Functional analysis

Lesson 11.

May 6. 2021

B(*X*) Banach algebra

Let *X* be a Banach space.

 $\mathcal{B}(X) = \{T: X \rightarrow X \text{ bounded}, \text{ linear}\}, \qquad \|T\| = \text{ sup}$ $\|x\|=1$ $\|Tx\|$

The multiplication is $(T \cdot S)(x) = T(S(x))$.

If $X = \mathbb{R}^n$, then $\mathcal{B}(X)$ is the set of *quadratic matrices*.

T ∈ *B*(*X*) is INVERTIBLE, if $\exists S \in B(X)$ s.t. $TS = ST = I$. (Both!)

Example. $X = \ell^2$. *T* is the left shift, *S* is the right shift operator.

 $T(x_1, x_2, \ldots) = (x_2, x_3, \ldots), \qquad S(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots).$

Then $TS = I$, but $ST \neq I$. None of them is invertible.

Eigenvalue of a quadratic matrix. Reminder

Let $A \in \mathbb{C}^{n \times n}$ be a matrix . $\lambda \in \mathbb{C}$ is an EIGENVALUE, if

 $\exists v \neq 0$: $Av = \lambda v$.

In other words $\exists v \neq 0$: $(A - \lambda I)v = 0$. *v* is an EIGENVECTOR OF *A*.

Equivalently: $\lambda \in \mathbb{C}$ eigenvalue \iff $(A - \lambda I)$ is *non-invertible*.

−→ *Extension* of this notion to *linear operators*: √

Spectrum of an operator

Let *X* be a Banach space. $T \in B(X)$ is an operator.

Definition. The SPECTRUM of *T* is:

 $\sigma(T) = {\lambda : T - \lambda I \text{ is not invertible}}$

If dim $X = n < \infty$, then $T \in \mathcal{B}(X) \iff \exists A \in \mathbb{R}^{n \times n}$ s.t. $Tx = A \cdot x$

 $(B(X) \equiv$ *square matrices.*) Here spectrum = set of eigenvalues.

 $\lambda \in \sigma(T) \iff \lambda$ is eigenvalue of A

If dim $X = \infty$, and $T \in B(X)$, then the spectrum might be larger: $\sigma(T) = \{$ eigenvalues $\} \cup \{$ continuous spectrum $\}.$

Example 1. $X = \mathbb{C}^3$

$$
A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 - i \end{array}\right) \implies \sigma(A) = ??? = \{1, 2, 5 - i\}
$$

Moreover $\forall {\lambda_1, \lambda_2, \lambda_3} \subset \mathbb{C} \implies \exists A : \sigma(A) = {\lambda_1, \lambda_2, \lambda_3}$

Example 2. $X = \ell^2$.

Let $D = \text{diag}(\lambda_n : n \in \mathbb{N})$. Then the mapping $D : x \mapsto Dx$ is linear. But linearity is not enough!

Question:
$$
x \in \ell^2 \implies Dx \in \ell^2
$$
?

Exc. Show that: (λ_n) is bounded $\iff \forall x \in \ell^2 \Rightarrow Dx \in \ell^2$.

 $D = \text{diag}(\lambda_n : n \in \mathbb{N})$. $\sigma(D) = ?$

If $\lambda = \lambda_n$, then $(D - \lambda_n I)$ has a row full of 0-s \implies $\quad \not\exists (D - \lambda_n I)^{-1}$

Thus $\lambda = \lambda_n$ is an eigenvalue. $\{\lambda_n : n \in \mathbb{N}\} \subset \sigma(D)$.

Anything else?

If $\lambda \in \mathbb{C}$, then $(D - \lambda I) = \text{diag } (\lambda_n - \lambda, n \in \mathbb{N})$. The "potential inverse":

$$
"(D - \lambda I)^{-1}" = S = \text{diag}\left(\frac{1}{\lambda_n - \lambda}, n \in \mathbb{N}\right).
$$

 $S \in \mathcal{B}(\ell^2) \iff \left(\frac{1}{1-\ell}\right)$ $\lambda_n - \lambda$ is bounded.

If λ is an accumulation point of (λ_n) , then $\left(\frac{1}{\lambda_n}\right)$ $\lambda_n - \lambda$) is not bounded.

