Functional analysis

Lesson 1.

February 11, 2021

Basics

Lectures: Thursday 14:15. Online, (may be offline later)

——————————————————————

Practical classes: Friday 12:15. Online

Tutorials: To be set up

REFERENCES:

K. Saxe: Beginning Functional Analysis. Springer-Verlag 2002.

"What everyone should know about functional analysis."

Vágó Zsuzsanna: Funkcionálanalízis (In Hungarian)

Requirements and grading

(All details are on webpage)

1. We'll start Lectures with a *20 minutes Moodle test.*

Thursday at 14:15. They are worth *10 points* each.

2. 1-2 HW every week. To be solved in writing within a week.

≥ 8 good solutions. The extra solutions will be credited.

3. There will be an exam at the end of the term.

A recommended mark is offered.

4. An option: brief bibliographies of "key players" – a possible project. (Next two weeks?)

Requirements and grading (cont.)

1. The total score:

```
\sum written test (110 pts) + 50% excess HW.
```
- 2. Requirement for end-term signature is 40 points.
- 3. A recommended mark is offered as follows:
	- 60–84: *recommended 2*
	- 85–99: *recommended 3*
	- 100–110: *recommended 4*
	- 111–: *recommended 5*

Functional analysis:

last years of 19th century – first decades of 20th century (Paul Levy)

Response to "*understand physical phenomena*"

 \Rightarrow study DIFFERENTIAL EQ and INTEGRAL EQ.

PREREQUISITES:

First courses in *linear algebra* and *analysis* (calculus).

(You may have to review these topics! Ask at Tutorial classes.)

PURPOSE:

It is a unifying approach

to view *functions* as *points* in some abstract vector space

and to study DE-s and IE-s in terms of

linear transformations on these spaces.

Review. \mathbb{R}^n – the most important space in Analysis

IR*ⁿ* is a *vector space* or *linear space*.

Elements: *vectors.* $x = (x_1, x_2, \ldots, x_n)$, $x_k \in \mathbb{R}$.

Operations: *addition* and *multiplication by a scalar*

with certain properties $\sqrt{}$

Question: What is a *subspace*?

Some properties:

- \triangleright Distance of two elements
- \blacktriangleright Length of a vector
- \triangleright Orthogonality

(draw for $n = 2$)

\mathbb{R}^n , $n \to \infty$?

V is a linear space with elements $x = (x_1, x_2, \ldots, x_n, \ldots)$

– *Addition*:

$$
x + y = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n, ...).
$$

– *Multiplication by a scalar*:

$$
\lambda x=(\lambda x_1, \lambda x_2, \ldots, \lambda x_n, \ldots).
$$

The well-known properties of these operations $\sqrt{ }$

V is the *linear space of all sequences*.

(Please repeat the definition of vector space.)

Sequence spaces. Some important *linear subspaces* of *V*.

1. $\ell^{\infty} \subset V$ ("*little ell infinity*"): *bounded* sequences.

 $x \in \ell^{\infty}$ if $\exists K \in \mathbb{R} : |x_n| \leq K$ $\forall n \in \mathbb{N}$.

2. *c*: *convergent* seq. *x€C* if $\exists \lim_{n \to \infty} x_n$. *Ex.* $a_n = \frac{n+1}{n+2}$ $n + 2$ 3. *c*₀: null seq. $x \in c_0$ if $\lim_{n \to \infty} x_n = 0$. *Ex.* $b_n = \frac{1}{n+1}$ $\frac{1}{n+2}$. 4. ℓ^1 ("little ell one"). $\ell^1 = \{(x_n) : \sum_{n=1}^{\infty} |x_n| < \infty\}.$ *n*=1

Are they subspaces, indeed?

Abstract spaces. Should be known from LA

Metric space \ll Normed space \ll Inner product space

Generally called *Topologic space*

They are given in order of *increasing structure*.

From left to right:

From *simple* structure to *more complicated* structure.

From left to right:

All definitions and all *theorems* remain true.

It is "easiest" to be a metric space.

It is is "easiest" to work with the inner product space.

Metric space

Goal: defining distance in an abstract way.

M is a set, $d : M \times M \rightarrow \mathbb{R}$ is a function with these properties:

- \blacktriangleright *d*(*x*, *y*) \geq 0, *nonnegative*,
- \blacktriangleright $d(x, y) = 0 \Longleftrightarrow x = y$, non degenerate,
- \blacktriangleright *d*(*x*, *y*) = *d*(*y*, *x*), *symmetric*,
- ► *d*(*x*, *y*)+*d*(*y*, *z*) ≥ *d*(*x*, *z*), *triangle inequality*.

Then (*M*, *d*) is a METRIC SPACE.

The function *d*(*x*, *y*) is the METRIC.

Metric space. Examples.

 α

17 / 33

 $\overline{\mathcal{R}}$ e

3. Let $n \in \mathbb{N}$ be a fixed number

$$
M = \{x = (x_1, ..., x_n) | x_i \in \{0, 1\}\}, d(x, y) = #\{i | x_i \neq y_i\}.
$$

\nE.g. $n = 5$.
\n
$$
x = (0, 0, 0, 1, 1), y = (1, 0, 0, 1, 0).
$$

\n
$$
d(x, y) = ?
$$

4. *Discrete metric*. *M* is an arbitrary set. The metric:

$$
d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}, \quad \forall x, y \in M.
$$

E.g. In previous example?

