Financial time series

Gerencsér László Vágó Zsuzsanna Gerencsér Balázs

Solutions to Exercises

Contents

1	Basic concepts				
	1.1	Wide sense stationary processes	4		
	1.2	Orthogonal processes and their transformations	6		
	1.3	Prediction	6		
2	Prediction, innovation and the Wold decomposition				
	2.1	Prediction using the infinite past	10		
	2.2	Singular processes	10		
	2.3	Wold decomposition	13		
3	Spectral theory I.				
	3.1	The need for a spectral theory	15		
	3.2	Fourier methods for w.s.st. processes	16		
	3.3	Herglotz's theorem	17		
4	Spe	ectral theory II.	18		
	4.2	Random orthogonal measures. Integration	18		
	4.3	Representation of a wide sense stationary process	20		
	4.4	Change of measure	20		
	4.5	Linear filters	21		
5	\mathbf{AR}	, MA and ARMA processes	23		
	5.3	The $AR(1)$ process	23		
	5.5	MA processes	24		

	5.6	ARMA processes	25		
	5.8	ARMA processes with unstable zeros	26		
6	Multivariate time series				
	6.1	Vector valued wide sense stationary processes	27		
	6.2	Prediction and the innovation process	28		
	6.3	Spectral theory	28		
	6.4	Filtering	29		
	6.5	Multivariate random orthogonal measures	30		
	6.7	Linear filters	31		
	6.8	Proof of the spectral representation theorem	32		
7	Stat	e-space representation	33		
	7.1	From multivariate $AR(1)$ to state-space equations	33		
	7.2	Auto-covariances and the Lyapunov-equation	35		
	7.3	State space representation of ARMA processes	37		
8	Kalman filtering				
	8.1	The filtering problem	38		
	8.2	The Kalman-gain matrix	38		
9	Identification of AR processes				
	9.1	Least Squares estimate of an AR process	40		
	9.2	The asymptotic covariance matrix of the LSQ estimate $\ \ldots \ \ldots \ \ldots$	40		
	9.3	The recursive LSQ method	41		
10	Identification of MA and ARMA models				
	10.1	Identification of MA models	42		
	10.2	The asymptotic covariance matrix of $\widehat{\theta}_N$	43		
	10.3	Identification of ARMA models	43		
12	Stoc	chastic volatility: ARCH and GARCH models	46		

	12.2 Stochastic volatility models	46
	12.4 State space representation	47
	12.5 Existence of a strictly stationary solution	48
13	B High-frequency data. Poisson processes	50
	13.3 Poisson point processes on a general state space	50
	13.4 Construction of Poisson processes	52
	13.5 Sums and integrals over Poisson processes	52
14	High-frequency data. Lévy Processes	54
		54
	14.1 Motivation and basic properties	- 54

Basic concepts

1.1 Wide sense stationary processes

Exercise 1.1 Let (y_n) be a wide sense stationary process and let us define

$$u_n = a_1 y_{n-1} + \dots + a_p y_{n-p}$$
, with a_k real, $k = 1, \dots p$.

Show that (u_n) is also a wide sense stationary process.

Solution: The mean value:

$$E(u_n) = E\left(\sum_{k=1}^{p} a_k y_{n-k}\right) = \sum_{k=1}^{p} a_k E(y_{n-k}) = 0.$$

The covariance of u_n and $u_{n+\tau}$ is the following:

$$Eu_{n+\tau}u_n = E\left(\sum_{k=1}^p a_k y_{n-k+\tau} \sum_{l=1}^p a_l y_{n-l}\right) =$$

$$\sum_{k=1}^{p} \sum_{l=1}^{p} a_k a_l E(y_{n-k+\tau} y_{n-l}) = \sum_{k=1}^{p} \sum_{l=1}^{p} a_k a_l r(l-k+\tau).$$

It is indeed independent of n.