 $\sigma(D) = {\lambda_n : n \in \mathbb{N}} \cup {\text{accumulation points}}$

Properties of the spectrum

Theorem. *X* is a Banach space, $T \in B(X)$. Then

- 1. The spectrum is closed.
- 2. The spectrum is bounded.
- 3. The spectrum is not empty.

Proof. (Sketch)

- 1. The complementary of $\sigma(T)$ is open.
- 2. It can be shown, that if $|\lambda| > \|T\|$, then $\exists (T \lambda I)^{-1} \Rightarrow \lambda \notin \sigma(T)$.
- 3. *Hard* proof, using theory of complex functions.

Spectral radius

Definition. The SPECTRAL RADIUS of $T \in B(X)$ is defined by: $r(T) := \sup\{|\lambda| : \lambda \in \sigma(T)\}.$

From the previous proof we get: $r(T) < ||T||$.

Theorem. *X* is a Banach space, $T \in B(X)$. Then

 $r(T) = \lim_{n \to \infty} \|T^n\|^{1/n}.$

Spectrum of the *left shift operator* in ℓ^2

 $T(x_1, x_2, \ldots, x_n, \ldots) = (x_2, x_3, \ldots) \implies r(T) \le ||T|| = 1.$

It can be written as infinite dimensional matrix-vector product:

$$
D = \left(\begin{array}{cccc} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & 0 & \ldots & 0 \\ 0 & \ldots & \ldots & \ldots & 0 \\ 0 & \ldots & \ldots & 0 & 1 \\ 0 & \ldots & \ldots & 0 & 0 \end{array} \right) \quad \Longrightarrow \quad Tx = D \cdot x.
$$

 $\sigma(T) = ?$ Assume $|\lambda| < 1$. *Is it eigenvalue?* Solve $\lambda x = Tx$?

$$
\begin{cases}\n\lambda x_1 = x_2 \\
\vdots \\
\lambda x_{n-1} = x_n\n\end{cases}\n\implies x_n = \lambda^n x_1.
$$

Define $x_{\lambda} = (1, \lambda, \lambda^2, \dots)$, $\in \ell^2$ $Tx_{\lambda} = \lambda x_{\lambda}$. Thus $|\lambda| < 1 \Rightarrow \lambda \in \sigma(T)$.

 $\sigma(T)$ is closed $\Rightarrow \boxed{\sigma(T) = \{\lambda \in \mathbb{C} : |\lambda| \leq 1\}}$. Is $\lambda_0 = 1$ an eigenvalue?

Special case II.

 $\mathcal{B}(X,\mathbb{R})=X^*$

Dual space

 $(X, \|\cdot\|)$ is a normed space.

An operator $T: X \to \mathbb{K}$ is called FUNCTIONAL.

Notations. Functional *f*, *g*, e.t.c. (small letters)

 $f : x \mapsto f(x) \approx$ function

Definition. The (*real*) DUAL SPACE of $(X, \|\cdot\|)$ is

 $X^* = \mathcal{B}(X, \mathbb{R}) = \{f : X \to \mathbb{R}, \text{ linear } \& \text{ bounded}\}.$

There is a norm in X^* : $||f|| = \sup\{|f(x)| : ||x|| = 1\}$.

Corollary. *X* ∗ is *always* a Banach space.

Dual space of IR*ⁿ*

Proposition. *f* : $\mathbb{R}^n \to \mathbb{R}$ is linear $\iff \exists a \in \mathbb{R}^n$ s.t. $f(x) = a^T x$.

1. Dual space of $(\mathbb{R}^n, \|\cdot\|_2)$?

$$
|f(x)|=|\sum_{j=1}^n a_jx_j|\leq \sqrt{\sum_{j=1}^n a_j^2}\sqrt{\sum_{j=1}^n x_j^2}=\|a\|_2\cdot \|x\|_2.
$$

Since $f(a) = ||a||_2^2 \implies ||f|| = ||a||_2$.

 $\mathsf{Thus} \left| \left(\mathbb{R}^n, \left\| \cdot \right\|_2 \right)^* = \left(\mathbb{R}^n, \left\| \cdot \right\|_2 \right)$

Dual space of **R**ⁿ (cont.)

