

Functional analysis

Lesson 10.

April 29. 2021

Linear operator

X and *Y* are *vector spaces* over \mathbb{R} or \mathbb{C} .

A function $T : X \rightarrow Y$ is called OPERATOR.

This is a LINEAR OPERATOR, if

 $T(\alpha x_1 + \beta x_2) = \alpha T x_1 + \beta T x_2 \quad \forall x_1, x_2 \in X, \ \forall \alpha, \beta \in \mathbb{K}.$

(Notation: T(x) is written as Tx, without brackets.)

Corollary. If T is linear, then T0 = 0. Why?

Examples

1. $X = \mathbb{R}^n$, $Y = \mathbb{R}^m$.

 $T : \mathbb{R}^n \to \mathbb{R}^m$ is *linear* $\iff \exists A \in \mathbb{R}^{m \times n}$ matrix, s.t. Tx = Ax(On the left hand side there is a "matrix-vector" product)

2. X = C[a, b], $Y = \mathbb{R}$. The "Integral is linear".

$$T: C[a,b] \rightarrow \mathbb{R}, \qquad Tf:=\int_a^b f(x)dx = \int_{[a,b]} f dm.$$

More examples

3. $X = Y = \ell^2$.

 $T:\ell^2 \to \ell^2$ is the LEFT SHIFT OPERATOR, defined as:

$$T(x_1, x_2, ..., x_n, ...) = (x_2, x_3, ..., x_{n+1}, ...)$$

 ${\boldsymbol{\mathcal{S}}}:\ell^2\to\ell^2$ is the RIGHT SHIFT OPERATOR, defined as:

 $S(x_1, x_2, \ldots, x_n, \ldots) = (0, x_1, x_2, \ldots, x_{n-1}, \ldots)$

Both of them are linear. Check it yourself.

 $(X, \|\cdot\|)$ and $(Y, \|\cdot\|)$ are *normed spaces* over \mathbb{R} or \mathbb{C} .

Definition. (*review*) $T : X \rightarrow Y$ is continuous at $x_0 \in X$, if

$$\forall (x_n) \subset X$$
, $\lim x_n = x_0 \implies \lim Tx_n = Tx_0$.

Proposition. Assume *T* is linear. Then

T is continuous on the whole $X \iff T$ is continuous at $x_0 = 0$. (It is surprising!)

Proof. (Sketch)

 $\implies \sqrt{}$

T is continuous on *X* \iff continuous at $x_0 = 0$.

 \leftarrow Let $y_0 \in X$. Let $(y_n) \subset X$ s.t. $\lim y_n = y_0$.

Is it true, that $\lim Ty_n = Ty_0$?

Trick: let $x_n := y_n - y_0$. Then $\lim x_n = 0$. By continuity $\lim Tx_n = 0$.

As T is linear, $Tx_n = T(y_n - y_0) = Ty_n - Ty_0 \rightarrow 0$.

Thus $Ty_n \rightarrow Ty_0 \sqrt{}$

Boundedness

Question. What would we expect?

Analogy. An $f : \mathbb{R} \to \mathbb{R}$ function is bounded, if

 $\exists K \geq 0 \quad \text{s.t.} \quad |f(x)| \leq K \quad \forall x.$

BUT if T is linear, it is impossible. Why?

$$\longrightarrow \qquad \text{Because e.g. } T(2x) = 2 \cdot Tx \implies \#K.$$

A bounded operator \equiv "on the unit ball".

Bounded operator

A $T: X \to Y$ linear operator is BOUNDED, if $\exists M \ge 0$, such that $\|Tx\|_Y \le M \cdot \|x\|_X, \quad \forall x.$

Example.1. $X = Y = \ell^2$. Is the left shift operator bounded? If $x = (x_1, x_2, \dots, x_n, \dots) \in \ell^2$, then $||x|| = (\sum_{i=1}^{\infty} x_i^2)^{1/2}$. Estimate the norm of $Tx = (x_2, x_3, \dots, x_n, \dots)$ as:

$$\|T\mathbf{x}\| = (\sum_{i=2}^{\infty} x_i^2)^{1/2} \le (\sum_{i=1}^{\infty} x_i^2)^{1/2} = \|\mathbf{x}\|.$$

Thus (1) is true $\forall M \ge 1$. <u>*T* is bounded.</u>

(1)

₽ ♥ Functional analysis 2020/21 Spring. Week 10.

