Functional analysis

Lesson 12.

May 13. 2021

Adjoint of an operator in B(*H*). Review.

Let $(H, \langle \cdot, \cdot \rangle)$ be *Hilbert space.* $A \in \mathcal{B}(H)$ is a linear operator.

The <code>ADJOINT</code> OPERATOR OF A is the $A^* \in \mathcal{B}(H)$ such that

 $\langle Ax, y \rangle = \langle x, A^*y \rangle \quad \forall x, y \in H.$

Example. Let $H = \mathbb{C}^n$. The norm is the $\|\cdot\|_2$.

 $B(H) \equiv$ *complex matrices of dimension* $n \times n$

Let $A \in \mathcal{B}(\mathbb{C}^n)$. Then $A^* = \overline{A}^T$, the *conjugate+transpose of A*

Orthogonal projection in *H* Hilbert space

Let $E \subset H$ be a *closed* subspace. Then $\forall x \in H$ can be written as

 $x = x_E + x_0$: $x_E \in E$ and $x_0 \perp E$

Let $Px := x_E$.

Definition. $P: H \rightarrow H$ is the ORTHOGONAL PROJECTION onto *E*.

Proposition. Then $P = P^*$. The other direction is also true:

If $P = P^* \implies P$ is an orthogonal projection.

Self-adjoint operator

The operator *A* is SELF-ADJOINT, if $A = A^*$.

Theorem. If *A* is self-adjoint, then

- 1. $\|A^n\| = \|A\|^n$.
- 2. It's spectral radius is: $r(A) = ||A||$.
- 3. The spectrum is real: $\sigma(A) \subset \mathbb{R}$.

Self-adjoint operators in infinite dimension are extensions of *symmetric matrices* in finite dimension.

Example. $H = \mathcal{L}^2[a, b]$, $Mf(x) := x \cdot f(x)$. Then $\forall f, g \in H$:

$$
\langle Mf,g\rangle=\int\limits_{[a,b]}xf(x)g(x)\,dm=\int\limits_{[a,b]}f(x)\,xg(x)\,dm=\langle f,Mg\rangle\;\Rightarrow\;M=M^*.
$$

Hilbert space methods

in

Quantum Mechanics

AN EXAMPLE.

One particle (electron) is moving along a straight line.

Moving is described by: $f(x, t) \in \mathbb{C}$.

- *t* is the time
- $\frac{1}{x}$ is the position

The probability, that the *position* is in [*a*, *b*] at *time t* is :

 \int^b *a* $|f(x, t)|^2 dx$.

This *f*(*x*, *t*) is the STATE FUNCTION. We expect:

$$
\int_{-\infty}^{\infty} |f(x,t)|^2 dx = 1 \quad \forall t.
$$

Now fix *t*. We use *f*(*x*).

In *Math.* language

The state function $f \in \mathcal{L}^2(\mathbf{R})$, where $\mathcal{L}^2(\mathbf{R}) = H$ is a *Hilbert space*. $||f||^2 = 1.$

The position *x* is an "OBSERVABLE", using QM terminology.

Remark. Another way: the *position* is a random variable.

The density function of this r.v. is $|f(x)|$.

Momentum

Another "observable" is the MOMENTUM. It is given by *FT of f:*

$$
\widehat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ixw} f(x) dx.
$$

The probability of w is in [*a*, *b*]:

$$
\int_a^b |\widehat{f}(w)|^2 dw.
$$

By Parseval equality

$$
\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\widehat{f}(w)|^2 dw,
$$

thus $f \in \mathcal{L}^2(\mathbb{R})$ and $\|f\| = 1$.

Let's denote \bar{x} the mean value of the position :

$$
\overline{x}:=\int_{-\infty}^{\infty}x\cdot|f(x)|^2\,dx,
$$

Let's denote \overline{w} the mean value of the momentum:

$$
\overline{w}:=\int_{-\infty}^{\infty}w\cdot|\widehat{f}(w)|^2\,dw.
$$

The variances are:

$$
\sigma_x^2 = \int_{-\infty}^{\infty} (x - \overline{x})^2 \cdot |f(x)|^2 dx, \qquad \sigma_w^2 = \int_{-\infty}^{\infty} (w - \overline{w})^2 \cdot |\widehat{f}(w)|^2 dw.
$$

The HEISENBERG'S UNCERTAINTY PRINCIPLE states , that

$$
\sigma_x^2 \cdot \sigma_w^2 \geq \frac{1}{4}.
$$

(For simplicity Planck's constant is 1 here.)