Exercise 1.2 Define the $p \times p$ matrix $R = (R_{k,l})$ by

$$R_{k,l} = r(l-k), \qquad k, l = 1, \dots p.$$

Set

$$Y = (y_{n-1}, \dots, y_{n-p})^T.$$

Prove that the matrix R defined above can also be written as $R = \mathrm{E}(YY^T)$.

Solution: We have

$$YY^{T} = \begin{pmatrix} y_{n-1} \\ \vdots \\ y_{n-p} \end{pmatrix} \cdot (y_{n-1} \dots y_{n-p})^{T},$$

thus $(YY^T)_{k,l} = y_{n-k}y_{n-l}$. Then

$$E(YY^T)_{k,l} = Ey_{n-k}y_{n-l} = r(n-k-n+l) = r(l-k).$$

Exercise 1.3 Using the representation $R = E(YY^T)$ prove that R is symmetric and positive semidefinite.

Solution: As the autocovariance function is symmetric, $(r(\tau) = r(-\tau))$, the matrix R is symmetric. We also have to prove, that for all $a \in \mathbb{R}^p$, the quadratic form $a^T R a \geq 0$. Indeed,

$$a^T R a = a^T \operatorname{E}(YY^T) a = \operatorname{E} a^T (YY^T) a = \operatorname{E} (a^T Y) (a^T Y)^T \ge 0.$$

Exercise 1.4 Let $y = (y_n)$ be a complex-valued w.s.st. process with autocovariance function $r^y(\cdot)$. Show that the matrix $R = (R_{k,l})$ defined by

$$R_{k,l} = r^y(l-k), \qquad k, l = 1, \dots p$$

is a Hermitian, positive semi-definite Toeplitz matrix.

Solution: As the entry $R_{l,k}$ only depends on l-k, it is a Toeplitz matrix. For complex w.s.st. processes we have

$$R_{k,l} = r^y(l-k) = \overline{r^y(k-l)} = \overline{R_{l,k}},$$

thus R is Hermitian. For all $a \in \mathbb{C}^p$ we have

$$\overline{a}^T R a = \overline{a}^T \operatorname{E}(\overline{Y} Y^T) a = \operatorname{E} \overline{a}^T (\overline{Y} Y^T) a = \operatorname{E} \overline{(a^T Y)} (a^T Y)^T \ge 0.$$

1.2 Orthogonal processes and their transformations

Exercise 1.5 Show that the sequence $(y_{n,N})$ is a Cauchy sequence in L_2 norm.

Solution: As $y_{n,N} = \sum_{k=0}^{N} h_k e_{n-k}$, we have by the orthogonality of (e_k) for N < M

$$||y_{n,M} - y_{n,N}||^2 = \sum_{k=N+1}^{M} h_k^2 < \varepsilon,$$

if N is large enough, since by assumption $(h_k) \in \ell_2$.

Exercise 1.6 Define y_n by

$$y_n = \sum_{k=0}^{\infty} h_k e_{n-k}.$$

Show that $y = (y_n)$ is a wide sense stationary process.

Solution: We know from the previous exercise, that

$$y_n = \lim_{N \to \infty} y_{n,N}.$$

Then

$$Ey_n = \lim_{N \to \infty} Ey_{n,N} = 0.$$

Also, for the autocovariance function we have

$$\lim_{N \to \infty, M \to \infty} \mathbf{E} y_{n+\tau, N} y_{n, M} = \sum_{k=0}^{\infty} h_k h_{k+\tau} \cdot \sigma^2.$$

1.3 Prediction

Exercise 1.7 Show that if R is singular then y_n can be predicted with 0 error.

