Functional analysis

Lecture 2.

February 18, 2021

Inner product space over IK (real or complex)

- $(V,\langle \cdot,\cdot \rangle)$ is an INNER PRODUCT SPACE, if
	- 1. *V* is a linear space over IK.
	- 2. $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{K}$ is an operation with properties:
		- \blacktriangleright $\langle v, v \rangle > 0$, and $\langle v, v \rangle = 0 \iff v = 0$

$$
\blacktriangleright \langle \lambda v, w \rangle = \lambda \langle v, w \rangle, \lambda \epsilon \mathbb{K}.
$$

$$
\blacktriangleright \langle v, w \rangle = \langle w, v \rangle, \text{ or } \langle v, w \rangle = \overline{\langle w, v \rangle}
$$

 $\blacktriangleright \langle v, w + u \rangle = \langle v, w \rangle + \langle v, u \rangle$, distributive property.

Definition. *v* and *w* are ORTHOGONAL, if $\langle v, w \rangle = 0$.

Remark. Obviously $v = 0$ is orthogonal to every vetcor.

Inner product space \longrightarrow Normed space

Theorem. *Inner products* always give rise to *Norms*.

Specifically, assume $(V, \langle \cdot, \cdot \rangle)$ is an inner product space.

⇓

Then it is also a normed space with the following norm:

 $\|\mathbf{v}\| = \langle \mathbf{v}, \mathbf{v} \rangle^{1/2}.$

(HW: check it!)

Inner product space −→ Normed space

The other direction is not true!

Inner product in IR*ⁿ*?

In IR*ⁿ* we have defined norms:

$$
||x||_1 = \sum_{i=1}^n |x_i|, \quad ||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}, \quad ||x||_{\infty} = \max_{i=1,\dots,n} |x_i|
$$

The extension of these norms is possible:

For
$$
1 \leq p < \infty
$$
 define $||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$

Proposition.

 $\left(\mathbb{R}^n,\left\|\cdot\right\|_p\right)$,1 \leq $p \leq \infty$ is an inner product space \iff $p = 2$. $\langle x, y \rangle = \sum_{n=0}^{n}$ $x_k y_k$.

k=1

$$
f_{\rm{max}}
$$

.

The paralelogram equality

Theorem. $(V, \|\cdot\|)$ is a normed space. Then

the norm can be derived from an inner product \iff

$$
||u + v||2 + ||u - v||2 = 2(||u||2 + ||v||2) \qquad \forall u, v \in V.
$$

Details on Practical Class.

A corollary of the Paralelogram rule

In \mathbb{R}^2 we have seen three norms up to this point.

For any $x = (x_1, x_2)$ we have defined

You will see, that only $\|x\|_2$ comes form an inner product, the others *do not.*

An important inequality: (Cauchy-Schwarz-Bunyakovskii)

Theorem. If $(V, \langle \cdot, \cdot \rangle)$ is an inner product space, then

$$
|\langle v, w \rangle| \leq \sqrt{\langle v, v \rangle} \cdot \sqrt{\langle w, w \rangle}
$$

Outline of proof: Assume first $\|w\| = 1$.

Define $u := v - \langle v, w \rangle w$.

$$
\implies \|u\|^2 = \langle u, u \rangle = \langle v, v \rangle + \langle v, w \rangle^2 \langle w, w \rangle - 2 \langle v, w \rangle \langle v, w \rangle =
$$

$$
= \langle v, v \rangle - \langle v, w \rangle^2 \ge 0 \implies \|v\| \ge |\langle v, w \rangle|.
$$

In general, $w = \lambda w_0$ with $||w_0|| = 1$. Finish the proof.

Important special spaces I. Sequence spaces

Sequence spaces

V is a LINEAR SPACE of sequences with elements

$$
x=(x_1,x_2,\ldots,x_n,\ldots)=(x_n),\qquad x_n\in\mathbb{R}.
$$

The subspace of *bounded* sequences: ℓ^{∞} "little ell infinity"

x $\epsilon \ell^{\infty}$ if ∃*K* $\epsilon \mathbb{R}$: $|x_n|$ < *K* $\forall n \in \mathbb{N}$.

 $c_0 \subset \ell^{\infty}$ is the linear space of *null sequences*.

Proposition. ℓ^{∞} (and c_0) is a NORMED SPACE with norm:

 $||x||_{\infty} := \sup\{|x_i|, i = 1, 2, ...\}$ (≈ max).

