Functional analysis

Lecture 4.

March 4. 2021

Complete metric spaces

Review: Topological notions of $\mathbb R$ in a metric space

Definition. (*M*, *d*) is a metric space. (x_n) ⊂ *M* is a sequence.

 (x_n) is *convergent* and *the limit of* (x_n) *is* $x^* \in M$:

$$
\lim_{n\to\infty}x_n=x^*
$$

if $\forall \varepsilon > 0$ $\exists N$, such that

 $d(x_n, x^*) < \varepsilon$ for all $n \ge N$.

Cauchy sequence

(*M*, *d*) is a metric space.

Definition. $(x_n) \subset M$ is a *Cauchy sequence*, if $\forall \varepsilon > 0$ ∃*N* s.t. $d(x_n, x_m) < \varepsilon$ $\forall n, m > N$.

Proposition. If (x_n) is convergent \implies it is Cauchy seg.

Proof: Choose ε > 0. Then ∃N such that

 $d(x_n, x_0) < \varepsilon/2$, $\forall n > N$.

Then for all $n, m \geq N$:

 $d(x_n, x_m) \leq d(x_n, x_0) + d(x_0, x_m) \leq \varepsilon/2 + \varepsilon/2 = \varepsilon$.

An example

 $(M, d) = (Q, |\cdot|)$ is a metric space. Define a sequence as

 $x_1 = 3$, $x_2 = 3.1$, $x_3 = 3.14$, $x_n =$ "first *n* digits in π ".

Then $(x_n) \subset \mathbb{Q}$ is Cauchy sequence. (Why? $|x_n - x_m| < ?$)

But $\lim_{n \to \infty} x_n = \pi$ $\text{/} \mathbb{Q}$. There is a "hole" in the metric space. *n*→∞

 \rightarrow If (x_n) is Cauchy in $(\mathbb{Q}, |\cdot|) \neq i$ t is convergent (...)

Complete metric space

In a general (*M*, *d*) a metric space

```
(x_n) is a Cauchy sequence \implies it is convergent (!)
```
Definition. (*M*, *d*) is COMPLETE METRIC SPACE, if

ALL Cauchy sequences are convergent.

If $(V, \|\cdot\|)$ is complete, it is called BANACH-SPACE.

If $(V, \langle \cdot, \cdot \rangle)$ is complete, it is called HILBERT-SPACE.

Next week: Bibliography of Banach or Hilbert?

Examples

- $(\mathbb{R}, |\cdot|)$ is complete. In Calculus we learned, that (x_n) ⊂ R is convergent \iff (x_n) is Cauchy.
- $(\mathbb{Q}, |\cdot|)$ is NOT complete.
- $(\mathbb{R}^n, \|\cdot\|)$ is complete with the usual norms.
- (*M*, *d*) is a metric space with the *discrete metric*.

It is complete, because. . .

. . . any Cauchy sequence is constant after some *N* index.

• ℓ^2 is a HILBERT-SPACE.

Example. Is *C*[*a*, *b*] complete?

YES. Let (f_n) ⊂ $C[a, b]$ be a Cauchy sequence.

Then ∀ε > 0 ∃*N* such that

$$
||f_n - f_m|| = \max_{x \in [a,b]} |f_n(x) - f_m(x)| < \varepsilon, \quad \forall n, m \geq N
$$
\n
$$
\implies \forall x : |f_n(x) - f_m(x)| < \varepsilon, \quad \forall n, m > N.
$$

Then for a fixed $x \in [a, b]$ $(f_n(x)) \subset \mathbb{R}$ is Cauchy:

 $\exists \lim_{n\to\infty} f_n(x) =: f_0(x).$

 \Longrightarrow $f_0: [a, b] \rightarrow \mathbb{R}$ is well defined, $\lim\limits_{n \to \infty} f_n = f_0$ *uniformly*. √

Thus f_0 is continuous, i.e. $f_0\epsilon C[a,b]$. $f_0=\lim\limits_{n\to\infty}f_n$

Example. Is $C_2[0,1]$ complete?

NOT. We'll show $(f_n) \subset C_2[a, b]$ Cauchy sequence, that is not convergent. For *n* ≥ 3 let us define

For a fixed $x \in [0, 1]$:

$$
\lim_{n\to\infty}f_n(x)=f_0(x)=\begin{cases} 1 \text{ if } x\geq 1/2\\ 0 \text{ if } x<1/2 \end{cases}
$$

 f_0 is not continuous. $f_0 \in C_2[0,1]!$

The Cauchy sequence has no limit in $C_2[0, 1]$. There is a hole in it.

Example. $C_2[a, b]$ is not complete!

"Completition" of $(Q, |\cdot|)$ was $(\mathbb{R}, |\cdot|)$, by adding the *irrational* numbers.

It would be desirable to extend the set of

continuous functions in such a way,

that any Cauchy sequence in squared distance

has limit.

Motivation. A bit of history.

We have seen, that $C_2[0,1]$ is NOT complete!

Moreover, $\mathcal{R}[0, 1]$ is not complete with the quadratic norm.

−→ Need for a *new concept of integral*...

Around 1900 it was *Henri Lebesgue*, who developed

a *new concept of integral* that is based on *measure theory*.