Example. 2. $T : C[a, b] \rightarrow \mathbb{R}$ is the integral-operator:

 $Tf = \int_{a}^{b} f(x) dx$. Is it bounded?

In C[a, b] the norm is $||f|| = \max_{x \in [0,1]} |f(x)|$. Then

$$\|Tf\| = \left|\int_a^b f(x)dx\right| \leq \int_a^b |f(x)|dx \leq \int_a^b \|f\|dx = (b-a) \cdot \|f\|.$$

Thus (1) is true $\forall M \ge b - a$. <u>*T* is bounded</u>.

Remark. In both examples there was a *smallest M* satisfying (1).

Operator norm

The NORM of a bounded linear operator T is:

 $\|T\| := \inf\{M : \|Tx\| \le M \cdot \|x\|, \ \forall x \in X\}.$

Example.1. (Cont.) In ℓ^2 *T* is the *left shift operator*. $||T|| \le 1$ If $x = (0, x_2, x_3, ...)$, then ||Tx|| = ||x||. Thus M < 1 can not be. ||T|| = 1.

Example. 2. (Cont.) *T* is the *integral operator*. $||T|| \le b - a$. Is there an element, where $||Tf|| = (b - a) \cdot ||f||$? "="? Guess? $f \equiv c_{\sqrt{}}$ Thus: ||T|| = b - a.

Normed space of linear bounded operators

Definition. $(X, \|\cdot\|)$ and $(Y, \|\cdot\|)$ are *normed spaces* over \mathbb{R} or \mathbb{C} . The set of bounded linear operators

 $\mathcal{B}(X, Y) = \{T : X \to Y \text{ bounded and linear}\}$

is a NORMED SPACE with norm:

 $\|T\| := \inf\{M : \|Tx\|_Y \le M \cdot \|x\|_X, \ \forall x \in X\}.$ (2)

Theorem. (2) is a norm, indeed.

We do not prove the Thm.

An equivalent form of the operator norm

If x = 0, then $\forall M \ge 0$ is true: $||Tx|| \le M ||x||$. Why? Because T0 = 0If $x \ne 0$, then

$$\|Tx\| \leq M \cdot \|x\| \quad \Longleftrightarrow \quad \frac{\|Tx\|}{\|x\|} \leq M.$$

Corollary.

$$||T|| = \sup_{x \neq 0} \frac{||Tx||}{||x||} = \sup_{||x||=1} ||Tx||$$

生 デunctional analysis 2020/21 Spring. Week 10.

||T|| depends on the norm in X and Y.

Example. 3. $X = \mathbb{R}^2$, $Y = \mathbb{R}$. $T(x_1, x_2) := x_1 + 2x_2$.

1st case. $T : (\mathbb{R}^2, \|\cdot\|_1) \to (\mathbb{R}, |\cdot|). \|(x_1, x_2)\|_1 = |x_1| + |x_2|.$

 $|Tx| = |x_1 + 2x_2| \le |x_1| + |2x_2| \le 2(|x_1| + |x_2|) \implies M \le 2.$

On the other hand if $x_1 = 0$, then |Tx| = 2||x||. $\Rightarrow ||T||_1 = 2$.

2nd case. $T: (\mathbb{R}^2, \|\cdot\|_{\infty}) \to (\mathbb{R}, |\cdot|). \|(x_1, x_2)\|_{\infty} = \max\{|x_1|, |x_2|\}.$

 $|Tx| \le |x_1| + |2x_2| \le \max\{|x_1|, |x_2|\}(1+2) \implies M \le 3.$

If $x_1 = x_2$, then "equality". $\Rightarrow ||T||_{\infty} = 3$.

Example 4.

Let $C^1[a, b] = \{f : [a, b] \rightarrow \mathbb{R}, \text{ cont. differentiable}\}$

 $D: C^{1}[a, b] \rightarrow C[a, b]$ is the DIFFERENTIAL OPERATOR:

Df := f'.

It is linear, but it is not bounded.

Why? Not easy.

🗜 🖤 Functional analysis 2020/21 Spring. Week 10

Example 5.

