E* w.r.t measure *m* is:

$$
\int_E f dm := \int_E f_+ dm - \int_E f_- dm.
$$

L(*E*): the space of *Lebesgue-integrable* functions over set *E*.

Properties of the Lebesgue integral

• If $f, g \in \mathcal{L}$, then

$$
\int_E (f+g) dm = \int_E f dm + \int_E g dm, \qquad \int_E c \cdot f dm = c \cdot \int_E f dm
$$

• If $m(E) < \infty$ and $a \le f(x) \le b$ measurable, then

$$
a\cdot m(E)\leq \int_E f\,dm\leq b\cdot m(E).
$$

• If *f*, $g \in \mathcal{L}$ and $f(x) \leq g(x)$, then

$$
\int_E f dm \leq \int_E g dm.
$$

More properties of Lebesgue integral

 \blacktriangleright $f \in \mathcal{L} \iff |f| \in \mathcal{L}$, *(in the case of the Riemann integral* \notin *)*

and
$$
\left|\int_E f dm\right| \leq \int_E |f| dm
$$
.

If $m(E) = 0$, then for all measurable functions *E* $f dm = 0.$ \triangleright If $E = E_1 \cup E_2$, E_1 and E_2 are disjoint, then Z *E*1∪*E*² $f dm =$ *E*1 $f dm +$ *E*2 *f dm*.

Almost everywhere

f, *g* are measurable functions.

They are called *f* ∼ *g* (equivalent), or

 $f = a$ almost everywhere (a.e.) if $m\Big(\{x \ : \ f(x)\neq g(x)\}\Big) = 0.$

Proposition. $f = g$ a.e. is an equivalence relation.

Proposition. If f and g are *continuous*, and $f = g$ a.e., then

$$
f(x) = g(x) \quad \text{for all} \quad x.
$$

The properties of the \mathcal{L} -integral are valid for a.e. instead of $=$

Comparison of R and $\mathcal L$ integrals.

Proposition. Assume $f \in \mathcal{R}[a, b]$ i.e. it is *Riemann integrable*.

Then $f \in \mathcal{L}[a, b]$, i.e. it is *Lebesgue integrable* too, and

$$
\int_a^b f(x) \, dx = \int_{[a,b]} f \, dm.
$$

Corollary. If *f* is Riemann integrable, we can use that integral. $_{26/28}$

Review. Main properties of the Lebesgue integral

1. If *E* is measurable and *f* is measurable & bounded a.e.

$$
\Rightarrow \exists \int_E f \, dm.
$$

2. If
$$
f \in \mathcal{L}(E)
$$
 and $f = g$ a.e. $\Rightarrow \int_E f dm = \int_E g dm$.

3. Assume $f \in \mathcal{R}[a, b]$ i.e. Riemann integrable. Then $f \in \mathcal{L}[a, b]$,

$$
\int_a^b f(x) \, dx = \int_{[a,b]} f \, dm.
$$