

Functional analysis

Lesson 10.

April 29. 2021

Linear operator

X and *Y* are *vector spaces* over $\mathbb R$ or $\mathbb C$.

A function $T: X \rightarrow Y$ is called OPERATOR.

This is a LINEAR OPERATOR, if

 $T(\alpha x_1 + \beta x_2) = \alpha Tx_1 + \beta Tx_2 \quad \forall x_1, x_2 \in X, \ \forall \alpha, \beta \in \mathbb{K}.$

(Notation: $T(x)$ is written as Tx , without brackets.)

Corollary. If *T* is linear, then $T0 = 0$. Why?

Examples

1. $X = \mathbb{R}^n$, $Y = \mathbb{R}^m$.

 $T: \mathbb{R}^n \to \mathbb{R}^m$ is *linear* $\iff \exists A \in \mathbb{R}^{m \times n}$ matrix, s.t. $Tx = Ax$

(On the left hand side there is a "matrix-vector" product)

2. $X = C[a, b]$, $Y = \mathbb{R}$. The "Integral is linear".

$$
T: C[a, b] \to \mathbb{R}, \qquad \text{If} := \int_a^b f(x) dx = \int_{[a, b]} f \, dm.
$$

More examples

3. $X = Y = \ell^2$.

 $T: \ell^2 \to \ell^2$ is the LEFT SHIFT OPERATOR, defined as:

$$
T(x_1, x_2, \ldots, x_n, \ldots) = (x_2, x_3, \ldots, x_{n+1}, \ldots)
$$

 $S: \ell^2 \to \ell^2$ is the RIGHT SHIFT OPERATOR, defined as:

 $S(x_1, x_2, \ldots, x_n, \ldots) = (0, x_1, x_2, \ldots, x_{n-1}, \ldots)$

Both of them are *linear*. Check it yourself.

 $(X, \|\cdot\|)$ and $(Y, \|\cdot\|)$ are *normed spaces* over $\mathbb R$ or $\mathbb C$.

Definition. (*review*) $T: X \rightarrow Y$ is continuous at $x_0 \in X$, if

$$
\forall (x_n) \subset X, \quad \lim x_n = x_0 \implies \quad \lim Tx_n = Tx_0.
$$

Proposition. Assume *T* is linear. Then

T is continuous on the whole $X \iff T$ is continuous at $x_0 = 0$. (It is surprising!)

Proof. (Sketch)

=⇒ √

T is continuous on $X \iff$ continuous at $x_0 = 0$.

⇐= Let *y*⁰ ∈ *X*. Let (*yn*) ⊂ *X* s.t. lim *yⁿ* = *y*0.

Is it true, that $\lim T_{y_n} = T_{y_0}$?

Trick: let $x_n := y_n - y_0$. Then $\lim x_n = 0$. By continuity $\lim Tx_n = 0$.

As *T* is linear, $Tx_n = T(y_n - y_0) = Ty_n - Ty_0 \rightarrow 0$.

Thus $\bar{y}_n \rightarrow \bar{y}_0 \sqrt{2}$

Boundedness

Question. What would we expect? *Analogy.* An $f: \mathbb{R} \to \mathbb{R}$ function is *bounded*, if

 $\exists K \geq 0$ s.t. $|f(x)| \leq K$ $\forall x$.

BUT if *T* is linear, it is *impossible*. Why?

$$
\longrightarrow \qquad \text{Because e.g. } T(2x) = 2 \cdot Tx \implies \nexists K.
$$

A bounded operator ≡ "*on the unit ball*".

Bounded operator

A *T* : *X* → *Y* linear operator is BOUNDED, if ∃*M* ≥ 0, such that $||Tx||_Y < M \cdot ||x||_X$, ∀*x*. (1)

Example.1. $X = Y = \ell^2$. Is the left shift operator bounded? If $x = (x_1, x_2, \dots, x_n, \dots) \in \ell^2$, then $||x|| = (\sum_{i=1}^{\infty} x_i^2)^{1/2}$. Estimate the norm of $Tx = (x_2, x_3, \ldots, x_n, \ldots)$ as:

$$
||Tx|| = (\sum_{i=2}^{\infty} x_i^2)^{1/2} \leq (\sum_{i=1}^{\infty} x_i^2)^{1/2} = ||x||.
$$

Thus [\(1\)](#page-7-0) is true $\forall M > 1$. *T* is bounded.

