Functional analysis

Lesson 12.

May 13. 2021

Adjoint of an operator in $\mathcal{B}(H)$. Review.

Let $(H, \langle \cdot, \cdot \rangle)$ be *Hilbert space*. $A \in \mathcal{B}(H)$ is a linear operator.

The ADJOINT OPERATOR OF A is the $A^* \in \mathcal{B}(H)$ such that

 $\langle Ax, y \rangle = \langle x, A^*y \rangle \quad \forall x, y \in H.$

Example. Let $H = \mathbb{C}^n$. The norm is the $\|\cdot\|_2$.

 $\mathcal{B}(H) \equiv \text{complex matrices of dimension } n \times n$

Let $A \in \mathcal{B}(\mathbb{C}^n)$. Then $A^* = \overline{A}^T$, the *conjugate+transpose of A*

Orthogonal projection in H Hilbert space

Let $E \subset H$ be a *closed* subspace. Then $\forall x \in H$ can be written as

 $x = x_E + x_0$: $x_E \in E$ and $x_0 \perp E$

Let $Px := x_E$.

Definition. $P: H \rightarrow H$ is the ORTHOGONAL PROJECTION onto *E*.

Proposition. Then $P = P^*$. The other direction is also true:

If $P = P^* \implies P$ is an orthogonal projection.

Self-adjoint operator

The operator A is SELF-ADJOINT, if $A = A^*$.

Theorem. If A is self-adjoint, then

- 1. $\|A^n\| = \|A\|^n$.
- 2. It's spectral radius is: r(A) = ||A||.
- 3. The spectrum is real: $\sigma(A) \subset \mathbb{R}$.

Self-adjoint operators in infinite dimension are extensions of symmetric matrices in finite dimension.

Example. $H = \mathcal{L}^2[a, b], Mf(x) := x \cdot f(x)$. Then $\forall f, g \in H$:

$$\langle Mf,g\rangle = \int_{[a,b]} xf(x)g(x) \, dm = \int_{[a,b]} f(x) \, xg(x) \, dm = \langle f,Mg\rangle \ \Rightarrow \ M = M^*.$$

Hilbert space methods

in

Quantum Mechanics

AN EXAMPLE.

One particle (electron) is moving along a straight line.

Moving is described by: $f(x, t) \in \mathbb{C}$.

- t is the time
- -x is the position

The probability, that the *position* is in [a, b] at *time t* is :

 $\int_a^b |f(x,t)|^2 \, dx.$

This f(x, t) is the STATE FUNCTION. We expect:

$$\int_{-\infty}^{\infty} |f(x,t)|^2 \, dx = 1 \quad \forall t.$$

Now fix t. We use f(x).

In Math. language

The state function $f \in \mathcal{L}^2(\mathbb{R})$, where $\mathcal{L}^2(\mathbb{R}) = H$ is a *Hilbert space*. $\|f\|^2 = 1$.

The position x is an "OBSERVABLE", using QM terminology.

Remark. Another way: the *position* is a random variable.

The density function of this r.v. is |f(x)|.

Momentum

Another "observable" is the MOMENTUM. It is given by FT of f:

$$\widehat{f}(w) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ixw} f(x) \, dx$$

The probability of w is in [a, b]:

$$\int_a^b |\widehat{f}(w)|^2 \, dw.$$

By Parseval equality

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\widehat{f}(w)|^2 dw$$

thus $\widehat{f} \in \mathcal{L}^2(\mathbb{R})$ and $\|\widehat{f}\| = 1$.

Let's denote \overline{x} the mean value of the position :

$$\overline{x}:=\int_{-\infty}^{\infty}x\cdot|f(x)|^2\,dx,$$

Let's denote \overline{w} the mean value of the <u>momentum</u>:

$$\overline{w} := \int_{-\infty}^{\infty} w \cdot |\widehat{f}(w)|^2 \, dw.$$

The variances are:

$$\sigma_x^2 = \int_{-\infty}^{\infty} (x - \overline{x})^2 \cdot |f(x)|^2 \, dx, \qquad \sigma_w^2 = \int_{-\infty}^{\infty} (w - \overline{w})^2 \cdot |\widehat{f}(w)|^2 \, dw.$$

The HEISENBERG'S UNCERTAINTY PRINCIPLE states , that

$$\sigma_x^2 \cdot \sigma_w^2 \ge \frac{1}{4}.$$

(For simplicity Planck's constant is 1 here.)