2. Dual space of $(\mathbb{R}^n,\left\|\cdot\right\|_\infty)$? Then

$$
|f(x)| = |\sum_{j=1}^{n} a_j x_j| \leq \max_{k} |x_k| \sum_{j=1}^{n} |a_j| = ||x||_{\infty} ||a||_1.
$$

With $x_j = sign(a_j)$: "equality". $\implies ||f|| = ||a||_1.$

 $\mathsf{Thus}\left\Vert \left(\mathbb{R}^{n},\left\Vert \cdot\right\Vert _{\infty}\right)^{*}=\left(\mathbb{R}^{n},\left\Vert \cdot\right\Vert _{1}\right)$

Dual space of \mathbb{R}^n and ℓ^p

Summary.

 $(\mathbb{R}^n, \|\cdot\|_2)^* = (\mathbb{R}^n, \|\cdot\|_2), \qquad (\mathbb{R}^n, \|\cdot\|_{\infty})^* = (\mathbb{R}^n, \|\cdot\|_1).$

In general: $\left(\mathbf{R}^n, \left\|\cdot\right\|_{\rho}\right)^* = \left(\mathbf{R}^n, \left\|\cdot\right\|_q\right)$, where $\displaystyle{\frac{1}{p} + \frac{1}{q}}$ $\frac{1}{q} = 1.$ *p*, *q* are HÖLDER CONJUGATES.

Similarly $(\ell^2)^* = \ell^2$, and $(\ell^p)^* = \ell^q$, if *p* and *q* are Hölder conjugates.

Dual space of a HILBERT SPACE

Let $(H, \langle \cdot, \cdot \rangle)$ be *Hilbert space*. E.g. $(\mathbb{R}^n, \|\cdot\|_2)$, ℓ^2 , $\mathcal{L}^2([a, b])$

Example of a functional. Let $y \in H$ be a fixed element. Define $f_y \in H^*$ by $f_y(x) := \langle x, y \rangle$. \implies $||f_y|| = ||y||$. HW

A convenient (and surprising) description of the dual:

Theorem. *Riesz representation theorem For any f* ∈ *H*^{*} ∃*!y* ∈ *H*, such that *f*(*x*) = $\langle x, y \rangle$, and $||f|| = ||y||$

=⇒ a *H* Hilbert space and its dual space *H* [∗] are isomorph.

Weak and *strong* convergence

X is a normed space. $(x_n) \subset X$ converges to x_0 , if $||x_n - x_0|| \to 0$.

This is CONVERGENCE IN NORM. \equiv STRONG convergence

 $f(x_n)$ CONVERGES WEAKLY to x_0 , if $\lim_{n\to\infty} f(x_n) = f(x_0) \,\forall f \in X^*$.

Remark. Instead of $(x_n) \subset X$ we consider **many** $(f(x_n)) \subset \mathbb{R}$.

Proposition. STRONG convergence \implies WEAK convergence.

Proof. Assume (x_n) convergences strongly. Let $f \in X^*$. \implies

$$
|f(x_n)-f(x_0)|=|f(x_n-x_0)|\leq ||f||\cdot ||x_n-x_0||\rightarrow 0 \quad \checkmark
$$

WEAK convergence \Rightarrow STRONG convergence

Example. $X = \ell^{\infty}$. Then $X^* = \ell^1$.

$$
e^n := (0, ..., 0, 1, 0, ...), \quad n \in \mathbb{N}.
$$

Weak convergence of (e^n) ?

 $f \in X^* = \ell^1$ $\qquad \Longleftrightarrow \qquad \exists a = (a_k) \in \ell^1 : f(x) = \sum_{k=1}^{\infty} a_k x_k.$ *k*=1

 $\lim_{n \to \infty} f(e^n) = \lim_{n \to \infty} a_n = 0, \implies e^n \xrightarrow{W} 0.$

 $\texttt{BUT}\,\|\bm{e}^n\|_\infty = 1 \quad \Longrightarrow \quad \textit{does not converge strongly.}$ Can You see it?

Adjoint of an operator in B(*H*)

Let $(H, \langle \cdot, \cdot \rangle)$ be *Hilbert space*. $A \in \mathcal{B}(H)$ is a linear operator.