Example. 2. $T : C[a, b] \rightarrow \mathbb{R}$ is the integral-operator:

 $Tf = \int^b$ *a f*(*x*)*dx*. Is it bounded?

In $C[a,b]$ the norm is $\|f\| = \max\limits_{x\in[0,1]}|f(x)|.$ Then

$$
\|Tf\| = \left| \int_a^b f(x) dx \right| \leq \int_a^b |f(x)| dx \leq \int_a^b \|f\| dx = (b-a) \cdot \|f\|.
$$

Thus [\(1\)](#page-7-0) is true $\forall M > b - a$. *T* is bounded.

Remark. In both examples there was a *smallest M* satisfying [\(1\)](#page-7-0).

Operator norm

The NORM of a bounded linear operator *T* is:

 $||T|| := inf{M : ||Tx|| ≤ M · ||x||, ∀x ∈ X}.$

Example.1. (Cont.) In ℓ^2 *T* is the *left shift operator*. $||T|| \leq 1$ If $x = (0, x_2, x_3, \dots)$, then $\|Tx\| = \|x\|.$ Thus $M < 1$ can not be. $\|T\| = 1$.

Example. 2. (Cont.) *T* is the *integral operator*. $||T|| < b - a$. Is there an element, where $\|Tf\| = (b - a) \cdot \|f\|$? "=" ? $Guess?$ *f* $\equiv c\sqrt{\text{Thus:}}$ $||T|| = b - a$.

Normed space of linear bounded operators

Definition. $(X, \|\cdot\|)$ and $(Y, \|\cdot\|)$ are *normed spaces* over $\mathbb R$ or $\mathbb C$. The set of bounded linear operators

 $B(X, Y) = \{T : X \rightarrow Y \text{ bounded and linear}\}\$

is a NORMED SPACE with norm:

 $||T|| := inf\{M : ||Tx||_Y \leq M \cdot ||x||_X, \forall x \in X\}.$ (2)

Theorem. [\(2\)](#page-9-0) is a norm, indeed.

We do not prove the Thm.

An equivalent form of the operator norm

If $x = 0$, then $\forall M \ge 0$ is true: $\|Tx\| \le M\|x\|$. Why? Because $T0 = 0$ If $x \neq 0$, then

$$
||Tx|| \le M \cdot ||x|| \iff \frac{||Tx||}{||x||} \le M.
$$

Corollary.

$$
||T|| = \sup_{x \neq 0} \frac{||Tx||}{||x||} = \sup_{||x||=1} ||Tx||
$$

$\|T\|$ depends on the norm in *X* and *Y*.

Example. 3. $X = \mathbb{R}^2$, $Y = \mathbb{R}$. $T(x_1, x_2) := x_1 + 2x_2$.

1st case. $T : (\mathbb{R}^2, \|\cdot\|_1) \to (\mathbb{R}, |\cdot|). \|(x_1, x_2)\|_1 = |x_1| + |x_2|.$

 $|Tx| = |x_1 + 2x_2| \le |x_1| + |2x_2| \le 2(|x_1| + |x_2|) \implies M \le 2.$

On the other hand if $x_1 = 0$, then $|Tx| = 2||x||$. $\Rightarrow ||T||_1 = 2$.

 $2n$ d case. $\mathcal{T} : (\mathbb{R}^2, \|\cdot\|_{\infty}) \to (\mathbb{R}, |\cdot|).$ $\|(x_1, x_2)\|_{\infty} = \max\{|x_1|, |x_2|\}.$

 $|Tx| < |x_1| + |2x_2| < \max\{|x_1|, |x_2|\}(1+2) \implies M < 3.$

If $x_1 = x_2$, then "equality". \Rightarrow $||T||_{\infty} = 3$.

Example 4.

Let $C^1[a,b] = \{f : [a,b] \to \mathbb{R}, \text{ cont. differentiable}\}$

 $D: C^1[a,b] \rightarrow C[a,b]$ is the DIFFERENTIAL OPERATOR:

 $Df := f'$.

It is linear, but it is not bounded.

Why? Not easy.

Example 5.

The *Fredholm operator* $T : C[a, b] \rightarrow C[a, b]$ is defined as

$$
f \mapsto Tf
$$
 $Tf(s) = \int_{a}^{b} k(s, t)f(t)dt$, $s \in [a, b]$,

with $k : [a, b] \times [a, b] \rightarrow \mathbb{R}$ piecewise continuous in *s* and *t*.

