Functional analysis

Lecture 3.

February 25, 2021

Review of function space C[a, b]

The max-norm in C[a, b]

 $[a, b] \subset \mathbb{R}$ is a bounded interval. $C[a, b] = \{f : [a, b] \to \mathbb{R}, \text{ continuous}\}, \|f\|_{\infty} = \max_{x \in [a, b]} |f(x)|$

Proposition. $(f_n) \subset C[a, b]$ and $f \in C[a, b]$. Then

the following two statements are equivalent:

- 1. $f_n \to f$ in *max*-norm $\|\cdot\|_{\infty}$.
- 2. f_n tends to f uniformly on [a, b].

Proof. 1. \Rightarrow 2. If $f_n \rightarrow f$ in max-norm $\Longrightarrow \forall \varepsilon > 0$: $\exists N$ s.t.

 $\max_{x\in[a,b]}|f_n(x)-f(x)|<\varepsilon \implies |f_n(x)-f(x)|<\varepsilon \quad \forall x, \quad \forall n\geq N.$

Uniform convergence $\sqrt{}$

 $2. \Rightarrow 1. HW$

Two norms in C[a, b]

In *C*[*a*, *b*] the *sup-norm doesn't come* from an inner product.

$$\|f\|_{\infty} = \max_{x \in [a,b]} |f(x)|$$

However THERE IS an inner product in this space, defined as

$$\langle f,g\rangle = \int_a^b f(x)g(x)dx. \implies ||f||_2 = ..$$

In general $||f||_{\infty} \neq ||f||_2$.

Which of the two norms is more desirable? It depends...

We do not have a preference yet.

Finite dimension

V is a *linear space* (with or without a norm on it).

 $v_1, v_2, \ldots, v_n \epsilon V$ are linearly independent, if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots \alpha_n \mathbf{v}_n = \mathbf{0} \qquad \Longleftrightarrow \ \alpha_1 = \alpha_2 = \ldots \alpha_n = \mathbf{0}.$$

The dimension of *V* is *n*, if

1. $\exists v_1, v_2, \ldots, v_n \in V$ linearly independent,

2. s.t.
$$\forall w \in V$$
: $w = \sum_{k=1}^{n} a_k v_k$.

Then v_1, v_2, \ldots, v_n is a *basis* in *V*

In this case V is FINITE DIMENSIONAL.

Infinite dimension

Example. \mathbb{R}^n is finite dimensional. A possible basis:

$$e_1 = (1, 0, 0, \dots 0)$$

 $e_2 = (0, 1, 0, \dots 0)$
 \vdots
 $e_n = (0, 0, 0, \dots 1)$

Definition. The DIMENSION OF V IS ∞ , if

 $\forall n \in \mathbb{N}$ $\exists v_1, v_2, \dots, v_n \in V$ linearly independent.

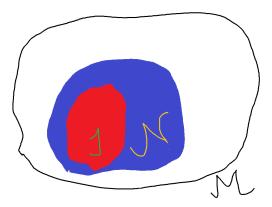
 \implies There is no finite subset, that spans the entire space.

Example of infinite dimensional space?

The topology of metric spaces

Abstract spaces in FA

Metric space « Normed space « Inner product space



We introduce some basic concepts s.t. we can use it in more complex structures. It is advisable to consider *the simplest structure* now.

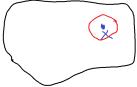
Open sets

(M, d) is a metric space.

Definition. An open ball centered at $x \in M$ with radius r > 0 is:

 $B_r(x) = \{y \in M : d(x, y) < r\}.$ (open neighborhood)

 $E \subset M$ is a subset. $x \in E$ is INTERIOR POINT OF E, if $\exists r > 0$, s.t. $B_r(x) \subset E$.

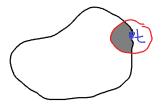


Definition. $E \subset M$ is an OPEN SET, if $\forall x \in E$ is interior point.

Proposition. Union of *any number* of open sets is open.

Closed sets

 $F \subset M$ is a subset. $t \in M$ is a LIMIT POINT of F, if $\forall \varepsilon > 0$: $\left(B_{\varepsilon}(t) \setminus \{t\} \right) \cap F \neq \emptyset$.



Definition. $F \subset M$ is CLOSED SET, if it contains $\forall t$ limit points.

Proposition. Intersection of *any number* of closed sets is closed.

Open and closed sets

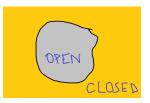
Proposition. The following properties are equivalent

- 1. $F \subset M$ is closed.
- 2. $\forall (x_n) \subset F$ convergent sequences: $\lim_{n \to \infty} x_n \epsilon F$.

Proposition. $E \subset M$ is open

if and only if

 $M \setminus E = F$ is *closed*.



Remark. $E \subset M$ is a subset. It is open $\bigcirc \mathbb{R}$ closed.

- + neither
- + both (?)

Examples.

1. $M = \mathbb{R}$ with Eucledian distance. a < b. Then [a, b] is closed, (a, b) is open.

