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Review of function space
C[a,b]
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The max-norm in C[a,b]

[a,b] ⊂ IR is a bounded interval.

C[a,b] = {f : [a,b]→ IR, continuous}, ‖f‖∞ = max
xε[a,b]

|f (x)|

Proposition. (fn) ⊂ C[a,b] and f εC[a,b]. Then

the following two statements are equivalent:

1. fn → f in max-norm ‖·‖∞.

2. fn tends to f uniformly on [a,b].

Proof. 1.⇒ 2. If fn → f in max-norm =⇒ ∀ε > 0: ∃N s.t.

max
xε[a,b]

|fn(x)− f (x)| < ε =⇒ |fn(x)− f (x)| < ε ∀x , ∀n ≥ N.

Uniform convergence
√

2.⇒ 1. HW
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Two norms in C[a,b]

In C[a,b] the sup-norm doesn’t come from an inner product.

‖f‖∞ = max
xε[a,b]

|f (x)|

However THERE IS an inner product in this space, defined as

〈f ,g〉 =
∫ b

a
f (x)g(x)dx . =⇒ ‖f‖2 = ...

In general ‖f‖∞ 6= ‖f‖2 .

Which of the two norms is more desirable? It depends...

We do not have a preference yet.
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Finite dimension

V is a linear space (with or without a norm on it).

v1, v2, . . . , vnεV are linearly independent, if

α1v1 + α2v2 + . . . αnvn = 0 ⇐⇒ α1 = α2 = . . . αn = 0.

The dimension of V is n, if

1. ∃v1, v2, . . . , vnεV linearly independent,

2. s.t. ∀wεV : w =
n∑

k=1

akvk .

Then v1, v2, . . . , vn is a basis in V

In this case V is FINITE DIMENSIONAL.
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Infinite dimension

Example. IRn is finite dimensional. A possible basis:

e1 = (1,0,0, . . .0)

e2 = (0,1,0, . . .0)
...

en = (0,0,0, . . .1)

Definition. The DIMENSION OF V IS ∞, if

∀nεIN ∃v1, v2, . . . , vnεV linearly independent.

=⇒ There is no finite subset, that spans the entire space.

Example of infinite dimensional space?
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The topology of metric spaces
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Abstract spaces in FA

Metric space � Normed space � Inner product space

We introduce some basic concepts s.t. we can use it in more complex

structures. It is advisable to consider the simplest structure now.
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Open sets

(M,d) is a metric space.

Definition. An open ball centered at xεM with radius r > 0 is:

Br (x) = {yεM : d(x , y) < r}. (open neighborhood)

E ⊂ M is a subset.

xεE is INTERIOR POINT OF E ,

if ∃r > 0, s.t. Br (x) ⊂ E .

Definition. E ⊂ M is an OPEN SET, if ∀xεE is interior point.

Proposition. Union of any number of open sets is open.
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Closed sets

F ⊂ M is a subset.

tεM is a LIMIT POINT of F , if

∀ε > 0 :

(
Bε(t)\{t}

)
∩ F 6= ∅.

Definition. F ⊂ M is CLOSED SET, if it contains ∀t limit points.

Proposition. Intersection of any number of closed sets is

closed.
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Open and closed sets

Proposition. The following properties are equivalent

1. F ⊂ M is closed.

2. ∀(xn) ⊂ F convergent sequences: lim
n→∞

xnεF .

Proposition. E ⊂ M is open

if and only if

M \ E = F is closed.

Remark. E ⊂ M is a subset. It is open��HHOR closed.

+ neither

+ both (?)
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Examples.

1. M = IR with Eucledian distance. a < b.

Then [a,b] is closed, (a,b) is open.

2. M = C[a,b]. k > 0 is a fixed number.

E = {f : |f (x)| < k ∀x , f is continuous}

F = {f : |f (x)| ≤ k ∀x , f is continuous}

=⇒ E ⊂ C[a,b] is open, F ⊂ C[a,b] is closed.

3. (V , ‖ · ‖) is a normed space.

B1 = {v : ‖v‖ = 1} =⇒ is closed.

B2 = {v : ‖v‖ ≤ 1} =⇒ is closed.
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Bounded and compact sets

• E ⊂ M is BOUNDED, if for an xεE

∃r > 0, s.t. E ⊂ Br (x).

• E ⊂ M is a subset.

A collection of sets {Uα, αεI} is a COVER, if E ⊂
⋃
αεI

Uα.

• {Uα, αεI} is an open cover, if Uα is open ∀α.

• It is a finite cover, if the number of sets is finite.

• E ⊂ M is COMPACT , if any open cover contains a finite

subcover.
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Compactness

Again. E ⊂ M is COMPACT, if any open cover contains a finite

subcover:
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Compact set – not compact set

Example. In (IR, | · |) metric space E1 = [0,1] is compact

and E2 = (0,1) is not compact. Which one is easier to prove?

Let’s show, that E2 is not compact.

Let us consider the open sets

Un =
(1

n ,
n−1

n

)
for n ≥ 3

Then (0,1) =
∞⋃

n=3
Un, and there is NO finite subcover! WHY?

Next: Let’s prove that E1 is compact. Seems more difficult...
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An alternative definition.

E ⊂ M is SEQUENTIALLY COMPACT, if

∀(xn) ⊂ E there is a convergent (xnk ) subsequence s.t.

lim
nk→∞

xnk = x0εE .

Theorem. E is compact ⇐⇒ it is sequentially compact.���Proof

Let’s prove that E1 is compact. Not very difficult...

If (xn) ⊂ [0,1] =⇒ it is bounded. B.W
=⇒ ∃(xnk ) convergent,

lim
nk→∞

xnk = x0ε[0,1].

Thus E1 is sequentially compact.
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Properties

1. If E ⊂ M is compact, then it is bounded. (Exc.)

2. If E ⊂ M is compact, then it is closed. (Exc.)

Converse?

”E is closed and bounded” ?
=⇒ ”compact”

Guess? (Partly true
√

)

Theorem. (Heine-Borel thm.)

E ⊂ IRn is compact ⇐⇒ E is closed and bounded.

(With any norm defined on IRn)
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In infinite dimension?

In C[0,1] the closed unit ball is bounded and closed.

B1(0) = {f : [0,1]→ IR, cont. max |f (x)| ≤ 1} =

= {f εC[0,1] : ‖f‖∞ ≤ 1}. compact?

Let us define the functions for n ≥ 2 Draw!:

fn(x) =



1, if x =
1
n

0, if x ≤ 1
n + 1

or x ≥ 1
n − 1

linear, if xε
(

1
n + 1

,
1
n

)
linear, if xε

(
1
n
,

1
n − 1

)
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Then (fn) ⊂ C[0,1], and ‖fn‖ = 1 ∀n.

But (fn) has no convergent subsequence. B1(0) is not compact.

Thus in infinite dimension ”closed +bounded” 6=⇒ ”compact”.
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Application of compact sets

(M,d) is a metric space. E ⊂ M is a compact set.

Assume f : E → IR is continuous.

Theorem. 1. of Weierstrass

Then f is bounded.

Theorem. 2. of Weierstrass

Then f attains its minimum and maximum on E .
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