Examples

1.
$$
x_n = (1 + \frac{1}{n})^n
$$
, $||x|| = ?$
\n2. $y_n = 1 + \frac{1}{n}$, $||y|| = ?$
\n3. $z_n = \frac{(-1)^n}{n}$, $||z|| = ?$

Answers: $||x|| = e$, $||y|| = 2$, $||z|| = 1$

In \mathbb{R}^n we had norms $||x||_1$ and $||x||_2$:

$$
||x||_1 = \sum_{i=1}^n |x_i|,
$$
 $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}.$

Extend these norms for sequences? What is the problem?

Need to consider *special subspaces* of *c*0, with certain

SUMMABILITY condition.

"little ell one"
$$
\ell^1 = \{(x_n) : \sum_{n=1}^{\infty} |x_n| < \infty\}.
$$

("little ell 1")
$$
\ell^1 = \{(x_n) : \sum_{n=1}^{\infty} |x_n| < \infty\}
$$

Is it a vector space?

1.
$$
x \in \ell^1 \implies \lambda x \in \ell^1 \sqrt{\lambda}
$$

\n2. $x, y \in \ell^1 \implies x + y \in \ell^1?$
\n $\forall N \qquad \sum_{n=1}^N |x_n + y_n| \leq \sum_{n=1}^N |x_n| + \sum_{n=1}^N |y_n| \sqrt{\lambda}$

Let us define a norm in $\ell^1 \colon \| x \|_1 = \sum^\infty$ *i*=1 |*xi* |

This is really a norm. Check it!

Question: $||x||_1$ v.s. $||x||_{\infty}$?

 $\ell^{\textit{p}}$ ("little ell p") for $1\leq \textit{p}<\infty$

A possible linear space is: ℓ^p ("*little ell p*"):

$$
\ell^{\rho}=\{(x_n)\;:\;\sum_{n=1}^{\infty}|x_n|^{\rho}<\infty\}\subset c_0.
$$

Proposition. ℓ^p is a normed space with norm

$$
||x||_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}.
$$

Proof. Not trivial!

Examples. To which ℓ^p do these sequences belong to?

1.
$$
x_n = \frac{1}{n}
$$
, $p = ?$
\n2. $y_n = \frac{1}{2^n}$, $p = ?$
\n3. $v_n = (-1)^n \frac{1}{n}$, $p = ?$
\n4. $z_n = 1$, $p = ?$

The most important of all ℓ^p is ℓ^2 . *(Why?)*

For $p = 2$ it is possible to define an INNER PRODUCT:

$$
\langle x,y\rangle:=\sum_{k=1}^\infty x_k\overline{y_k}
$$

This is *the only norm*, that comes from an inner product.

Important special spaces II. Function spaces

Bounded functions

 $[a, b] \subset \mathbb{R}$ is a bounded interval.

X: linear space of *all functions* defined on [*a*, *b*].

V is the linear space of *bounded functions* on [*a*, *b*].

 $V = \{f : [a, b] \rightarrow \mathbb{R}, \quad \exists B : |f(x)| \leq B, \quad \forall x\}.$

Proposition. *V* is a normed space with norm

 $||f||_{\infty} = \sup\{|f(x)| : x \in [a, b]\}.$

A subspace of *V* is *C*[*a*, *b*], the set of continuous functions:

 $C[a, b] = \{f : [a, b] \rightarrow \mathbb{R}$, continuous}.

In $C[a, b]$ we have the norm as before:

 $||f||_{\infty} = \sup\{|f(x)| : x \in [a, b]\}.$

This is a *metric space* also, with metric:

By Thm. of Weierstrass we have in *C*[*a*, *b*]

$$
d(f,g)=\max_{x\in[a,b]}|f(x)-g(x)|
$$

C[*a*, *b*] with inner product?

In *C*[*a*, *b*] it is possible to define *inner product*.

$$
\langle f, g \rangle = \int_{a}^{b} f(x)g(x)dx \quad \left(\int_{a}^{b} f(x)\overline{g(x)}dx \right) \qquad \text{(Explain it.)}
$$

 \implies Orthogonality of functions can be defined this way.

This inner product induces a norm:
$$
||f|| = \left(\int_{a}^{b} f^{2}(x)dx\right)^{1/2}
$$

New norm! It is the *quadratic norm*. Notation: $\|\cdot\|_2$.

The previous norm is called *sup-norm*, the notation is $\|\cdot\|_{\infty}$.

Notation. $C_2[a, b]$. In general $||f||_{\infty} \neq ||f||_2$.

Question: Is there an *inner product* in *C*[*a*, *b*] for *sup*-norm?