 \approx "matrix-vector product". $(Ax)_j = \sum^n_{j \in X} a_{jk} x_k$. *k*=1

Question: $||T|| = ?$

Connection between continuity and boundedness

Theorem. $T: X \rightarrow Y$ is a linear operator. Then *T* is bounded \iff *T* is continuous.

Remark. The two main properties are equivalent. Stop for a while, and memorize it.

Proof. ⇒

If *T* is bounded, then $\exists M > 0$: $\|Tx\| \le M\|x\|$.

Then if $\lim x_n = 0 \implies \lim Tx_n = 0$. *T* is *continuous*.

Boundedness \iff Continuity (cont.)

 \Leftarrow If *T* is *continuous at x*₀ = 0, then for ε = 1 ∃ δ :

$$
||x - 0|| \le \delta \qquad \Rightarrow \qquad ||Tx - 0|| \le 1.
$$

Let $x \in X$, $x \ne 0$. Define $y = \frac{\delta}{||x||}x$. The norm of it:

$$
||y|| = \frac{\delta}{||x||} \cdot ||x|| = \delta.
$$

Thus due to continuity $\|Ty\| \leq 1$. Then

$$
\mathcal{T}y = \mathcal{T}\left(\frac{\delta}{\|x\|} \cdot x\right) = \frac{\delta}{\|x\|} \cdot \mathcal{T}x \qquad \Rightarrow \qquad \|\mathcal{T}y\| = \frac{\delta}{\|x\|} \cdot \|\mathcal{T}x\| \leq 1.
$$

Then $\|\mathit{Tx}\| \leq \frac{1}{\delta} \|x\|.$ Thus $M = \frac{1}{\delta}$ $\frac{1}{\delta}$ is good constant in boundedness.

The set of Bounded linear operators.

Reminder. $\mathcal{B}(X, Y) := \{T : X \to Y \mid \text{bounded}, \text{ linear}\},\$ with $\|T\| = \sup \|Tx\|.$ It is a normed space. $\|x\|=1$

Theorem. If *Y* is Banach space, then $B(X, Y)$ is a Banach space.

Definition. If the image of the operator is \mathbb{R} or \mathbb{C} , then $T: X \to \mathbb{K}$ is called

FUNCTIONAL.

Special case I.

 $\mathcal{B}(X,X) = \mathcal{B}(X)$

B(*X*) is a Banach algebra

Let *X* be a Banach space. $\mathcal{B}(X) = \{T : X \to X\}$, bounded, linear $\}$ $B(X)$ is a BANACH ALGEBRA, with the following properties.

- \blacktriangleright Linear space \checkmark
- \triangleright Normed space, "*length*" is $\|T\| = \sup \|Tx\|$ \checkmark $\|x\|=1$
- \blacktriangleright There is multiplication: $(T \cdot S)(x) = T(S(x))$, algebra \checkmark
- Inity of multiplication: $I: X \to X$, $I_X = x$.
- ▶ Norm + multiplication: $||T \cdot S|| \le ||T|| \cdot ||S||$. \checkmark

Invertible operator

T ∈ *B*(*X*) is INVERTIBLE, if ∃*S* ∈ *B*(*X*) s.t. *T S* = *ST* = *I*. (Both!)

Theorem. If $T \in B(X)$ satisfies $||T|| < 1$, then $I - T$ is invertible and $(I-T)^{-1}=\sum^{\infty}$ *k*=0 T^k . (Similar to $\approx \frac{1}{1}$ $\frac{1}{1-q}=\sum_{k=0}^{\infty}$ *k*=0 *q k* .)

Corollary. Let $T \in B(X)$ be *invertible.*

 $\mathsf{Assume}\ \ \pmb{S}\in \mathcal{B}(\pmb{X})\ \ \text{s.t.}\ \ \|\pmb{S}\|<\frac{1}{\|\pmb{\tau}\|}$ $\frac{1}{\|T^{-1}\|}$. Then $T + S$ is also invertible.

Corollary. $G = \{T \in \mathcal{B}(X) \mid \exists T^{-1}\}$ is the set of invertible operators. It is an OPEN SET in $\mathcal{B}(X)$.