Functional analysis

Lesson 11.

May 6. 2021

$\mathcal{B}(X)$ Banach algebra

Let X be a Banach space.

 $\mathcal{B}(X) = \{T : X \to X \text{ bounded, linear}\}, \qquad \|T\| = \sup_{\|x\|=1} \|Tx\|$

The multiplication is $(T \cdot S)(x) = T(S(x))$.

If $X = \mathbb{R}^n$, then $\mathcal{B}(X)$ is the set of *quadratic matrices*.

 $T \in \mathcal{B}(X)$ is INVERTIBLE, if $\exists S \in \mathcal{B}(X)$ s.t. TS = ST = I. (Both!)

Example. $X = \ell^2$. *T* is the left shift, *S* is the right shift operator.

 $T(x_1, x_2, \dots) = (x_2, x_3, \dots), \qquad S(x_1, x_2, \dots) = (0, x_1, x_2, \dots).$

Then TS = I, but $ST \neq I$. None of them is invertible.

Eigenvalue of a quadratic matrix. Reminder

Let $A \in \mathbb{C}^{n \times n}$ be a matrix . $\lambda \in \mathbb{C}$ is an EIGENVALUE, if

 $\exists v \neq 0 : Av = \lambda v.$

In other words $\exists v \neq 0$: $(A - \lambda I) v = 0$. v is an EIGENVECTOR OF A.

Equivalently: $\lambda \in \mathbb{C}$ eigenvalue $\iff (A - \lambda I)$ is *non-invertible*.

 \rightarrow *Extension* of this notion to *linear operators*: $\sqrt{}$

Spectrum of an operator

Let X be a Banach space. $T \in \mathcal{B}(X)$ is an operator.

Definition. The **SPECTRUM** of *T* is:

 $\sigma(T) = \{ \lambda : T - \lambda I \text{ is not invertible} \}$

If dim $X = n < \infty$, then $T \in \mathcal{B}(X) \iff \exists A \in \mathbb{R}^{n \times n}$ s.t. $Tx = A \cdot x$

 $(\mathcal{B}(X) \equiv square matrices.)$ Here spectrum = set of eigenvalues.

 $\lambda \in \sigma(T) \iff \lambda$ is eigenvalue of A

If dim $X = \infty$, and $T \in \mathcal{B}(X)$, then the spectrum might be larger: $\sigma(T) = \{ \text{eigenvalues} \} \cup \{ \text{continuous spectrum} \}.$ Example 1. $X = \mathbb{C}^3$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 - i \end{pmatrix} \implies \sigma(A) = ??? = \{1, 2, 5 - i\}$$

Moreover $\forall \{\lambda_1, \lambda_2, \lambda_3\} \subset \mathbb{C} \implies \exists A : \sigma(A) = \{\lambda_1, \lambda_2, \lambda_3\}$

Example 2. $X = \ell^2$.

Let $D = \text{diag}(\lambda_n : n \in \mathbb{N})$. Then the mapping $D : x \mapsto Dx$ is linear. But linearity is not enough!

Question:
$$x \in \ell^2 \implies Dx \in \ell^2$$
?

Exc. Show that: (λ_n) is bounded $\iff \forall x \in \ell^2 \Rightarrow Dx \in \ell^2$.

 $D = \operatorname{diag}(\lambda_n : n \in \mathbb{N}). \ \sigma(D) = ?$

If $\lambda = \lambda_n$, then $(D - \lambda_n I)$ has a row full of 0-s $\implies \square (D - \lambda_n I)^{-1}$

Thus $\lambda = \lambda_n$ is an eigenvalue. $\{\lambda_n : n \in \mathbb{N}\} \subset \sigma(D)$.

Anything else?

If $\lambda \in \mathbb{C}$, then $(D - \lambda I) = \text{diag} (\lambda_n - \lambda, n \in \mathbb{N})$. The "potential inverse":

"
$$(D - \lambda I)^{-1}$$
" = $\boldsymbol{S} = \operatorname{diag}\left(\frac{1}{\lambda_n - \lambda}, \boldsymbol{n} \in \mathbb{N}\right).$

 $S \in \mathcal{B}(\ell^2) \iff \left(rac{1}{\lambda_n - \lambda}
ight)$ is bounded.