Solution: If R is singular, then there is a nonzero vector $v = (v_1, \dots v_p)^T$, such that $v^T R = 0$, and also $v^T R v = 0$. We can assume, that the first non-zero element of v equals to 1. Also, we can assume that $v = (1, v_2, \dots, v_p)^T$. Define

$$\hat{y}_n = \sum_{k=1}^p (-v_{k+1}) y_{n-k}.$$

Then

$$E(y_n - \hat{y}_n)^2 = E\left(y_n + \sum_{k=1}^{p-1} v_{k+1} y_{n-k}\right)^2 =$$

$$= v^T E(y_n, y_{n-1}, \dots y_{n-p+1})^T (y_n, y_{n-1}, \dots y_{n-p+1}) v = v^T R v = 0,$$

thus the prediction error is 0.

Exercise 1.8 * Show that for the process (y_n^r) we have

$$H_{-\infty}^{y^r} = \{0\}.$$

Solution: Let us recall that

$$y_n^r = \sum_{k=0}^{\infty} c_k e_{n-k}, \qquad c_0 = 1,$$

where $e = (e_n)$ is the innovation process of $y = (y_n)$. Therefore $y_n^r \in H_n^e$ for all n implying

$$H_n^{y^r} \subset H_n^e$$
 for all n .

It follows that

$$H^{y^r}_{-\infty} \subset H^e_{-\infty}.$$

Now if $v \in H_{-\infty}^e$ then $v \in H_{-n}^e$ for all n. Since $e = (e_n)$ is an orthogonal process we have

$$e_m \perp H_{-n}^e$$
 for any $m > -n$.

In particular

$$e_m \perp v$$
.

Note that the latter claim holds independently of n, for all n. It follows that

$$v \perp H^e = H^e_{\infty}$$
.

But, obviously, $v \in H_{\infty}^{e}$. Thus we must have v = 0.

Exercise 1.9 * Show that

$$H_{-\infty}^y = H_{-\infty}^{y^s}.$$

Solution: We have

$$y_n = y_n^r + y_n^s$$
, for all n .

The orthogonality $y^r \perp y^s$ implies

$$H^{y^r}_{\infty} \perp H^{y^s}_{\infty}$$
,

and thus

$$H_{-n}^{y^r} \perp H_{-n}^{y^s}$$
, for all n .

First we show that

$$H^{y}_{-\infty}\supset H^{y^{s}}_{-\infty}.$$

To see this note that the definition

$$e_n = y_n - (y_n | H_{n-1}^y)$$

implies $e_n \in H_n^y$ for all n, which in turn implies

$$H_n^e \subset H_n^y$$
 for all n .

But then $y_n^r \in H_n^y$ implies

$$y^r_n \in H_n^y$$
, for all n ,

and hence $y_n^s = y_n - y_n^r$ we also have

$$y_n^s \in H_n^y$$
, for all n .

We conclude from here that

$$H_n^{y^s} \subset H_n^y$$
 for all n ,

which implies

$$H^{y^s}_{-\infty} \subset H^y_{-\infty}$$
.

Now to prove the opposite inclusion let $v \in H^y_{-\infty}$. Then $v \in H^y_{-n}$ for all n. The decomposition of y as $y_n = y_n^r + y_n^s$ with $y^r \perp y^s$ implies

$$H^y_{-n} = H^{y^r}_{-n} \oplus H^{y^s}_{-n}$$

for all n, where \oplus denotes orthogonal direct sum. Let us write v as

$$v = v^r_n + v^s_n$$

with $v_{-n}^r \in H_{-n}^{y^r}$ and $v_{-n}^s \in H_{-n}^{y^s}$. Then

$$v_{-n}^r = (v|H_{-n}^{y^r}).$$

Now letting n tend to infinity we get that

$$\lim_{n\to\infty}v^r_{-n}=\lim_{n\to\infty}(v|H^{y^r}_{-n})=(v|H^{y^r}_{-\infty})$$

But $H_{-\infty}^{y^r}=\{0\},$ hence $v_{-n}^r~\to~0$ and we conclude that

$$v = \lim_{n \to \infty} v^s_{-n}.$$

Obviously, the right had side belongs to $H^{y^s}_{-m}$ for all m and hence it belongs to $H^{y^s}_{-\infty}$. \square

Prediction, innovation and the Wold decomposition

2.1 Prediction using the infinite past

Exercise 2.1 Prove that

$$(y_n|H_{n-1}^y) = \lim_{p\to\infty} (y_n|H_{n-1,n-p}^y)$$
 in $L_2(\Omega,\mathcal{F},P)$.