"One of the greatest mathematical achievements of

the twentieth century."

Measure

- "measure" \approx
	- length of an interval
	- area of a domain in the plain
	- volume
	- weight
	- \bullet ...

Definition. *X* is an arbitrary set.

Define the *set of all subsets* of *X* by

2^{*X*} = {*A* ⊂ *X*}

Measurable space

Definition. $\mathcal{R} \subset 2^X$ is an ALGEBRA (σ -algebra), if:

- 1. $X \in \mathcal{R}$.
- 2. $A, B \in \mathbb{R} \Longrightarrow A \cup B \in \mathbb{R}$.
- 2.+ $A_k \in \mathcal{R}$, $k = 1, 2, ... \implies \bigcup_{k = 1}^{\infty} A_k \in \mathcal{R}$ $k-1$ 3. *A*, $B \in \mathcal{R} \Longrightarrow A \setminus B \in \mathcal{R}$.

Definition. (X, \mathcal{R}) is a MEASURABLE SPACE, if $\mathcal{R} \subset 2^X$ is

 σ -algebra. The elements of R are MEASURABLE SETS.

Example. X is metric space, B is the *Borel sets*: $\mathcal{B} = \sigma$ ({ open sets, closed sets})

Measure space

Definition. Let R be a σ -algebra.

- A function $\mu : \mathcal{R} \to \mathbb{R}^+ \cup \{+\infty\}$ is a MEASURE, if
	- σ*-additive*: i.e. if $A_1, \ldots, A_n, \ldots \epsilon \mathcal{R}$ are disjoints, and $\stackrel{\infty}{\bigcup}$ $A_k \epsilon \mathcal{R},$ $k=1$ \Rightarrow $\mu\left(\begin{matrix} \infty \\ 1 \end{matrix}\right)$ *Ak* \setminus $=\sum_{n=1}^{\infty}$ $\mu(\mathcal{A}_k)$.

k=1

k=1

$$
\bullet \ \mu(\emptyset) = 0.
$$

 (X, \mathcal{R}, μ) is called MEASURE SPACE.

Lebesgue measure on IR

 $X = \mathbb{R}$. We introduce *measurable sets* and *measure* gradually. *Goal*: $(\mathbb{R}, \mathcal{M}, m)$.

Step 1. I is the set of *finite intervals.* E.g. $I = \{x : a \le x \le b\}$

The measure in $\mathcal I$ is ("=length"): $m(I) = b - a$.

Step 2.

Simple sets:
$$
\mathcal{E} = \left\{ A \subset \mathbb{R} : A = \bigcup_{k=1}^{n} I_k, I_k \in \mathcal{I}
$$
 are disjoint $\right\}$

$$
\begin{array}{ccc}\n\uparrow & & \downarrow & \\
\downarrow & & \downarrow & \\
\down
$$

If $A \in \mathcal{E}$, let $m(A) = \sum_{n=1}^{n}$ *k*=1 $m(I_k)$.

m is σ -additive on $\mathcal E$. BUT $\mathcal E$ is not σ -algebra.

 (R, \mathcal{E}, m) is *not a measure space* yet.

Step 3. Define an outer measure on 2^R .

$$
A \subset \mathbf{R}: \quad m^*(A) = \inf \left\{ \sum_{k=1}^{\infty} m(I_k) : A \subset \bigcup_{k=1}^{\infty} I_k, I_k \in \mathcal{I} \right\}.
$$

$$
m^*: 2^{\mathbf{R}} \to \mathbf{R}^+ \cup \{+\infty\}.
$$

If $A \in \mathcal{E}$, then $m^*(A) = m(A)$. $\sqrt{(But!)}$ m^* is <u>not σ -additive</u>.

————————————————————————

Up to this point we have:

$$
\begin{array}{|c|c|c|}\n\hline\n\mathcal{E} & \mathcal{C} & ? & \mathcal{C} & \boxed{2^R} \\
\hline\n\text{not a } \sigma\text{-algebra} & & \sigma\text{-algebra} \\
\hline\nm \text{ is } \sigma\text{-additive} & m^* \text{ is not } \sigma\text{-additive}\n\end{array}
$$

Step 4. There's a middle ground.

 $\exists \mathcal{M}$ σ -algebra: $\mathcal{E} \subset \mathcal{M} \subset 2^{\mathbf{R}},$

s.t. *m*[∗]|_Μ is σ-additive.

Thus the restriction of m^* onto $\mathcal M$ is measure.

It is called LEBESGUE MEASURE.

Elements of M are *Lebesgue-measurable sets* of IR.

The restriction of *m*[∗] onto M is the *Lebesgue measure*.

It is denoted by *m*.

Lebesgue measurable sets

Q. What are the elements of M, *Lebesgue measurable sets*?

Answer, partly.

- All open and closed sets.
- Countable union and intersections of open & closed sets.

$$
\mathcal{B}\subset \mathcal{M}, \quad \text{but} \quad \mathcal{B}\neq \mathcal{M}
$$

- The Cantor set.
- Some *very strange* sets. Etc.

It is a good question,*whether there are non-measurable sets*. YES. It is far from trivial to find such an example!