Functional analysis

Lecture 4.

March 4. 2021

Complete metric spaces

Review: Topological notions of **R** in a metric space

Definition. (M, d) is a metric space. $(x_n) \subset M$ is a sequence.

(*x_n*) is *convergent* and *the limit of* (*x_n*) *is* $x^* \in M$:

$$\lim_{n\to\infty} x_n = x^*$$

if $\forall \varepsilon > 0 \exists N$, such that

 $d(x_n, x^*) < \varepsilon$ for all $n \ge N$.

Cauchy sequence

(M, d) is a metric space.

Definition. $(x_n) \subset M$ is a Cauchy sequence, if $\forall \varepsilon > 0 \exists N$ s.t. $d(x_n, x_m) < \varepsilon \qquad \forall n, m \ge N.$

Proposition. If (x_n) is convergent \implies it is Cauchy seq.

Proof: Choose $\varepsilon > 0$. Then $\exists N$ such that

 $d(x_n, x_0) < \varepsilon/2, \quad \forall n \ge N.$

Then for all $n, m \ge N$:

 $d(x_n, x_m) \leq d(x_n, x_0) + d(x_0, x_m) < \varepsilon/2 + \varepsilon/2 = \varepsilon.$

An example

 $(M, d) = (\mathbb{Q}, |\cdot|)$ is a metric space. Define a sequence as

 $x_1 = 3$, $x_2 = 3.1$, $x_3 = 3.14$,... $x_n =$ "first *n* digits in π ".

Then $(x_n) \subset \mathbb{Q}$ is Cauchy sequence. (Why? $|x_n - x_m| <$?)

But $\lim_{n\to\infty} x_n = \pi \not \in \mathbb{Q}$. There is a "hole" in the metric space.

 \rightarrow If (x_n) is Cauchy in $(\mathbb{Q}, |\cdot|) \not\gg$ it is convergent (...)

Complete metric space

In a general (M, d) a metric space

 (x_n) is a Cauchy sequence \rightarrow it is convergent (!)

Definition. (M, d) is COMPLETE METRIC SPACE, if

ALL Cauchy sequences are convergent.

If $(V, \|\cdot\|)$ is complete, it is called BANACH-SPACE.

If $(V, \langle \cdot, \cdot \rangle)$ is complete, it is called HILBERT-SPACE.

Next week: Bibliography of Banach or Hilbert?

Examples

- $(\mathbb{R}, |\cdot|)$ is complete. In Calculus we learned, that $(x_n) \subset \mathbb{R}$ is convergent $\iff (x_n)$ is Cauchy.
- $(\mathbb{Q}, |\cdot|)$ is NOT complete.
- $(\mathbb{R}^n, \|\cdot\|)$ is complete with the usual norms.
- (M, d) is a metric space with the *discrete metric*.

It is complete, because...

... any Cauchy sequence is constant after some N index.

• ℓ^2 is a HILBERT-SPACE.

Example. Is C[a, b] complete?

YES. Let $(f_n) \subset C[a, b]$ be a Cauchy sequence.

Then $\forall \varepsilon > 0 \exists N$ such that

$$\|f_n - f_m\| = \max_{x \in [a,b]} |f_n(x) - f_m(x)| < \varepsilon, \quad \forall n, m \ge N$$
$$\implies \forall x : |f_n(x) - f_m(x)| < \varepsilon, \quad \forall n, m > N.$$

Then for a fixed $\mathbf{x} \in [a, b]$ $(f_n(\mathbf{x})) \subset \mathbb{R}$ is Cauchy:

 $\exists \lim_{n\to\infty} f_n(\mathbf{x}) =: f_0(\mathbf{x}).$

 \implies $f_0: [a, b] \rightarrow \mathbb{R}$ is well defined, $\lim_{n \rightarrow \infty} f_n = f_0$ uniformly.

Thus f_0 is continuous, i.e. $f_0 \in C[a, b]$. $f_0 = \lim_{n \to \infty} f_n \sqrt{1-1}$

Example. Is $C_2[0, 1]$ complete?

NOT. We'll show $(f_n) \subset C_2[a, b]$ Cauchy sequence, that is not convergent. For $n \ge 3$ let us define

For a fixed $x \in [0, 1]$:

$$\lim_{n \to \infty} f_n(x) = f_0(x) = \begin{cases} 1 \text{ if } x \ge 1/2 \\ 0 \text{ if } x < 1/2 \end{cases}$$

 f_0 is not continuous. $f_0 \notin C_2[0, 1]!$

The Cauchy sequence has no limit in $C_2[0, 1]$. There is a hole in it. Example. $C_2[a, b]$ is not complete!

"Completition" of $(\mathbb{Q}, |\cdot|)$ was $(\mathbb{R}, |\cdot|)$, by adding the *irrational* numbers.

It would be desirable to extend the set of

continuous functions in such a way,

that any Cauchy sequence in squared distance

has limit.

Motivation. A bit of history.

We have seen, that $C_2[0, 1]$ is NOT complete!