If λ is an accumulation point of (λ_n) , then $\left(\frac{1}{\lambda_n - \lambda}\right)$ is not bounded.

 $\sigma(D) = \{\lambda_n : n \in \mathbb{N}\} \cup \{\text{accumulation points}\}$

Properties of the spectrum

Theorem. X is a Banach space, $T \in \mathcal{B}(X)$. Then

- 1. The spectrum is closed.
- 2. The spectrum is bounded.
- 3. The spectrum is not empty.

Proof. (Sketch)

- 1. The complementary of $\sigma(T)$ is open.
- 2. It can be shown, that if $|\lambda| > ||T||$, then $\exists (T \lambda I)^{-1} \Rightarrow \lambda \notin \sigma(T)$.
- 3. Hard proof, using theory of complex functions.

Spectral radius

Definition. The SPECTRAL RADIUS of $T \in \mathcal{B}(X)$ is defined by: $r(T) := \sup\{|\lambda| : \lambda \in \sigma(T)\}.$

From the previous proof we get: $r(T) \leq ||T||$.

Theorem. *X* is a Banach space, $T \in \mathcal{B}(X)$. Then

 $r(T) = \lim_{n \to \infty} \|T^n\|^{1/n}.$

Spectrum of the *left shift operator* in ℓ^2

 $T(x_1, x_2, \ldots, x_n, \ldots) = (x_2, x_3, \ldots). \implies r(T) \leq ||T|| = 1.$

It can be written as infinite dimensional matrix-vector product:

$$D = \begin{pmatrix} 0 & 1 & 0 & . & . & 0 & . \\ 0 & 0 & 1 & 0 & . & 0 & . \\ 0 & . & . & . & 0 & 1 & . \\ 0 & . & . & . & 0 & 0 & . \end{pmatrix} \implies Tx = D \cdot x.$$

 $\sigma(T) = ?$ Assume $|\lambda| < 1$. Is it eigenvalue? Solve $\lambda x = Tx$?

$$\begin{array}{lll} \lambda \mathbf{x}_1 &=& \mathbf{x}_2 \\ \cdots & & \\ \lambda \mathbf{x}_{n-1} &=& \mathbf{x}_n \\ \cdots & & \end{array} \right\} \implies \mathbf{x}_n = \lambda^n \mathbf{x}_1.$$

Define $x_{\lambda} = (1, \lambda, \lambda^2, ...), \in \ell^2$ $Tx_{\lambda} = \lambda x_{\lambda}$. Thus $|\lambda| < 1 \Rightarrow \lambda \in \sigma(T)$.

 $\sigma(T) \text{ is closed} \Rightarrow \sigma(T) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}. \text{ Is } \lambda_0 = 1 \text{ an eigenvalue}?$

Special case II.

 $\mathcal{B}(X,\mathbb{R}) = X^*$

Dual space

 $(X, \|\cdot\|)$ is a normed space.

An operator $T : X \to \mathbb{K}$ is called FUNCTIONAL.

Notations. Functional f, g, e.t.c. (small letters)

 $f: x \mapsto f(x) \approx$ function

Definition. The (*real*) DUAL SPACE of $(X, \|\cdot\|)$ is

 $X^* = \mathcal{B}(X, \mathbb{R}) = \{f : X \to \mathbb{R}, \text{ linear \& bounded}\}.$

There is a norm in X^* : $||f|| = \sup\{|f(x)| : ||x|| = 1\}$.

Corollary. X* is always a Banach space.

Dual space of \mathbb{R}^n

Proposition. $f : \mathbb{R}^n \to \mathbb{R}$ is linear $\iff \exists a \in \mathbb{R}^n$ s.t. $f(x) = a^T x$.

1. Dual space of $(\mathbb{R}^n, \|\cdot\|_2)$?

$$|f(x)| = |\sum_{j=1}^{n} a_j x_j| \le \sqrt{\sum_{j=1}^{n} a_j^2} \sqrt{\sum_{j=1}^{n} x_j^2} = ||a||_2 \cdot ||x||_2.$$

Since $f(a) = ||a||_2^2 \implies ||f|| = ||a||_2$.

Thus $(\mathbf{R}^{n}, \|\cdot\|_{2})^{*} = (\mathbf{R}^{n}, \|\cdot\|_{2})$

Dual space of \mathbb{R}^n (cont.)