Solution: Let us denote

$$\hat{y}_n = (y_n | H_{n-1}^y), \text{ and } \tilde{y}_n = y_n - \hat{y}_n.$$

Thus

$$y_n = \tilde{y}_n + \hat{y}_n,$$

where $\tilde{y}_n \perp H_{n-1}^y$, and also $\tilde{y}_n \perp (y_n | H_{n-1,n-p}^y$. Thus projecting both sides onto $H_{n-1,n-p}^y$) we get

$$(y_n|H_{n-1,n-p}^y) = (\hat{y}_n|H_{n-1,n-p}^y).$$

But $\hat{y} \in \operatorname{cl} \left(\bigcup_{p} H_{n-1,n-p}^{y} \right)$ implies

$$\lim_{p \to \infty} \left((\hat{y}_n | H_{n-1,n-p}^y) - \hat{y} \right) = 0.$$

2.2 Singular processes

Exercise 2.2 Show that if $H_n^y = H_{n-1}^y$ for a single n, then $H_n^y = H_{n-1}^y$ for all n.

Solution: We know, that the process (e_n) with $e_n = y_n - (y_n | H_{n-1}^y)$ is a w.s.st. orthogonal process. If $H_n^y = H_{n-1}^y$, then one of these random variable is zero, thus all of them are zero.

Exercise 2.3

$$y_n = \xi e^{in\omega}, \qquad n = 0, \pm 1, \pm 2, \dots,$$

Show that the above process is wide sense stationary.

Solution:

$$Ey_n = E\xi e^{in\omega} = 0,$$

and

$$Ey_{n+\tau}\overline{y_n} = E\xi e^{i(n+\tau)\omega}\overline{\xi}e^{-in\omega} = \sigma^2 e^{i\tau\omega}$$

is independent of n.

Exercise 2.4 Show that y is singular, i.e.

$$H_n^y = H_{n-1}^y$$
 for all n .

Solution: A simple proof is obtained by applying the result given in the following exercise. \Box

Exercise 2.5 Let y be a w.s.st. process such that $\dim(H_n^y) < \infty$ for some n. Then y is singular.

Solution: Let $\dim(H_n^y) = p < \infty$. Consider is a basis (y_{n-n_k}) , $k = 1, \ldots p$. This is a generator system, thus

$$y_n = \sum_{k=1}^p c_k y_{n-n_k},$$

with some $c_k \in \mathbb{R}$. It means, y_n can be predicted with zero error.

Exercise 2.6

$$y_n = \sum_{k=1}^m \xi_k e^{in\omega_k}$$

Prove that the process y defined above is singular, i.e.

$$H_n^y = H_{n-1}^y$$
 for all n .

Solution: We apply previous Exercise. Let us consider m+1 random variables in H_n^y : $y_{n_0}, y_{n_1}, \dots y_{n_m}$. Then we can write

$$\begin{pmatrix} y_{n_0} \\ y_{n_1} \\ \vdots \\ y_{n_m} \end{pmatrix} = \begin{pmatrix} e^{in_0\omega_1} & e^{in_0\omega_2} & \dots & e^{in_0\omega_m} \\ e^{in_1\omega_1} & e^{in_1\omega_2} & \dots & e^{in_1\omega_m} \\ \vdots & \vdots & & \vdots \\ e^{in_m\omega_1} & e^{in_m\omega_2} & \dots & e^{in_m\omega_m} \end{pmatrix} \cdot \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_m \end{pmatrix},$$

or in compact form $Y = A \cdot Z$. Here Y and Z are random variables, and A is a matrix with constant elements from \mathbb{C} . The dimension of the matrix is $(m+1) \times m$, thus the rows are linearly dependent. There is an $\alpha \in \mathbb{C}^{m+1}$ vector such that $\alpha^T A = 0$ and thus $\alpha^T Y = 0$. It means, that any m+1 element in H_n^y is linearly dependent, thus $\dim(H_n^y) \leq m < \infty$, and the process is singular.

