Functional analysis

Lecture 2.

February 18, 2021

Inner product space over **IK** (real or complex)

 $(\textit{V}, \langle \cdot, \cdot
angle)$ is an INNER PRODUCT SPACE, if

1. V is a linear space over \mathbb{K} .

2. $\langle \cdot, \cdot \rangle : \mathbf{V} \times \mathbf{V} \to \mathbb{K}$ is an operation with properties:

• $\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$, and $\langle \mathbf{v}, \mathbf{v} \rangle = 0 \iff \mathbf{v} = 0$

$$\blacktriangleright \langle \lambda \mathbf{v}, \mathbf{w} \rangle = \lambda \langle \mathbf{v}, \mathbf{w} \rangle, \, \lambda \epsilon \mathbb{K}.$$

$$\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle, \text{ or } \langle \mathbf{v}, \mathbf{w} \rangle = \overline{\langle \mathbf{w}, \mathbf{v} \rangle}$$

• $\langle v, w + u \rangle = \langle v, w \rangle + \langle v, u \rangle$, distributive property.

Definition. *v* and *w* are <u>ORTHOGONAL</u>, if $\langle v, w \rangle = 0$.

Remark. Obviously v = 0 is orthogonal to every vetcor.

Inner product space \longrightarrow Normed space

Theorem. Inner products always give rise to Norms.

Specifically, assume $(V, \langle \cdot, \cdot \rangle)$ is an inner product space.

₩

Then it is also a normed space with the following norm:

 $\|\mathbf{v}\| = \langle \mathbf{v}, \mathbf{v} \rangle^{1/2}.$

(<u>HW</u>: check it!)

Inner product space \longrightarrow Normed space

The other direction is not true!

Inner product in \mathbb{R}^n ?

In \mathbb{R}^n we have defined norms:

$$\|\mathbf{x}\|_{1} = \sum_{i=1}^{n} |x_{i}|, \quad \|\mathbf{x}\|_{2} = \sqrt{\sum_{i=1}^{n} x_{i}^{2}}, \quad \|\mathbf{x}\|_{\infty} = \max_{i=1,...,n} |x_{i}|$$

The extension of these norms is possible:

For
$$1 \le p < \infty$$
 define $\|\boldsymbol{x}\|_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$

Proposition.

 $\left(\mathbb{R}^{n}, \|\cdot\|_{p}\right), 1 \leq p \leq \infty$ is an inner product space $\iff p = 2.$

$$\langle x,y\rangle = \sum_{k=1} x_k y_k.$$

The paralelogram equality

Theorem. $(V, \|\cdot\|)$ is a normed space. Then

the norm can be derived from an inner product \iff

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2) \quad \forall u, v \in V.$$

Details on Practical Class.

A corollary of the Paralelogram rule

In \mathbb{R}^2 we have seen three norms up to this point.

For any $x = (x_1, x_2)$ we have defined

You will see, that only $||x||_2$ comes form an inner product, the others *do not*.

An important inequality: (Cauchy-Schwarz-Bunyakovskii)

Theorem. If $(V, \langle \cdot, \cdot \rangle)$ is an inner product space, then

$$|\langle \mathbf{v}, \mathbf{w} \rangle| \leq \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} \cdot \sqrt{\langle \mathbf{w}, \mathbf{w} \rangle}$$

Outline of proof: Assume first ||w|| = 1.

Define $u := v - \langle v, w \rangle w$.

$$\implies ||u||^{2} = \langle u, u \rangle = \langle v, v \rangle + \langle v, w \rangle^{2} \langle w, w \rangle - 2 \langle v, w \rangle \langle v, w \rangle =$$
$$= \langle v, v \rangle - \langle v, w \rangle^{2} \ge 0 \implies ||v|| \ge |\langle v, w \rangle|.$$

In general, $w = \lambda w_0$ with $||w_0|| = 1$. Finish the proof.

Important special spaces I. Sequence spaces

Sequence spaces

V is a LINEAR SPACE of sequences with elements

$$x = (x_1, x_2, \ldots, x_n, \ldots) = (x_n), \qquad x_n \in \mathbb{R}.$$

The subspace of *bounded* sequences: ℓ^{∞} "little ell infinity"

 $x \in \ell^{\infty}$ if $\exists K \in \mathbb{R}$: $|x_n| \leq K \quad \forall n \in \mathbb{N}$.

 $c_0 \subset \ell^{\infty}$ is the linear space of *null sequences*.