2. Dual space of $(\mathbb{R}^n, \|\cdot\|_{\infty})$? Then

$$|f(x)| = |\sum_{j=1}^{n} a_{j} x_{j}| \le \max_{k} |x_{k}| \sum_{j=1}^{n} |a_{j}| = ||x||_{\infty} ||a||_{1}.$$

With $x_{j} = \operatorname{sign}(a_{j})$: "equality". $\implies ||f|| = ||a||_{1}.$

Thus $\left| \left(\mathbf{\mathbb{R}}^n, \left\| \cdot \right\|_{\infty} \right)^* = \left(\mathbf{\mathbb{R}}^n, \left\| \cdot \right\|_1 \right) \right|$

Dual space of \mathbb{R}^n and ℓ^p

Summary.

 $(\mathbf{R}^{n}, \|\cdot\|_{2})^{*} = (\mathbf{R}^{n}, \|\cdot\|_{2}), \qquad (\mathbf{R}^{n}, \|\cdot\|_{\infty})^{*} = (\mathbf{R}^{n}, \|\cdot\|_{1}).$

In general: $(\mathbb{R}^n, \|\cdot\|_p)^* = (\mathbb{R}^n, \|\cdot\|_q)$, where $\frac{1}{p} + \frac{1}{q} = 1$. p, q are HÖLDER CONJUGATES.

Similarly $(\ell^2)^* = \ell^2$, and $(\ell^p)^* = \ell^q$, if *p* and *q* are Hölder conjugates.

Dual space of a **HILBERT SPACE**

Let $(H, \langle \cdot, \cdot \rangle)$ be *Hilbert space*. E.g. $(\mathbb{R}^n, \|\cdot\|_2), \ell^2, \mathcal{L}^2([a, b])$

Example of a functional. Let $y \in H$ be a fixed element. Define $f_y \in H^*$ by $f_y(x) := \langle x, y \rangle$. $\implies ||f_y|| = ||y||$. HW

A convenient (and surprising) description of the dual:

Theorem. Riesz representation theorem For any $f \in H^* \exists ! y \in H$, such that $f(x) = \langle x, y \rangle$, and ||f|| = ||y||

 \implies a *H* Hilbert space and its dual space *H*^{*} are isomorph.

Weak and strong convergence

X is a normed space. $(x_n) \subset X$ converges to x_0 , if $||x_n - x_0|| \to 0$.

This is CONVERGENCE IN NORM. \equiv **STRONG** convergence

 (x_n) CONVERGES WEAKLY to x_0 , if $\lim_{n\to\infty} f(x_n) = f(x_0) \ \forall f \in X^*$.

Remark. Instead of $(x_n) \subset X$ we consider **many** $(f(x_n)) \subset \mathbb{R}$.

Proposition. STRONG convergence \implies WEAK convergence.

Proof. Assume (x_n) convergences strongly. Let $f \in X^*$. \implies

$$|f(x_n) - f(x_0)| = |f(x_n - x_0)| \le ||f|| \cdot ||x_n - x_0|| \to 0 \quad \checkmark$$

WEAK convergence \implies STRONG convergence

Example. $X = \ell^{\infty}$. Then $X^* = \ell^1$.

$$e^n := (0,\ldots,0,\overset{n}{1},0,\ldots), \qquad n \in \mathbb{N}.$$

Weak convergence of (e^n) ?

$$f \in X^* = \ell^1 \qquad \Longleftrightarrow \quad \exists a = (a_k) \in \ell^1 : \quad f(x) = \sum_{k=1}^\infty a_k x_k.$$

 $\lim_{n\to\infty}f(e^n)=\lim_{n\to\infty}a_n=0,\quad\Longrightarrow\quad e^n\stackrel{W}{\longrightarrow}0.$

BUT $||e^n||_{\infty} = 1 \implies$ does not converge strongly. Can You see it?

Adjoint of an operator in $\mathcal{B}(H)$

Let $(H, \langle \cdot, \cdot \rangle)$ be *Hilbert space*. $A \in \mathcal{B}(H)$ is a linear operator.

The ADJOINT OPERATOR OF A is the $A^* \in \mathcal{B}(H)$ such that

 $\langle Ax, y \rangle = \langle x, A^*y \rangle \quad \forall x, y \in H.$ Is the def. correct?