The <code>ADJOINT</code> OPERATOR OF A is the $A^* \in \mathcal{B}(H)$ such that

 $\langle Ax, y \rangle = \langle x, A^*y \rangle$ $\forall x, y \in H$. Is the def. correct?

We'll see, that the definition is correct. Let *y* ∈ *H*. *What is A* [∗]*y?*

Trick: Let's define $f(x) := \langle Ax, y \rangle$. $\Rightarrow f \in H^*$.

By Thm. of Riesz $\exists ! y^* \in H$ such that $f(x) = \langle x, y^* \rangle$.

Thus there is a mapping $y \mapsto y^*$. This is the A^* operator:

$$
f(x):=\langle Ax,y\rangle=\langle x,y^*\rangle.
$$

Some properties of the adjoint operator

Theorem.

- 1. *.*
- 2. $(A + B)^* = A^* + B^*$.
- 3. $(\alpha A)^* = \overline{\alpha} A^*$.
- 4. $(AB)^* = B^*A^*$.
- $5. \|A^*\| = \|A\|.$

Check these properties yourself.

Adjoint operator in finite dimension.

Example. Let $H = \mathbb{R}^n$. The norm is (... finish...) the $\|\cdot\|_2$.

Elements of $B(H)$ are identified with *matrices of dimension* $n \times n$.

Let $A \in \mathcal{B}(\mathbb{R}^n)$.

Then *A* [∗] = *A T* , the *transpose of the original matrix*, since

$$
\langle Ax, y \rangle = (Ax)^T y = x^T A^T y = \langle x, A^T y \rangle.
$$

Adjoint operator in infinite dimension

Let $H = \mathcal{L}^2[0,1],$ where the inner product is $\langle u, v\rangle = \int^1$ 0 *u*(*t*)*v*(*t*)*dt*.

 $H_0 \subset H$ is the subspace of $u(t)$ functions, that are infinitely differentiable, and $u(0) = u(1) = 0$.

In H_0 define the differential operator: $Au = u'$. Adjoint of A?

$$
\langle Au, v \rangle = \int_0^1 u'(t) v(t) dt = u(t) v(t) \Big|_0^1 - \int_0^1 u(t) v'(t) dt = (*),
$$

while integrating by parts. Let's continue:

$$
(*) = 0 - \int_0^1 u(t)v'(t)dt = \langle u, -v' \rangle = \langle u, A^*v \rangle, \quad \Longrightarrow \quad A^*v = -v'.
$$

Orthogonal projection

Let $E \subset H$ be a *closed* subspace.

For any $x \in H$ define $Px := x_E$, such that

$$
||x - x_E|| = \min_{u \in E} ||x - u||
$$

Then $\forall x \in H$ can be written as: $x = x_F + x_0$, such that

$$
x_E \in E \quad \text{and} \quad \langle x_0, y \rangle = 0 \ \forall y \in E
$$

 $P: H \rightarrow H$ is the operator of ORTHOGONAL PROJECTION onto E . What is the adjoint of *P*?

Orthogonal projection. (Cont.)

(From the previous slide): $x = Px + x_0$, with $Px \in E$ and $x_0 \perp E$. $P^* = ?$

$$
\langle Px, y \rangle = \langle Px, Py + y_0 \rangle = \langle Px, Py \rangle + \langle Px, y_0 \rangle = (**),
$$

where $\langle Px, y_0 \rangle = 0$, since $Px \in E$ and $y_0 \perp E$. Let's continue:

$$
(**) = \langle Px, Py \rangle + \langle x_0, Py \rangle = \langle x, Py \rangle.
$$

Finally the result is $P = P^*$.

The other direction is also true:

If
$$
P = P^*
$$
 \implies P is an orthogonal projection.

Self-adjoint operator

The operator *A* is SELF-ADJOINT, if $A = A^*$.

Theorem. If *A* is self-adjoint, then

- 1. $||A^n|| = ||A||^n$
- 2. It's spectral radius is: $r(A) = ||A||$.
- 3. The spectrum is real: $\sigma(A) \subset \mathbb{R}$.

Self-adjoint operators in infinite dimension are extensions of *symmetric matrices* in finite dimension.