Both of σ_x^2 and σ_w^2 can not be small at the same time,

"*position*" and "*momentum*" can not be localized simultaneously.

Sketch of the Proof

We assume $\bar{x} = 0$ and $\bar{w} = 0$. (By shifting...)

In the $\mathcal{L}^2(\mathbb{R})$ Hilbert space we consider two operators:

 $Mf(x) = x \cdot f(x)$ $Df(x) = f'(x)$.

(*Remark. M* and *D* are defined in a subspace if *H*. No problem. Our *f* is in a "good space".)

→ Up to this point $f, f \in \mathcal{L}^2(\mathbf{R})$, with unit norm.

Variance of the position

$$
||Mf||^2=\int_{-\infty}^{\infty}|x\cdot f(x)|^2 dx=\int_{-\infty}^{\infty}x^2\cdot|f(x)|^2 dx=\sigma_x^2.
$$

Thus we have proved :

Proposition.

$$
||Mf||^2 = \sigma_x^2.
$$

Variance of the momentum.

Proposition.

$$
||Df||^2 = \sigma_w^2.
$$

Proof. By the Parseval equality $||Df||^2 = ||Df||^2$. By the definition of the norm:

$$
\|\widehat{Df}\|^2=\,\int_{-\infty}^\infty |\widehat{Df}(w)|^2\,dw.
$$

An important property of the FT is:

 $\widehat{Df}(w) = i\omega \widehat{f}(w),$

Thus

$$
||Df||^2 = ||\widehat{Df}||^2 = \int_{-\infty}^{\infty} w^2 |\widehat{f}(w)|^2 dw = \sigma_w^2.
$$

$$
Mf(x) := x \cdot f(x)
$$

$$
Df(x) := f'(x).
$$

Proposition. (*A special property*) *M* and *D* satisfy this equality:

$$
DM - MD = I. \tag{1}
$$

Proof. Apply the rule on the derivative of a product:

$$
(x \cdot f(x))' = f(x) + xt'(x),
$$

or equivalently

 $D \circ M(f) = I(f) + M \circ D(f).$

Remark. [\(1\)](#page-13-0) is valid only in the right subspace.

Adjoint of *M*

Proposition. *M* is selfadjoint, i.e.

 $\langle Mf, g \rangle = \langle f, Mg \rangle$.

Proof.

$$
\langle Mf,g\rangle=\int_{-\infty}^{\infty}xf(x)\cdot g(x)\,dx=\int_{-\infty}^{\infty}f(x)\cdot xg(x)\,dx=\langle f,Mg\rangle.
$$

Remeber?

Adjoint of *D*

Proposition. The adjoint of *D* is −*D*, i.e. ∀*f*, *g*

 $\langle Df, g \rangle = \langle f, -Dg \rangle$.

Proof. We use partial integration:

$$
\langle Df,g\rangle=\int_{-\infty}^{\infty}f'g=fg\Biggl\vert_{-\infty}^{\infty}-\int_{-\infty}^{\infty}fg'=-\langle f,Dg\rangle.
$$

Meanwhile we used the fact, that $\forall g \in \mathcal{L}^2(\mathbb{R})$:

$$
\lim_{x\to\pm\infty}g(x)=0.
$$

FINALLY

$$
1 = ||f||^2 = \langle f, f \rangle = \langle f, (DM - MD)f \rangle =
$$

$$
\hspace{1.6cm} = \hspace{.4cm} \langle f, DMf \rangle - \langle f, MDf \rangle =
$$

$$
= -\langle \mathit{Df}, \mathit{Mf} \rangle - \langle \mathit{Mf}, \mathit{Df} \rangle
$$

Thus $1 = 2|\langle Df, Mf \rangle|$. Then using C-S-B inequality 1 $\frac{\partial}{\partial \mathbf{z}} = |\langle Df, Mf \rangle| \leq ||Mf|| \cdot ||Df|| = \sigma_x \cdot \sigma_w,$ + rearrangement $\sqrt{}$