The Fredholm operator $T : C[a, b] \rightarrow C[a, b]$ is defined as

$$f \mapsto Tf$$
 $Tf(s) = \int_{a}^{b} k(s,t)f(t)dt$, $s \in [a,b]$,

with $k : [a, b] \times [a, b] \rightarrow \mathbb{R}$ piecewise continuous in *s* and *t*.

 \approx "matrix-vector product". $(Ax)_j = \sum_{k=1}^n a_{jk} x_k$.

Question: ||T|| = ?

Connection between continuity and boundedness

Theorem. $T: X \rightarrow Y$ is a linear operator. Then

T is bounded \iff T is continuous.

Remark. The two main properties are equivalent. Stop for a while, and memorize it.

Proof. \Rightarrow

If *T* is bounded, then $\exists M > 0$: $||Tx|| \leq M||x||$.

Then if $\lim x_n = 0 \implies \lim Tx_n = 0$. *T* is *continuous*. $\sqrt{}$

Functional analysis 2020/21 Spring. Week 10.

Boundedness \iff Continuity (cont.)

 \Leftarrow If *T* is *continuous at* $x_0 = 0$, then for $ε = 1 \exists δ$:

$$\|x - 0\| \le \delta \quad \Rightarrow \quad \|Tx - 0\| \le 1.$$

Let $x \in X$, $x \ne 0$. Define $y = \frac{\delta}{\|x\|} x$. The norm of it:
 $\|y\| = \frac{\delta}{\|x\|} \cdot \|x\| = \delta.$

Thus due to continuity $\|Ty\| \le 1$. Then

$$Ty = T\left(\frac{\delta}{\|x\|} \cdot x\right) = \frac{\delta}{\|x\|} \cdot Tx \qquad \Rightarrow \qquad \|Ty\| = \frac{\delta}{\|x\|} \cdot \|Tx\| \le 1.$$

Then $||Tx|| \leq \frac{1}{\delta} ||x||$. Thus $M = \frac{1}{\delta}$ is good constant in boundedness.

The set of Bounded linear operators.

Reminder. $\mathcal{B}(X, Y) := \{T : X \to Y \mid \text{bounded}, \text{ linear }\},\$

with $||T|| = \sup_{||x||=1} ||Tx||$. It is <u>a normed space</u>.

Theorem. If Y is Banach space, then $\mathcal{B}(X, Y)$ is a Banach space.

Definition. If the image of the operator is \mathbb{R} or \mathbb{C} , then $T: X \to \mathbb{K}$ is called

FUNCTIONAL.

Special case I.

 $\mathcal{B}(\boldsymbol{X},\boldsymbol{X})=\mathcal{B}(\boldsymbol{X})$

$\mathcal{B}(X)$ is a Banach algebra

Let X be a Banach space. $\mathcal{B}(X) = \{T : X \to X, \text{ bounded, linear}\}$ $\mathcal{B}(X)$ is a BANACH ALGEBRA, with the following properties.

► Linear space √

► Normed space, "length" is $||T|| = \sup_{||x||=1} ||Tx|| \checkmark$

- ► There is multiplication: $(T \cdot S)(x) = T(S(x))$, algebra \checkmark
- Unity of multiplication: $I: X \to X$, Ix = x.
- ▶ Norm + multiplication: $||T \cdot S|| \le ||T|| \cdot ||S||$. \checkmark

Functional analysis 2020/21 Spring. Week 10

Invertible operator

 $T \in \mathcal{B}(X)$ is invertible, if $\exists S \in \mathcal{B}(X)$ s.t. TS = ST = I. (Both!)

Theorem. If $T \in \mathcal{B}(X)$ satisfies ||T|| < 1, then I - T is invertible and $(I - T)^{-1} = \sum_{k=0}^{\infty} T^k$. (Similar to $\approx \frac{1}{1-q} = \sum_{k=0}^{\infty} q^k$.)

Corollary. Let $T \in \mathcal{B}(X)$ be *invertible*.

Assume $S \in \mathcal{B}(X)$ s.t. $||S|| < \frac{1}{||T^{-1}||}$. Then T + S is also invertible.

Corollary. $G = \{T \in \mathcal{B}(X) \mid \exists T^{-1}\}$ is the set of invertible operators. It is an OPEN SET in $\mathcal{B}(X)$.