Proposition. ℓ^{∞} (and c_0) is a NORMED SPACE with norm:

 $\|x\|_{\infty} := \sup\{|x_i|, i = 1, 2, ...\}$ (\approx max).

Examples

1.
$$x_n = (1 + \frac{1}{n})^n$$
, $||x|| = ?$
2. $y_n = 1 + \frac{1}{n}$, $||y|| = ?$
3. $z_n = \frac{(-1)^n}{n}$, $||z|| = ?$

Answers: ||x|| = e, ||y|| = 2, ||z|| = 1

In \mathbb{R}^n we had norms $||x||_1$ and $||x||_2$:

$$\|x\|_1 = \sum_{i=1}^n |x_i|, \qquad \|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2}.$$

Extend these norms for sequences? What is the problem?

Need to consider *special subspaces* of c_0 , with certain

SUMMABILITY condition.

"little ell one"
$$\ell^1 = \{(x_n) : \sum_{n=1}^{\infty} |x_n| < \infty\}.$$

("little ell 1")
$$\ell^1 = \left\{ (x_n) : \sum_{n=1}^{\infty} |x_n| < \infty \right\}$$

Is it a vector space?

1.
$$x \epsilon \ell^{1} \implies \lambda x \epsilon \ell^{1} \sqrt{2}$$

2. $x, y \epsilon \ell^{1} \implies x + y \epsilon \ell^{1}$?
 $\forall N \qquad \sum_{n=1}^{N} |x_{n} + y_{n}| \leq \sum_{n=1}^{N} |x_{n}| + \sum_{n=1}^{N} |y_{n}| \sqrt{2}$

Let us define a norm in ℓ^1 : $||x||_1 = \sum_{i=1}^{\infty} |x_i|$

This is really a norm. Check it!

Question: $||x||_1$ v.s. $||x||_{\infty}$?

 ℓ^p ("little ell p") for $1 \leq p < \infty$

A possible linear space is: ℓ^{p} ("*little ell p*"):

$$\ell^{p} = \{(x_{n}) : \sum_{n=1}^{\infty} |x_{n}|^{p} < \infty\} \subset c_{0}.$$

Proposition. ℓ^{p} is a normed space with norm

$$||x||_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}.$$

Proof. Not trivial!

Examples. To which ℓ^{p} do these sequences belong to?

1.
$$x_n = \frac{1}{n}$$
, $p = ?$
2. $y_n = \frac{1}{2^n}$, $p = ?$
3. $v_n = (-1)^n \frac{1}{n}$, $p = ?$
4. $z_n = 1$, $p = ?$

The most important of all ℓ^p is ℓ^2 . (Why?)

For p = 2 it is possible to define an INNER PRODUCT:

$$\langle x,y\rangle := \sum_{k=1}^{\infty} x_k \overline{y_k}$$

This is *the only norm*, that comes from an inner product.

Important special spaces II. Function spaces

Bounded functions

 $[a,b] \subset \mathbb{R}$ is a bounded interval.

X: linear space of *all functions* defined on [a, b].

V is the linear space of *bounded functions* on [a, b].

 $V = \{f : [a, b] \rightarrow \mathbb{R}, \exists B : |f(x)| \le B, \forall x\}.$

Proposition. V is a normed space with norm

 $||f||_{\infty} = \sup\{|f(x)| : x \in [a, b]\}.$

A subspace of V is C[a, b], the set of continuous functions:

 $C[a,b] = \{f : [a,b] \rightarrow \mathbb{R}, \text{ continuous}\}.$

In *C*[*a*, *b*] we have the norm as before:

 $\|f\|_{\infty} = \sup\{|f(x)| : x \in [a,b]\}.$

This is a *metric space* also, with metric:

By Thm. of Weierstrass we have in C[a, b]

$$d(f,g) = \max_{x \in [a,b]} |f(x) - g(x)|$$

C[a, b] with inner product?

In C[a, b] it is possible to define *inner product*.

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x)dx \quad \left(\int_{a}^{b} f(x)\overline{g(x)}dx\right)$$
 (Explain it.)

 \Rightarrow Orthogonality of functions can be defined this way.

This inner product induces a norm: $||f|| = \left(\int_{a}^{b} f^{2}(x)dx\right)^{1/2}$

<u>New norm!</u> It is the *quadratic norm*. Notation: $\|\cdot\|_2$.

The previous norm is called *sup-norm*, the notation is $\|\cdot\|_{\infty}$.

Notation. $C_2[a, b]$. In general $||f||_{\infty} \neq ||f||_2$.

Question: Is there an *inner product* in C[a, b] for *sup*-norm?