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Adjoint of an operator in B(H). Review.

Let (H, 〈·, ·〉) be Hilbert space. A ∈ B(H) is a linear operator.

The ADJOINT OPERATOR OF A is the A∗ ∈ B(H) such that

〈Ax , y〉 = 〈x ,A∗y〉 ∀x , y ∈ H.

Example. Let H = Cn. The norm is the ‖·‖2.

B(H) ≡ complex matrices of dimension n × n

Let A ∈ B(Cn). Then A∗ = A
T

, the conjugate+transpose of A
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Orthogonal projection in H Hilbert space

Let E ⊂ H be a closed subspace. Then ∀x ∈ H can be written as

x = xE + x0 : xE ∈ E and x0⊥E

Let Px := xE .

Definition. P : H → H is the ORTHOGONAL PROJECTION onto E .

Proposition. Then P = P∗. The other direction is also true:

If P = P∗ =⇒ P is an orthogonal projection.
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Self-adjoint operator

The operator A is SELF-ADJOINT, if A = A∗.

Theorem. If A is self-adjoint, then

1. ‖An‖ = ‖A‖n.

2. It’s spectral radius is: r(A) = ‖A‖.

3. The spectrum is real: σ(A) ⊂ IR.

Self-adjoint operators in infinite dimension are extensions of

symmetric matrices in finite dimension.

Example. H = L2[a,b], Mf (x) := x · f (x). Then ∀f , g ∈ H:

〈Mf ,g〉 =
∫

[a,b]

xf (x)g(x)dm =

∫
[a,b]

f (x) xg(x)dm = 〈f ,Mg〉 ⇒ M = M∗.
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Hilbert space methods

in

Quantum Mechanics
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AN EXAMPLE.

One particle (electron) is moving along a straight line.

Moving is described by: f (x , t) ∈ C.

— t is the time

— x is the position

The probability, that the position is in [a, b] at time t is :∫ b

a
|f (x , t)|2 dx .

This f (x , t) is the STATE FUNCTION. We expect:∫ ∞
−∞
|f (x , t)|2 dx = 1 ∀t .

Now fix t . We use f (x).
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In Math. language

The state function f ∈ L2(IR), where L2(IR) = H is a Hilbert space.

‖f‖2 = 1.

The position x is an ”OBSERVABLE”, using QM terminology.

Remark. Another way: the position is a random variable.

The density function of this r.v. is |f (x)|.
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Momentum

Another ”observable” is the MOMENTUM. It is given by FT of f :

f̂ (w) =
1√
2π

∫ ∞
−∞

e−ixw f (x)dx .

The probability of w is in [a, b]:∫ b

a
|̂f (w)|2 dw .

By Parseval equality∫ ∞
−∞
|f (x)|2 dx =

∫ ∞
−∞
|̂f (w)|2 dw ,

thus f̂ ∈ L2(IR) and ‖f̂‖ = 1.
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Let’s denote x the mean value of the position :

x :=

∫ ∞
−∞

x · |f (x)|2 dx ,

Let’s denote w the mean value of the momentum:

w :=

∫ ∞
−∞

w · |̂f (w)|2 dw .

The variances are:

σ2
x =

∫ ∞
−∞

(x − x)2 · |f (x)|2 dx , σ2
w =

∫ ∞
−∞

(w − w)2 · |̂f (w)|2 dw .
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The HEISENBERG’S UNCERTAINTY PRINCIPLE states , that

σ2
x · σ2

w ≥
1
4
.

(For simplicity Planck’s constant is 1 here.)

Both of σ2
x and σ2

w can not be small at the same time,

”position” and ”momentum” can not be localized simultaneously.
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Sketch of the Proof

We assume x = 0 and w = 0. (By shifting...)

In the L2(IR) Hilbert space we consider two operators:

Mf (x) := x · f (x)
Df (x) := f ′(x).

(Remark. M and D are defined in a subspace if H. No problem.

Our f is in a ”good space”.)

−→ Up to this point f , f̂ ∈ L2(IR), with unit norm.
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Variance of the position

‖Mf‖2 =

∫ ∞
−∞
|x · f (x)|2 dx =

∫ ∞
−∞

x2 · |f (x)|2 dx = σ2
x .

Thus we have proved :

Proposition.
‖Mf‖2 = σ2

x .
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Variance of the momentum.

Proposition.
‖Df‖2 = σ2

w .

Proof. By the Parseval equality ‖Df‖2 = ‖D̂f‖2.

By the definition of the norm:

‖D̂f‖2 =

∫ ∞
−∞
|D̂f (w)|2 dw .

An important property of the FT is:

D̂f (w) = iw f̂ (w),

Thus
‖Df‖2 = ‖D̂f‖2 =

∫ ∞
−∞

w2 |̂f (w)|2 dw = σ2
w .
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Mf (x) := x · f (x)
Df (x) := f ′(x).

Proposition. (A special property ) M and D satisfy this equality:

DM −MD = I. (1)

Proof. Apply the rule on the derivative of a product:(
x · f (x)

)′
= f (x) + xf ′(x),

or equivalently
D ◦M(f ) = I(f ) + M ◦ D(f ).

Remark. (1) is valid only in the right subspace.
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Adjoint of M

Proposition. M is selfadjoint, i.e.

〈Mf ,g〉 = 〈f ,Mg〉.

Proof.

〈Mf ,g〉 =
∫ ∞
−∞

xf (x) · g(x)dx =

∫ ∞
−∞

f (x) · xg(x)dx = 〈f ,Mg〉.

Remeber?
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Adjoint of D

Proposition. The adjoint of D is −D, i.e. ∀f , g

〈Df ,g〉 = 〈f ,−Dg〉 .

Proof. We use partial integration:

〈Df ,g〉 =
∫ ∞
−∞

f ′g =
�
�
�@
@
@

fg
∣∣∣∣∞
−∞
−
∫ ∞
−∞

fg′ = −〈f ,Dg〉.

Meanwhile we used the fact, that ∀g ∈ L2(IR):

lim
x→±∞

g(x) = 0.
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FINALLY

1 = ‖f‖2 = 〈f , f 〉 = 〈f , (DM −MD)f 〉 =

= 〈f ,DMf 〉 − 〈f ,MDf 〉 =

= −〈Df ,Mf 〉 − 〈Mf ,Df 〉

Thus 1 = 2|〈Df ,Mf 〉|. Then using C-S-B inequality

1
2
= |〈Df ,Mf 〉|≤‖Mf‖ · ‖Df‖ = σx · σw ,

+ rearrangement
√
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