Both of σ_x^2 and σ_w^2 can not be small at the same time,

"position" and "momentum" can not be localized simultaneously.

Sketch of the Proof

We assume $\overline{x} = 0$ and $\overline{w} = 0$. (By shifting...)

In the $\mathcal{L}^2(\mathbb{R})$ Hilbert space we consider two operators:

 $\begin{array}{rcl} Mf(x) & := & x \cdot f(x) \\ Df(x) & := & f'(x). \end{array}$

(*Remark. M* and *D* are defined in a subspace if *H*. No problem. Our *f* is in a "good space".)

 \longrightarrow Up to this point $f, \hat{f} \in \mathcal{L}^2(\mathbb{R})$, with unit norm.

Variance of the position

$$\|Mf\|^2 = \int_{-\infty}^{\infty} |x \cdot f(x)|^2 dx = \int_{-\infty}^{\infty} x^2 \cdot |f(x)|^2 dx = \sigma_x^2.$$

Thus we have proved :

Proposition.

 $\|Mf\|^2 = \sigma_x^2.$

Variance of the momentum.

Proposition.

$$\|Df\|^2 = \sigma_w^2.$$

Proof. By the Parseval equality $||Df||^2 = ||\widehat{Df}||^2$. By the definition of the norm:

$$\|\widehat{Df}\|^2 = \int_{-\infty}^{\infty} |\widehat{Df}(w)|^2 dw.$$

An important property of the FT is:

$$\widehat{Df}(w) = iw \ \widehat{f}(w)$$

Thus

$$\|Df\|^2 = \|\widehat{Df}\|^2 = \int_{-\infty}^{\infty} w^2 \, |\widehat{f}(w)|^2 \, dw = \sigma_w^2$$

$$Mf(x) := x \cdot f(x)$$

$$Df(x) := f'(x).$$

Proposition. (*A special property*) *M* and *D* satisfy this equality:

$$DM - MD = I. \tag{1}$$

Proof. Apply the rule on the derivative of a product:

$$(x \cdot f(x))' = f(x) + xf'(x),$$

or equivalently

 $D \circ M(f) = I(f) + M \circ D(f).$

Remark. (1) is valid only in the right subspace.

Adjoint of *M*

Proposition. *M* is selfadjoint, i.e.

 $\langle Mf, g \rangle = \langle f, Mg \rangle.$

Proof.

$$\langle Mf,g\rangle = \int_{-\infty}^{\infty} xf(x)\cdot g(x)\,dx = \int_{-\infty}^{\infty} f(x)\cdot xg(x)\,dx = \langle f,Mg\rangle.$$

Remeber?

Adjoint of D

Proposition. The adjoint of *D* is -D, i.e. $\forall f, g$

 $\langle Df, g \rangle = \langle f, -Dg \rangle$.

Proof. We use partial integration:

$$\langle Df, g \rangle = \int_{-\infty}^{\infty} f'g = fg \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} fg' = -\langle f, Dg \rangle.$$

Meanwhile we used the fact, that $\forall g \in \mathcal{L}^2(\mathbb{R})$:

$$\lim_{x\to\pm\infty}g(x)=0.$$

FINALLY

$$1 = \|f\|^2 = \langle f, f \rangle = \langle f, (DM - MD)f \rangle =$$

$$= \langle f, DMf \rangle - \langle f, MDf \rangle =$$

$$= -\langle Df, Mf \rangle - \langle Mf, Df \rangle$$

Thus $1 = 2|\langle Df, Mf \rangle|$. Then using C-S-B inequality $\frac{1}{2} = |\langle Df, Mf \rangle| \le ||Mf|| \cdot ||Df|| = \sigma_x \cdot \sigma_w,$ + rearrangement \checkmark