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B(X ) Banach algebra

Let X be a Banach space.

B(X ) = {T : X → X bounded, linear}, ‖T‖ = sup
‖x‖=1

‖Tx‖

The multiplication is (T · S)(x) = T (S(x)).

If X = IRn, then B(X ) is the set of quadratic matrices.

T ∈ B(X ) is INVERTIBLE, if ∃S ∈ B(X ) s.t.TS = ST = I. (Both!)

Example. X = `2. T is the left shift, S is the right shift operator.

T (x1, x2, . . . ) = (x2, x3, . . . ), S(x1, x2, . . . ) = (0, x1, x2, . . . ).

Then TS = I, but ST 6= I. None of them is invertible.
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Eigenvalue of a quadratic matrix. Reminder

Let A ∈ Cn×n be a matrix . λ ∈ C is an EIGENVALUE, if

∃v 6= 0 : Av = λv .

In other words ∃v 6= 0: (A− λI) v = 0. v is an EIGENVECTOR OF A.

Equivalently: λ ∈ C eigenvalue ⇐⇒ (A− λI) is non-invertible.

−→ Extension of this notion to linear operators:
√
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Spectrum of an operator

Let X be a Banach space. T ∈ B(X ) is an operator.

Definition. The SPECTRUM of T is:

σ(T ) = {λ : T − λI is not invertible}

If dimX = n <∞, then T ∈ B(X ) ⇐⇒ ∃A ∈ IRn×n s.t. Tx = A · x

(B(X ) ≡ square matrices.) Here spectrum = set of eigenvalues.

λ ∈ σ(T ) ⇐⇒ λis eigenvalue of A

If dimX =∞, and T ∈ B(X ), then the spectrum might be larger :

σ(T ) = {eigenvalues} ∪ {continuous spectrum}.
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Example 1. X = C3

A =

 1 0 0
0 2 0
0 0 5− i

 =⇒ σ(A) = ??? = {1,2,5− i}

Moreover ∀{λ1, λ2, λ3} ⊂ C =⇒ ∃A : σ(A) = {λ1, λ2, λ3}

Example 2. X = `2.

Let D = diag (λn : n ∈ N). Then the mapping D : x 7→ Dx is linear.

But linearity is not enough!

Question: x ∈ `2 =⇒ Dx ∈ `2?

Exc. Show that: (λn) is bounded ⇐⇒ ∀x ∈ `2 ⇒ Dx ∈ `2.
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D = diag (λn : n ∈ N). σ(D) =?

If λ = λn, then (D − λnI) has a row full of 0-s =⇒ 6 ∃(D − λnI)−1

Thus λ = λn is an eigenvalue. {λn : n ∈ N} ⊂ σ(D).

Anything else?

If λ ∈ C, then (D− λI) = diag (λn − λ, n ∈ N). The ”potential inverse”:

”(D − λI)−1” = S = diag
(

1
λn − λ

,n ∈ N
)
.

S ∈ B(`2) ⇐⇒
(

1
λn − λ

)
is bounded.

If λ is an accumulation point of (λn), then
(

1
λn − λ

)
is not bounded.

σ(D) = {λn : n ∈ N} ∪ {accumulation points}
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Properties of the spectrum

Theorem. X is a Banach space, T ∈ B(X ). Then

1. The spectrum is closed.

2. The spectrum is bounded.

3. The spectrum is not empty.

Proof. (Sketch)

1. The complementary of σ(T ) is open.

2. It can be shown, that if |λ| > ‖T‖, then ∃(T − λI)−1 ⇒ λ /∈ σ(T ).

3. Hard proof, using theory of complex functions.
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Spectral radius

Definition. The SPECTRAL RADIUS of T ∈ B(X ) is defined by:

r(T ) := sup{|λ| : λ ∈ σ(T )}.

From the previous proof we get: r(T ) ≤ ‖T‖.

Theorem. X is a Banach space, T ∈ B(X ). Then

r(T ) = lim
n→∞

‖T n‖1/n
.
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Spectrum of the left shift operator in `2

T (x1, x2, . . . , xn, . . . ) = (x2, x3, . . . ). =⇒ r(T ) ≤ ‖T‖ = 1.