Exercise 2.7 A simple example for a real-valued singular process is given by

$$y_n = \cos(\omega n + \varphi) \qquad \omega \neq 0,$$

where φ is a random phase with uniform distribution on $[0, 2\pi]$. Show that (y_n) is a wide sense stationary process.

Solution: As φ is a random variable with uniform distribution on $[0, 2\pi]$, its density function is

$$f(x) = \begin{cases} \frac{1}{2\pi} & x \in [0, 2\pi] \\ 0 & \text{otherwise} \end{cases}$$

Thus the mean value

$$Ey_n = \int_0^{2\pi} \cos(n\omega + x) \frac{1}{2\pi} dx = 0.$$

Applying the identity

$$\cos(\alpha)\cos(\beta) = \frac{\cos(\alpha-\beta) + \cos(\alpha+\beta)}{2}$$

we get

$$y_{n+\tau}y_n = \cos(\omega(n+\tau) + \varphi)\cos(\omega n + \varphi) = \frac{\cos(\omega\tau) + \cos(\omega(2n+\tau) + 2\varphi)}{2}.$$

Taking expectation we get using the above argument, that

$$Ey_{n+\tau}y_n = \frac{\cos(\omega\tau) + 0}{2},$$

which is indeed independent of n.

Exercise 2.8 Show that (y_n) is singular.

Solution: Apply the identity $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$. We get

$$y_{n+1} = \cos((\omega n + \varphi) + \omega) = \cos(\omega n + \varphi)\cos(\omega) - \sin(\omega n + \varphi)\sin(\omega),$$

thus

$$y_{n+1} = y_n \cos(\omega) \pm \sqrt{1 - y_n^2} \sin(\omega) \in H_n^y$$
.

It means, that

$$H_n^y = H_{n-1}^y$$
 for all n .

2.3 Wold decomposition

Lemma 1 For any random variable $\xi \in L_2(\Omega, \mathcal{F}, P)$ we have

$$\lim_{m \to \infty} (\xi | H_{-m}) = (\xi | H_{-\infty}).$$

Exercise 2.9 * Prove Lemma 1.

Solution: We shall apply the dual of this lemma, Lemma 2 bellow. Let us denote the orthogonal complement of H_{-m} in $L_2(\Omega, \mathcal{F}, P)$ by H_m^+ , i.e.

$$L_2(\Omega, \mathcal{F}, P) = H_{-m} \oplus H_m^+$$

Then

$$(\xi|H_{-m}) = \xi - (\xi|H_m^+).$$

Applying Lemma 2 we get

$$\lim_{m \to \infty} (\xi | H_m^+) = (\xi | H_\infty^+), \qquad H_\infty^+ = \text{cl } (\cup_m H_m^+).$$

As H_{∞}^+ is the orthogonal complement of $H_{-\infty}$, Lemma 1 is proved.

Lemma 2 Let $H_n \subset L_2(\Omega, \mathcal{F}, P)$ be a monotone increasing sequences of Hilbert subspaces, i.e. $H_n \subset H_{n+1}$. Let

$$H_{\infty} = \operatorname{cl} (\cup_n H_n),$$

with cl denoting the closure. Then for any $x \in L_2(\Omega, \mathcal{F}, P)$ we have

$$\lim_{n \to \infty} (x|H_n) = (x|H_\infty).$$

Exercise 2.10 * Prove Lemma 2.

