Functional analysis

Lesson 1.

February 11, 2021

Basics

Lectures: Thursday 14:15. Online, (may be offline later)

Practical classes: Friday 12:15. Online

Tutorials: To be set up

REFERENCES:

K. Saxe: Beginning Functional Analysis. Springer-Verlag 2002.

"What everyone should know about functional analysis."

Vágó Zsuzsanna: Funkcionálanalízis (In Hungarian)

Requirements and grading

(All details are on webpage)

1. We'll start Lectures with a 20 minutes Moodle test.

Thursday at 14:15. They are worth *10 points* each.

- 2. 1-2 HW every week. To be solved in writing within a week.
 - \geq 8 good solutions. The extra solutions will be credited.
- 3. There will be an exam at the end of the term.

A recommended mark is offered.

 An option: brief bibliographies of "key players" – a possible project. (Next two weeks?) Requirements and grading (cont.)

1. The total score:

```
\sum written test (110 pts) + 50% excess HW.
```

- 2. Requirement for end-term signature is 40 points.
- 3. A recommended mark is offered as follows:
 - 60–84: recommended 2
 - 85–99: recommended 3
 - 100–110: recommended 4
 - 111–: recommended 5

Functional analysis:

last years of 19th century – first decades of 20th century (Paul Levy)

Response to "understand physical phenomena"

 \implies study DIFFERENTIAL EQ and INTEGRAL EQ.

PREREQUISITES:

First courses in *linear algebra* and *analysis* (calculus).

(You may have to review these topics! Ask at Tutorial classes.)

PURPOSE:

It is a unifying approach

to view *functions* as *points* in some abstract vector space

and to study DE-s and IE-s in terms of

linear transformations on these spaces.

Review. \mathbb{R}^n – the most important space in Analysis

 \mathbb{R}^n is a vector space or linear space.

Elements: *vectors*. $x = (x_1, x_2, ..., x_n)$, $x_k \in \mathbb{R}$.

Operations: addition and multiplication by a scalar

with certain properties \surd

Question: What is a subspace?

Some properties:

- Distance of two elements
- Length of a vector
- Orthogonality

(draw for n = 2)

\mathbb{R}^n , $n \to \infty$?

V is a linear space with elements $x = (x_1, x_2, \ldots, x_n, \ldots)$

- Addition:

$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n, \dots).$$

$$\lambda \mathbf{x} = (\lambda \mathbf{x}_1, \ \lambda \mathbf{x}_2, \ \dots, \lambda \mathbf{x}_n, \dots).$$

The well-known properties of these operations $\sqrt{}$

V is the linear space of all sequences.

(Please repeat the definition of vector space.)

Sequence spaces. Some important linear subspaces of V.

1. $\ell^{\infty} \subset V$ ("*little ell infinity*"): *bounded* sequences.

 $\mathbf{x} \in \ell^{\infty}$ if $\exists \mathbf{K} \in \mathbb{R} : |\mathbf{x}_n| \leq \mathbf{K} \quad \forall n \in \mathbb{N}.$

2. *c*: convergent seq. $x \in c$ if $\exists \lim_{n \to \infty} x_n$. *Ex.* $a_n = \frac{n+1}{n+2}$ 3. c_0 : null seq. $x \in c_0$ if $\lim_{n \to \infty} x_n = 0$. *Ex.* $b_n = \frac{1}{n+2}$. 4. ℓ^1 ("little ell one"). $\ell^1 = \{(x_n) : \sum_{n=1}^{\infty} |x_n| < \infty\}$.

Are they subspaces, indeed?

Abstract spaces. Should be known from LA

Metric space « Normed space « Inner product space Generally called *Topologic space*

They are given in order of *increasing structure*.

From left to right:

From *simple* structure to *more complicated* structure.

From left to right:

All definitions and all *theorems* remain true.

It is "easiest" to be a metric space.

It is is "easiest" to work with the inner product space.

Metric space

Goal: defining distance in an abstract way.

M is a set, $d: M \times M \rightarrow \mathbb{R}$ is a function with these properties:

- $d(x, y) \ge 0$, nonnegative,
- $d(x, y) = 0 \iff x = y$, non degenerate,
- d(x, y) = d(y, x), symmetric,
- $d(x, y) + d(y, z) \ge d(x, z)$, triangle inequality.

Then (M, d) is a METRIC SPACE.

The function d(x, y) is the METRIC.

Metric space. Examples.

1

0. $M = \mathbb{R}$, d(x, y) = |x - y| d(x, y) = |x - y|

1.
$$M = \mathbb{R}^n$$
.
 $d(x, y) = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{1/2} \quad x = (x_1, ..., x_n), \ y = (y_1, ..., y_n).$

2.
$$M = \mathbb{C}$$
,
 $d(z, w) = |z - w|$

3. Let $n \in \mathbb{N}$ be a fixed number

$$M = \{x = (x_1, \dots, x_n) \mid x_i \in \{0, 1\}\}, \quad d(x, y) = \#\{i \mid x_i \neq y_i\}.$$

E.g. $n = 5$.
 $x = (0, 0, 0, 1, 1), y = (1, 0, 0, 1, 0).$
 $d(x, y) = ?$

4. Discrete metric. M is an arbitrary set. The metric:

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}, \quad \forall x, y \in M.$$

E.g. In previous example?

Topological notions of \mathbb{R} in a metric space

Definition. (M, d) is a metric space. $(x_n) \subset M$ is a sequence.

 (x_n) is convergent and the limit of (x_n) is $x^* \in M$, if

 $\forall \varepsilon > 0 \exists N$, such that

$$d(x_n, x^*) < \varepsilon$$
 if $n \ge N$.

Example. Let *d* be the *discrete metric on* \mathbb{R} .