It can be written as infinite dimensional matrix-vector product:

D =


0 1 0 . . 0 .
0 0 1 0 . 0 .
0 . . . . 0 .
0 . . . 0 1 .
0 . . . 0 0 .

 =⇒ Tx = D · x .

σ(T ) =? Assume |λ| < 1. Is it eigenvalue? Solve λx = Tx?

λx1 = x2
. . .
λxn−1 = xn
. . .

 =⇒ xn = λnx1.

Define xλ = (1, λ, λ2, . . . ), ∈ `2 Txλ = λxλ. Thus |λ| < 1⇒ λ ∈ σ(T ).

σ(T ) is closed⇒ σ(T ) = {λ ∈ C : |λ|≤1}. Is λ0 = 1 an eigenvalue?
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Special case II.

B(X , IR) = X ∗
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Dual space

(X , ‖ · ‖) is a normed space.

An operator T : X → IK is called FUNCTIONAL.

Notations. Functional f , g, e.t.c. (small letters)

f : x 7→ f (x) ≈ function

Definition. The (real) DUAL SPACE of (X , ‖·‖) is

X ∗ = B(X , IR) = {f : X → IR, linear & bounded}.

There is a norm in X ∗: ‖f‖ = sup{|f (x)| : ‖x‖ = 1}.

Corollary. X ∗ is always a Banach space.
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Dual space of IRn

Proposition. f : IRn → IR is linear ⇐⇒ ∃a ∈ IRn s.t. f (x) = aT x .

1. Dual space of (IRn, ‖·‖2)?

|f (x)| = |
n∑

j=1

ajxj | ≤

√√√√ n∑
j=1

a2
j

√√√√ n∑
j=1

x2
j = ‖a‖2 · ‖x‖2.

Since f (a) = ‖a‖2
2 =⇒ ‖f‖ = ‖a‖2.

Thus (IRn, ‖·‖2)
∗
= (IRn, ‖·‖2)
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Dual space of IRn (cont.)

2. Dual space of (IRn, ‖·‖∞)? Then

|f (x)| = |
n∑

j=1

ajxj | ≤ max
k
|xk |

n∑
j=1

|aj | = ‖x‖∞ ‖a‖1.

With xj = sign(aj): ”equality”. =⇒ ‖f‖ = ‖a‖1.

Thus (IRn, ‖·‖∞)
∗
= (IRn, ‖·‖1)
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Dual space of IRn and `p

Summary.

(IRn, ‖·‖2)
∗
= (IRn, ‖·‖2) , (IRn, ‖·‖∞)

∗
= (IRn, ‖·‖1) .

In general:
(

IRn, ‖·‖p

)∗
=
(

IRn, ‖·‖q

)
, where

1
p
+

1
q

= 1.

p, q are HÖLDER CONJUGATES.

Similarly (`2)∗ = `2, and (`p)∗ = `q , if p and q are Hölder conjugates.
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Dual space of a HILBERT SPACE

Let (H, 〈·, ·〉) be Hilbert space. E.g. (IRn, ‖·‖2), `
2, L2([a,b])

Example of a functional. Let y ∈ H be a fixed element.

Define fy ∈ H∗ by fy (x) := 〈x , y〉. =⇒ ‖fy‖ = ‖y‖. HW

A convenient (and surprising) description of the dual:

Theorem. Riesz representation theorem

For any f ∈ H∗ ∃!y ∈ H, such that f (x) = 〈x , y〉, and ‖f‖ = ‖y‖

=⇒ a H Hilbert space and its dual space H∗ are isomorph.
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Weak and strong convergence

X is a normed space. (xn) ⊂ X converges to x0, if ‖xn − x0‖ → 0.

This is CONVERGENCE IN NORM. ≡ STRONG convergence

(xn) CONVERGES WEAKLY to x0, if lim
n→∞

f (xn) = f (x0) ∀f ∈ X ∗.

Remark. Instead of (xn) ⊂ X we consider many (f (xn)) ⊂ IR.

Proposition. STRONG convergence =⇒ WEAK convergence.

Proof. Assume (xn) convergences strongly. Let f ∈ X ∗. =⇒

|f (xn)− f (x0)| = |f (xn − x0)| ≤ ‖f‖ · ‖xn − x0‖ → 0 X
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WEAK convergence 6=⇒ STRONG convergence

Example. X = `∞. Then X ∗ = `1.

en := (0, . . . ,0,
n
^

1 ,0, . . .), n ∈ IN.