Moreover, $\mathcal{R}[0, 1]$ is not complete with the quadratic norm.

 \longrightarrow Need for a *new concept of integral*...

Around 1900 it was *Henri Lebesgue*, who developed

a new concept of integral that is based on measure theory.

"One of the greatest mathematical achievements of

the twentieth century."

Measure

- "measure" \simeq
 - · length of an interval
 - area of a domain in the plain
 - volume
 - weight
 - ...

Definition. X is an arbitrary set.

Define the *set of all subsets* of *X* by

 $2^X = \{A \subset X\}$

Measurable space

Definition. $\mathcal{R} \subset 2^{\chi}$ is an ALGEBRA (σ -algebra), if:

- 1. $X \in \mathcal{R}$,
- 2. $A, B \in \mathcal{R} \Longrightarrow A \cup B \in \mathcal{R},$
- 2.+ $A_k \epsilon \mathcal{R}$, $k = 1, 2, ... \Longrightarrow \bigcup_{k=1}^{\infty} A_k \epsilon \mathcal{R}$ 3. $A, B \epsilon \mathcal{R} \Longrightarrow A \setminus B \epsilon \mathcal{R}$.

Definition. (X, \mathcal{R}) is a MEASURABLE SPACE, if $\mathcal{R} \subset 2^X$ is

 $\sigma\text{-algebra}.$ The elements of $\mathcal R$ are MEASURABLE SETS.

Example. X is metric space, B is the *Borel sets*: $B = \sigma (\{ \text{ open sets}, \text{ closed sets} \})$

Measure space

Definition. Let \mathcal{R} be a σ -algebra.

- A function $\mu : \mathcal{R} \to \mathbb{R}^+ \cup \{+\infty\}$ is a MEASURE, if
 - σ -additive: i.e.

if $A_1, \ldots, A_n, \ldots \in \mathcal{R}$ are disjoints, and $\bigcup_{k=1}^{\mathcal{W}} A_k \in \mathcal{R}$,

$$\implies \mu\left(\bigcup_{k=1}^{\infty}A_{k}\right)=\sum_{k=1}^{\infty}\mu(A_{k}).$$

 (X, \mathcal{R}, μ) is called MEASURE SPACE.

Lebesgue measure on ${\rm I\!R}$

 $X = \mathbb{R}$. We introduce *measurable sets* and *measure* gradually. *Goal*: (\mathbb{R} , \mathcal{M} , m).

Step 1. \mathcal{I} is the set of *finite intervals*. E.g. $I = \{x : a \le x \le b\}$

The measure in \mathcal{I} is ("=length"): m(l) = b - a.

Step 2.

Simple sets:
$$\mathcal{E} = \left\{ A \subset \mathbb{R} : A = \bigcup_{k=1}^{n} I_k, \quad I_k \in \mathcal{I} \text{ are disjoint} \right\}$$

If $A \epsilon \mathcal{E}$, let $m(A) = \sum_{k=1}^{n} m(I_k)$.

m is $\underline{\sigma}$ -additive on \mathcal{E} . BUT \mathcal{E} is not σ -algebra.

 $(\mathbb{R}, \mathcal{E}, m)$ is not a measure space yet.

Step 3. Define an outer measure on 2^R.

$$A \subset \mathbb{R}: \quad m^*(A) = \inf \left\{ \sum_{k=1}^{\infty} m(I_k) : A \subset \bigcup_{k=1}^{\infty} I_k, \ I_k \epsilon \mathcal{I} \right\}.$$
$$m^*: \mathbf{2}^{\mathbb{R}} \to \mathbb{R}^+ \cup \{+\infty\}.$$

If $A \in \mathcal{E}$, then $m^*(A) = m(A)$. $\sqrt{(But!)} m^*$ is <u>not σ -additive</u>.

Up to this point we have:

 \mathcal{E} \subset ? \subset 2^{R} not a σ -algebra σ -algebra*m* is σ -additive m^* is not σ -additive

Step 4. There's a middle ground.

 $\exists \mathcal{M} \sigma$ -algebra: $\mathcal{E} \subset \mathcal{M} \subset 2^{\mathbb{R}}.$

s.t. $m^*|_{\mathcal{M}}$ is σ -additive.

Thus the restriction of m^* onto \mathcal{M} is <u>measure</u>.

It is called LEBESGUE MEASURE.

Elements of \mathcal{M} are *Lebesgue-measurable sets* of \mathbb{R} .

The restriction of m^* onto \mathcal{M} is the *Lebesgue measure*.

It is denoted by *m*.

Lebesgue measurable sets

Q. What are the elements of *M*, *Lebesgue measurable sets*? *Answer*, partly.

- All open and closed sets.
- Countable union and intersections of open & closed sets.

$$\mathcal{B} \subset \mathcal{M}, \quad \text{but} \quad \mathcal{B} \neq \mathcal{M}$$

- The Cantor set.
- Some very strange sets. Etc.

It is a good question, whether there are non-measurable sets. YES. It is far from trivial to find such an example!