What are convergent sequences in (\mathbb{R}, d) ? n E.g. Is the sequence $x_n = \frac{1}{n}$ convergent?

Topological notions from IR in a metric space

Definítion.

Let (M, d_M) and (N, d_N) be metric spaces.

f is a function $f : M \to N$. Let $x_0 \in M$ be an arbitrary point.

f is *continuous at* x_0 , if $\forall \varepsilon > 0 \exists \delta > 0$ such that

 $\text{if} \quad d_M(x,x_0) < \delta \implies d_N(f(x),f(x_0)) < \varepsilon \\$

Normed space

Goal: defining length in an abstract way.

V a linear space over \mathbb{K} . (It may be \mathbb{R} or \mathbb{C} .)

The *norm* is a $\|\cdot\|$: $V \to \mathbb{R}$ function with these properties:

1. $\|v\| \ge 0$, nonnegative,

2. $\|v\| = 0 \iff v = 0$, non degenerate,

3. $\|\lambda \cdot \mathbf{v}\| = |\lambda| \cdot \|\mathbf{v}\|, \forall \lambda \in \mathbb{K}, multiplicative,$

4. $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$, triangle inequality.

Then $(V, \|\cdot\|)$ is a normed space.

Normed space. Examples

1.
$$V = \mathbb{R}, ||x|| = |x|.$$

2. $V = \mathbb{R}^n$,

$$\|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2}.$$

This is Euclidean norm, or quadratic norm

3. More norms in \mathbb{R}^n :

$$\|x\|_1 = \sum_{i=1}^n |x_i|, \qquad \|x\|_\infty = \max_{i=1,\dots,n} |x_i|$$

Normes in **I**R²

It is possible to define many norms in \mathbb{R}^2 .

For any $x = (x_1, x_2)$ we define

Normed space \longrightarrow Metric space

Theorem. Norms always give rise to metrics.

Specifically, assume $(V, \|\cdot\|)$ is a normed space.

∜

Then it is also a metric space with the following metric:

 $d(x,y) := \|x-y\|, \qquad x, y \in V.$

(<u>HW</u>: check it!)

Norm \longrightarrow Metric in \mathbb{R}^2

 $\|x\|_1 = |x_1| + |x_2|,$

 $\Downarrow d_1(x, y) = |x_1 - y_1| + |x_2 - y_2|$

This is a set of (x, y) and (y, y)

26/33

Normed space \longrightarrow Metric space

The other direction is not true! Why?

Review. \mathbb{R}^n

Up to this point you have done *Math* in \mathbb{R}^n . Why?

 \mathbb{R}^n is a *vector space*, elements are *vectors*:

$$x = (x_1, x_2, \ldots, x_n), \qquad x_k \in \mathbb{R}$$

Some Important properties:

- Distance of two elements \longrightarrow *Metric space* $\sqrt{}$
- Length of a vector \longrightarrow *Normed space* $\sqrt{}$
- Orthogonality \rightarrow ?

In \mathbb{R}^n what is orthogonality?

Inner product space over IR

Goal: defining orthogonality in an abstract way.

V is a linear space over \mathbb{R} .

The inner product $\langle \cdot, \cdot \rangle : \mathbf{V} \times \mathbf{V} \to \mathbb{R}$ is an operation:

1. $\langle \mathbf{v}, \mathbf{v} \rangle \geq \mathbf{0}$, nonnegative,

and $\langle \mathbf{v}, \mathbf{v} \rangle = \mathbf{0} \iff \mathbf{v} = \mathbf{0}$, nondegenerate.

- 2. $\langle \lambda \mathbf{v}, \mathbf{w} \rangle = \lambda \langle \mathbf{v}, \mathbf{w} \rangle$, $\lambda \epsilon \mathbb{R}$, multiplicative.
- 3. $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$, symmetric.
- 4. $\langle v, w + u \rangle = \langle v, w \rangle + \langle v, u \rangle$, distributive property.

Then $(V, \langle \cdot, \cdot \rangle)$ is a real INNER PRODUCT SPACE.

Inner product space over $\mathbb C$

Some changes in the definition:

The inner product $\langle \cdot, \cdot \rangle : \mathbf{V} \times \mathbf{V} \to \mathbb{C}$ is an operation:

1.
$$\langle \boldsymbol{v}, \boldsymbol{v} \rangle \geq 0$$
, nonnegative,

and $\langle \mathbf{v}, \mathbf{v} \rangle = \mathbf{0} \quad \Longleftrightarrow \quad \mathbf{v} = \mathbf{0}$, nondegenerate.

2.
$$\langle \lambda \boldsymbol{v}, \boldsymbol{w} \rangle = \lambda \langle \boldsymbol{v}, \boldsymbol{w} \rangle$$
, $\lambda \epsilon \mathbb{C}$, multiplicative.

3.
$$\langle \boldsymbol{v}, \boldsymbol{w} \rangle = \overline{\langle \boldsymbol{w}, \boldsymbol{v} \rangle}$$

4. $\langle v, w + u \rangle = \langle v, w \rangle + \langle v, u \rangle$, distributive.

Then $(V, \langle \cdot, \cdot \rangle)$ is a complex INNER PRODUCT SPACE.

Orthogonality and examples

Definition. *v* and *w* are orthogonal, if $\langle v, w \rangle = 0$.

1. Example. $V = \mathbb{R}^n$, *n*-dimensional real vectors with

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

2. Example. $V = \mathbb{C}^n$, *n*-dimensional complex vectors with

$$\langle \mathbf{v}, \mathbf{w} \rangle = \sum_{i=1}^{n} v_i \overline{w_i}$$

There are very few examples, not by accident.

Inner product space \longrightarrow Normed space