Weak convergence of (en)?

f ∈ X ∗ = `1 ⇐⇒ ∃a = (ak ) ∈ `1 : f (x) =
∞∑

k=1

ak xk .

lim
n→∞

f (en) = lim
n→∞

an = 0, =⇒ en−→
w

0.

BUT ‖en‖∞ = 1 =⇒ does not converge strongly. Can You see it?
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Adjoint of an operator in B(H)

Let (H, 〈·, ·〉) be Hilbert space. A ∈ B(H) is a linear operator.

The ADJOINT OPERATOR OF A is the A∗ ∈ B(H) such that

〈Ax , y〉 = 〈x ,A∗y〉 ∀x , y ∈ H. Is the def. correct?

We’ll see, that the definition is correct. Let y ∈ H. What is A∗y?

Trick: Let’s define f (x) := 〈Ax , y〉. ⇒ f ∈ H∗.

By Thm. of Riesz ∃!y∗ ∈ H such that f (x) = 〈x , y∗〉.

Thus there is a mapping y 7→ y∗. This is the A∗ operator:

f (x) := 〈Ax , y〉 = 〈x , y∗〉.
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Some properties of the adjoint operator

Theorem.

1. I∗ = I.

2. (A + B)∗ = A∗ + B∗.

3. (αA)∗ = αA∗.

4. (AB)∗ = B∗A∗.

5. ‖A∗‖ = ‖A‖.

Check these properties yourself.
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Adjoint operator in finite dimension.

Example. Let H = IRn. The norm is (... finish...) the ‖·‖2.

Elements of B(H) are identified with matrices of dimension n × n.

Let A ∈ B(IRn).

Then A∗ = AT , the transpose of the original matrix, since

〈Ax , y〉 = (Ax)T y = xT AT y = 〈x ,AT y〉.
√
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Adjoint operator in infinite dimension

Let H = L2[0,1], where the inner product is 〈u, v〉 =
∫ 1

0
u(t)v(t)dt .

H0 ⊂ H is the subspace of u(t) functions,

that are infinitely differentiable, and u(0) = u(1) = 0.

In H0 define the differential operator: Au = u′. Adjoint of A?

〈Au, v〉 =
∫ 1

0
u′(t)v(t)dt = u(t)v(t)

∣∣∣∣1
0
−
∫ 1

0
u(t)v ′(t)dt = (∗),

while integrating by parts. Let’s continue:

(∗) = 0−
∫ 1

0
u(t)v ′(t)dt = 〈u,−v ′〉 = 〈u,A∗v〉, =⇒ A∗v = −v ′.
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Orthogonal projection

Let E ⊂ H be a closed subspace.

For any x ∈ H define Px := xE , such that

‖x − xE‖ = min
u∈E
‖x − u‖

Then ∀x ∈ H can be written as: x = xE + x0 , such that

xE ∈ E and 〈x0, y〉 = 0 ∀y ∈ E

P : H → H is the operator of ORTHOGONAL PROJECTION onto E .

What is the adjoint of P?
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Orthogonal projection. (Cont.)

(From the previous slide): x = Px + x0, with Px ∈ E and x0⊥E . P∗ =?

〈Px , y〉 = 〈Px ,Py + y0〉 = 〈Px ,Py〉+ 〈Px , y0〉 = (∗∗),

where 〈Px , y0〉 = 0, since Px ∈ E and y0⊥E . Let’s continue:

(∗∗) = 〈Px ,Py〉+ 〈x0,Py〉 = 〈x ,Py〉.

Finally the result is P = P∗.

The other direction is also true:

If P = P∗ =⇒ P is an orthogonal projection.
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Self-adjoint operator

The operator A is SELF-ADJOINT, if A = A∗.

Theorem. If A is self-adjoint, then

1. ‖An‖ = ‖A‖n.

2. It’s spectral radius is: r(A) = ‖A‖.

3. The spectrum is real: σ(A) ⊂ IR.

Self-adjoint operators in infinite dimension are extensions of

symmetric matrices in finite dimension.
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