2. M = C[a, b]. k > 0 is a fixed number.

 $E = \{f : |f(x)| < k \quad \forall x, \quad f \text{ is continuous} \}$

 $F = \{f : |f(x)| \le k \quad \forall x, \quad f \text{ is continuous} \}$

 \implies $E \subset C[a, b]$ is open, $F \subset C[a, b]$ is closed.

3. $(V, \|\cdot\|)$ is a normed space.

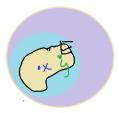
$$B_1 = \{ v : ||v|| = 1 \} \implies \text{ is closed.}$$

 $B_2 = \{ v : \|v\| \le 1 \} \implies \text{ is closed.}$

Bounded and compact sets

• $E \subset M$ is BOUNDED, if for an $x \in E$

 $\exists r > 0$, s.t. $E \subset B_r(x)$.



 $\alpha \epsilon l$

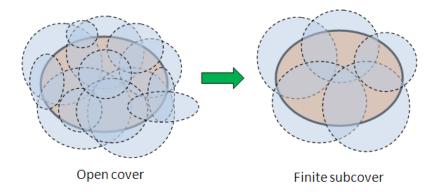
• $E \subset M$ is a subset.

A collection of sets $\{U_{\alpha}, \alpha \epsilon I\}$ is a COVER, if $E \subset \bigcup U_{\alpha}$.

- $\{U_{\alpha}, \alpha \in I\}$ is an *open cover*, if U_{α} is open $\forall \alpha$.
- It is a *finite cover*, if the number of sets is finite.
- *E* ⊂ *M* is COMPACT , if any *open cover* contains a *finite subcover*.

Compactness

Again. $E \subset M$ is COMPACT, if any open cover contains a finite subcover:



Compact set - not compact set

Example. In $(\mathbb{R}, |\cdot|)$ metric space $E_1 = [0, 1]$ is compact and $E_2 = (0, 1)$ is not compact. Which one is easier to prove? Let's show, that E_2 is not compact.

Then $(0, 1) = \bigcup_{n=3}^{\infty} U_n$, and there is NO finite subcover! WHY?

Next: Let's prove that E_1 is compact. Seems more difficult...

An alternative definition.

 $E \subset M$ is SEQUENTIALLY COMPACT, if $\forall (x_n) \subset E$ there is a *convergent* (x_{n_k}) subsequence s.t.

$$\lim_{n_k\to\infty} x_{n_k} = x_0 \epsilon E.$$

Theorem. E is compact \iff it is sequentially compact. Proof

Let's prove that E_1 is compact. Not very difficult...

If $(x_n) \subset [0, 1] \Longrightarrow$ it is bounded. $B.W \cong \exists (x_{n_k}) \text{ convergent},$ $\lim_{n_k \to \infty} x_{n_k} = x_0 \epsilon[0, 1].$ Thus E_1 is sequentially compact.

Properties

- 1. If $E \subset M$ is compact, then it is *bounded*. (Exc.)
- 2. If $E \subset M$ is *compact*, then it is *closed*. (Exc.)

Converse?

"E is closed and bounded"

Guess? (Partly true $\sqrt{}$)

Theorem. (Heine-Borel thm.)

 $E \subset \mathbb{R}^n$ is compact $\iff E$ is *closed* and *bounded*.

(With any norm defined on \mathbb{R}^n)

In infinite dimension?

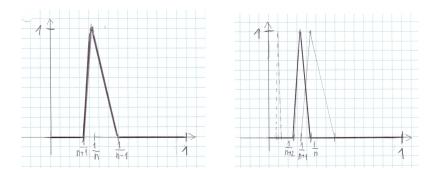
In C[0, 1] the closed unit ball is bounded and closed.

$$B_1(0) = \{f : [0,1] \to \mathbb{R}, \text{ cont. } \max |f(x)| \le 1\} =$$

= $\{f \in C[0,1] : \|f\|_{\infty} \le 1\}.$ compact?

Let us define the functions for $n \ge 2$ Draw!:

$$f_n(x) = \begin{cases} 1, & \text{if } x = \frac{1}{n} \\ 0, & \text{if } x \le \frac{1}{n+1} \text{ or } x \ge \frac{1}{n-1} \\ \text{linear, } \text{if } x \in \left(\frac{1}{n+1}, \frac{1}{n}\right) \\ \text{linear, } \text{if } x \in \left(\frac{1}{n}, \frac{1}{n-1}\right) \end{cases}$$



Then $(f_n) \subset C[0, 1]$, and $||f_n|| = 1 \forall n$.

But (f_n) has no convergent subsequence. $B_1(0)$ is not compact.

Thus in infinite dimension "closed +bounded" $\neq \Rightarrow$ "compact".

Application of compact sets

(M, d) is a metric space. $E \subset M$ is a compact set.

Assume $f : E \to \mathbb{R}$ is continuous.

Theorem. 1. of Weierstrass

Then *f* is bounded.

Theorem. 2. of Weierstrass

Then *f* attains its minimum and maximum on *E*.