Functional analysis

May 2021.

Basic abstract spaces. Topology.

- 1. Metric space. E.g. discrete metric.
- 2. Normed space. Metric in a normed space (P). Special norms in \mathbb{R}^n .
- 3. Inner product space. Relation between inner product and norm (P).
- 4. Sequence spaces: c_0 , ℓ^{∞} , ℓ^p , $p \ge 1$. Relation of ℓ^p and ℓ^q . (P).
- 5. Function spaces: C([a, b]) with possible norms.
- 6. The topology of metric spaces. **Open set**, closed set. Their properties. (P).
- 7. Convergence of a sequence in a metric space.
- 8. Continuity of functions between metric spaces.
- 9. Compact sets. Examples in finite and infinite dimension. Properties (P).
- 10. Compact sets in finite dimension (Heine-Borel theorem) (P).
- 11. The unit ball in C([0,1]) is not compact.
- 12. Completeness of a metric space. Hilbert space, Banach space.
- 13. C([0, 1]) is complete with one the norm. (P).
- 14. C([0,1]) is not complete with another norm. (P).

Measure spaces. Integral.

- 15. Measurable space. Measure. Examples: counting measure, probability measure.
- 16. Introduction of the Lebesgue measure on \mathbb{R} .
- 17. Properties of Lebesgue-measurable sets. Null sets. Cantor set in [0, 1], properties (P).

- 18. Measurable functions, characterization of them (P). Simple functions.
- 19. "Almost everywhere", as an equivalence relation (P).
- 20. Lebesgue integral, properties. Condition of integrability (P).
- 21. Comparison of the Lebesgue integral and the Riemann integral. Convergence theorems.
- 22. Lebesgue's $\mathcal{L}^{\mathbf{p}}(\mathbf{R})$ spaces, where $1 \leq p < \infty$. Elements and norms.
- 23. Connection between $\mathcal{L}^p(R)$ and $\mathcal{L}^q(R)$ when $m(R) < \infty$.
- 24. Essential supremum of a real function. The $\mathcal{L}^{\infty}(\mathbf{R})$ space.
- 25. Connection of it with $\mathcal{L}^p(R)$ when $m(R) < \infty$. Riesz theorem on Lebesgue \mathcal{L}^p spaces.

General Fourier series.

- 26. $\mathcal{L}^2(R)$ as a Hilbert space. Orthonormal sequence, example in $\mathcal{L}^2[-\pi,\pi]$.
- 27. Complete ON system. Method for orthonormalising (P).
- 28. Legendre polynomials, their construction.
- 29. A complete ON system: Haar functions. Dimension of a vector space. Examples.
- 30. Fourier analysis in $\mathcal{L}^2(R)$. Fourier coefficients (P).
- 31. Parseval's theorem (P). Riesz-Fisher theorem. Isometry of $\mathcal{L}^2(\mathbf{R})$ and ℓ^2 .
- 32. General $\mathcal{L}^2_{\rho}(R)$ spaces with ρ weighting functions.
- 33. **ON systems of polynomials.** E.g. Chebyshev polynomials (P), Hermite polynomials.

Linear operators

- 34. Abstract linear operators. **Continuity**, properties (P).
- 35. Boundedness, and continuity (P). Operator norm.
- 36. Examples of bounded linear operators in \mathbb{R}^n , in ℓ^2 and in C([a, b]).
- 37. $\mathcal{B}(X,Y)$ as a normed space. Completeness.

38. Bounded linear operators in a Banach space. Multiplication of operators. B(X).

39. Inverse of an operator. A condition on the existence of the inverse operator. (P).

- 40. Basic properties of the inverse operator.
- 41. **Spectrum** of a bounded linear operator. Connection with the eigenvalues.
- 42. Properties of the spectrum (P). Examples.
- 43. Linear functionals. Norm of a bounded linear functional. Examples in function spaces.
- 44. **Dual space.** Examples: \mathbb{R}^n with different norms (P), ℓ^p .
- 45. Weak and strong convergence, their connection (P).
- 46. Linear functionals in Hilbert space. Riesz representation thm. **Dual space of a Hilbert space**.
- 47. Adjoint of a bounded linear operator in a Hilbert space, existence (P).
- 48. Examples of adjoint operator in finite and infinite dimension.
- 49. Self adjoint operator. E.g. orthogonal projection (P).
- 50. An example. Hilbert space methods in QM: Heisenberg's uncertainty principle (P).