We'll see, that the definition is correct. Let $y \in H$. What is A^*y ?

Trick: Let's define $f(x) := \langle Ax, y \rangle$. $\Rightarrow f \in H^*$.

By Thm. of Riesz $\exists ! y^* \in H$ such that $f(x) = \langle x, y^* \rangle$.

Thus there is a mapping $y \mapsto y^*$. This is the A^* operator:

$$f(\mathbf{x}) := \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y}^* \rangle.$$

Some properties of the adjoint operator

Theorem.

- 1. $I^* = I$.
- 2. $(A + B)^* = A^* + B^*$.
- 3. $(\alpha A)^* = \overline{\alpha} A^*$.
- 4. $(AB)^* = B^*A^*$.
- 5. $\|A^*\| = \|A\|$.

Check these properties yourself.

Adjoint operator in finite dimension.

Example. Let $H = \mathbb{R}^n$. The norm is (... finish...) the $\|\cdot\|_2$.

Elements of $\mathcal{B}(H)$ are identified with *matrices of dimension* $n \times n$.

Let $A \in \mathcal{B}(\mathbb{R}^n)$.

Then $A^* = A^T$, the transpose of the original matrix, since

$$\langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle = (\mathbf{A}\mathbf{x})^T \ \mathbf{y} = \mathbf{x}^T \mathbf{A}^T \mathbf{y} = \langle \mathbf{x}, \mathbf{A}^T \mathbf{y} \rangle. \quad \checkmark$$

Adjoint operator in infinite dimension

Let $H = \mathcal{L}^2[0, 1]$, where the inner product is $\langle u, v \rangle = \int_0^1 u(t)v(t)dt$.

 $H_0 \subset H$ is the subspace of u(t) functions, that are infinitely differentiable, and u(0) = u(1) = 0.

In H_0 define the differential operator: Au = u'. Adjoint of A?

$$\langle Au, v \rangle = \int_0^1 u'(t)v(t)dt = u(t)v(t) \Big|_0^1 - \int_0^1 u(t)v'(t)dt = (*),$$

while integrating by parts. Let's continue:

$$(*) = 0 - \int_0^1 u(t) v'(t) dt = \langle u, -v' \rangle = \langle u, A^*v \rangle, \quad \Longrightarrow \quad A^*v = -v'.$$

Orthogonal projection

Let $E \subset H$ be a *closed* subspace.

For any $x \in H$ define $Px := x_E$, such that

$$\|\mathbf{x} - \mathbf{x}_{\mathbf{E}}\| = \min_{u \in \mathbf{E}} \|\mathbf{x} - u\|$$

Then $\forall x \in H$ can be written as: $x = x_E + x_0$, such that

$$x_E \in E$$
 and $\langle x_0, y \rangle = 0 \quad \forall y \in E$

 $P: H \rightarrow H$ is the operator of ORTHOGONAL PROJECTION onto *E*. What is the adjoint of *P*?

Orthogonal projection. (Cont.)

(From the previous slide): $x = Px + x_0$, with $Px \in E$ and $x_0 \perp E$. $P^* = ?$

$$\langle \mathsf{P}x, \mathbf{y} \rangle = \langle \mathsf{P}x, \mathsf{P}y + y_0 \rangle = \langle \mathsf{P}x, \mathsf{P}y \rangle + \langle \mathsf{P}x, y_0 \rangle = (**),$$

where $\langle Px, y_0 \rangle = 0$, since $Px \in E$ and $y_0 \perp E$. Let's continue:

$$(**) = \langle Px, Py \rangle + \langle x_0, Py \rangle = \langle x, Py \rangle.$$

Finally the result is $P = P^*$.

The other direction is also true:

If
$$P = P^* \implies P$$
 is an orthogonal projection.

Self-adjoint operator

The operator A is SELF-ADJOINT, if $A = A^*$.

Theorem. If A is self-adjoint, then

1. $||A^n|| = ||A||^n$.

- 2. It's spectral radius is: r(A) = ||A||.
- 3. The spectrum is real: $\sigma(A) \subset \mathbb{R}$.

Self-adjoint operators in infinite dimension are extensions of *symmetric matrices* in finite dimension.