Topological notions of $\mathbb R$ in a metric space

Definition. (*M*, *d*) is a metric space. $(x_n) \subset M$ is a sequence.

 (x_n) is *convergent* and *the limit of* (x_n) *is x*^{*} ϵ *M*, if

 $\forall \varepsilon > 0$ $\exists N$, such that

$$
d(x_n,x^*)<\varepsilon \qquad \text{if} \qquad n\geq N.
$$

Example. Let *d* be the *discrete metric on* **R**.

What are convergent sequences in (\mathbb{R}, d) ? n E.g. Is the sequence $x_n = \frac{1}{n}$ *n* convergent?

Topological notions from IR in a metric space

Definítion.

Let (M, d_M) and (N, d_N) be metric spaces.

f is a function $f : M \to N$. Let $x_0 \in M$ be an arbitrary point.

f is *continuous at x*₀, if $\forall \epsilon > 0$ $\exists \delta > 0$ such that

if $d_M(x, x_0) < \delta \implies d_N(f(x), f(x_0)) < \varepsilon$

Normed space

Goal: defining length in an abstract way.

V a linear space over K. (It may be $\mathbb R$ or $\mathbb C$.)

The *norm* is a $\|\cdot\|$: $V \to \mathbb{R}$ function with these properties:

1. $\|\mathbf{v}\|$ > 0, *nonnegative*,

2. $\|\mathbf{v}\| = 0 \iff \mathbf{v} = 0$, *non degenerate*,

3. $\|\lambda \cdot \mathbf{v}\| = |\lambda| \cdot \|\mathbf{v}\|$, $\forall \lambda \in \mathbb{K}$, *multiplicative*,

4. $\|\mathbf{v} + \mathbf{w}\| \leq \|\mathbf{v}\| + \|\mathbf{w}\|$, *triangle inequality*.

Then $(V, \|\cdot\|)$ is a normed space.

Normed space. Examples

1.
$$
V = \mathbb{R}, ||x|| = |x|
$$
.

2. $V = \mathbb{R}^n$,

$$
||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}.
$$

This is *Euclidean norm*, or *quadratic norm*

3. More norms in IR*ⁿ* :

$$
||x||_1 = \sum_{i=1}^n |x_i|, \qquad ||x||_{\infty} = \max_{i=1,\dots,n} |x_i|
$$

Normes in \mathbb{R}^2

It is possible to define many norms in \mathbb{R}^2 .

For any $x = (x_1, x_2)$ we define

Normed space \longrightarrow Metric space

Theorem. Norms always give rise to metrics.

Specifically, assume $(V, \|\cdot\|)$ is a normed space.

⇓

Then it is also a metric space with the following metric:

 $d(x, y) := ||x - y||$, $x, y \in V$.

(HW: check it!)

Norm \longrightarrow Metric in \mathbb{R}^2

 $||x||_1 = |x_1| + |x_2|$,

Think about *d*2(*x*, *y*) and *d*∞(*x*, *y*)

26 / 33

Normed space $→$ Metric space

The other direction is not true! Why?

Review. IR*ⁿ*

Up to this point you have done Math in Rⁿ. Why?

IR*ⁿ* is a *vector space* , elements are *vectors*:

$$
x=(x_1,x_2,\ldots,x_n),\qquad x_k\in\mathbb{R}
$$

Some Important properties:

- ^I Distance of two elements −→ *Metric space* [√]
- ^I Length of a vector −→ *Normed space* [√]
- ▶ Orthogonality → ?

In IR*ⁿ what is orthogonality*?

Inner product space over IR

Goal: defining orthogonality in an abstract way.

V is a linear space over **R**.

The inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ is an operation:

1. $\langle v, v \rangle > 0$, nonnegative,

and $\langle v, v \rangle = 0 \iff v = 0$, nondegenerate.

2. $\langle \lambda v, w \rangle = \lambda \langle v, w \rangle$, $\lambda \in \mathbb{R}$, multiplicative.

3. $\langle v, w \rangle = \langle w, v \rangle$, symmetric.

4. $\langle v, w + u \rangle = \langle v, w \rangle + \langle v, u \rangle$, distributive property.

Then $(V, \langle \cdot, \cdot \rangle)$ is a real INNER PRODUCT SPACE.

Inner product space over C

Some changes in the definition:

The inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ is an operation:

1.
$$
\langle v, v \rangle \geq 0
$$
, nonnegative,

and $\langle v, v \rangle = 0 \iff v = 0$, nondegenerate.

2.
$$
\langle \lambda v, w \rangle = \lambda \langle v, w \rangle
$$
, $\lambda \in \mathbb{C}$, multiplicative.

3.
$$
\langle v, w \rangle = \overline{\langle w, v \rangle}
$$

4. $\langle v, w + u \rangle = \langle v, w \rangle + \langle v, u \rangle$, distributive.

Then $(V, \langle \cdot, \cdot \rangle)$ is a complex INNER PRODUCT SPACE.

Orthogonality and examples

Definítion. *v* and *w* are orthogonal, if $\langle v, w \rangle = 0$.

1. Example. $V = \mathbb{R}^n$, *n*-dimensional real vectors with

$$
\langle x,y\rangle=\sum_{i=1}^n x_iy_i
$$

2. Example. $V = \mathbb{C}^n$, *n*-dimensional complex vectors with

$$
\langle v, w \rangle = \sum_{i=1}^n v_i \overline{w_i}
$$

There are very few examples, not by accident.

Inner product space −→ Normed space