Solution: Let $(x|H_{\infty}) = y$, and write

$$x = y + \Delta x$$

where $\Delta x \perp H_{\infty}$. Then also $\Delta x \perp H_n$ for any n. Thus projecting both sides of the above equality onto H_n we get

$$(x|H_n) = (y|H_n).$$

But $y \in \operatorname{cl}(\cup H_n)$ implies that

$$\lim_{n \to \infty} (y - (y|H_n)) = 0,$$

thus $(y|H_n)$ converges to y, and the proposition follows.

Exercise 2.11 Show that the processes (y_n^s) and (y_n^r) are orthogonal, $y^s \perp y^r$, meaning that

$$y_n^s \perp y_m^r$$
 for all n, m .

Solution: For any $v \in H^y_{-\infty}$ and any k we have $v \perp e_k$, since $v \in H^y_{k-1}$. By definition $y_n^s \in H^y_{-\infty}$ (since $y_n^s = (y_n|H^y_{-\infty})$), and $y_n^r = \sum_{k=0}^{\infty} c_k e_{n-k}$, Thus for all n and m, y_n^s and y_m^r are indeed orthogonal.

Exercise 2.12 Show that for the process $y^r = (y_n^r)$ we have

$$H_{-\infty}^{y^r} = \{0\}.$$

Solution: First, by definition $y_n^r = \sum_{k=0}^{\infty} c_k e_{n-k}$, thus $H_n^{y^r} \subset H_n^e$ for all n. On the other hand $H_{-\infty}^e = \{0\}$, since $e_n \perp H_{-\infty}^e$ for all n..

Spectral theory I.

3.1 The need for a spectral theory

Let

$$y_n = e_n + ce_{n-1}.$$

Then

$$e_n = -ce_{n-1} + y_n,$$

and iterating this equation we get, assuming |c| < 1,

$$e_n = \sum_{k=0}^{\infty} (-c)^k y_{n-k}.$$

Exercise 3.1 Show that the right hand side above is well defined.

Solution: Let us define

$$e_n^N = \sum_{k=0}^N (-c)^k y_{n-k}.$$

Then for N < M we have

$$e_n^M - e_n^N = \sum_{k=N+1}^M (-c)^k y_{n-k},$$

thus

$$E(e_n^M - e_n^N)^2 = r^y(0) \cdot \sum_{k=N+1}^M c^{2k} - 2r^y(1) \cdot \sum_{k=N+2}^M (c^{2k+1} + c^{2k-1}),$$

since $r^y(k) = 0$ if |k| > 1. It follows, that (e_n^M) is a Cauchy sequence as $M \to \infty$, thus the limit is well defined.

3.2 Fourier methods for w.s.st. processes

Proposition 1 We have

$$\lim_{N \to \infty} \xi_N(\omega_k) = \xi_k,$$

$$\lim_{N \to \infty} \xi_N(\omega) = 0 \quad \text{for} \quad \omega \neq \omega_k$$

in the sense of $L_2(\Omega, \mathcal{F}, P)$ and also w.p.1.

Exercise 3.2 Prove Proposition 1.

Solution:

$$\xi_N(\omega) = \frac{1}{2N+1} \sum_{n=-N}^N y_n e^{-in\omega} = \frac{1}{2N+1} \sum_{n=-N}^N \left(\sum_{k=1}^m \xi_k e^{in\omega_k} \right) e^{-in\omega} =$$

$$= \sum_{k=1}^m \xi_k \left(\frac{1}{2N+1} \sum_{n=-N}^N e^{in(\omega_k - \omega)} \right) = \sum_{k=1}^m c_k \xi_k.$$

If $\omega = \omega_k$ for some k, then on the right hand side of the equation the coefficient of ξ_k is the following:

$$\frac{1}{2N+1} \sum_{n=-N}^{N} e^{in(\omega_k - \omega_k)} = \frac{1}{2N+1} \sum_{n=-N}^{N} 1 = 1,$$

thus this term of the sum is exactly ξ_k .

If $\omega \neq \omega_k$, the coefficient of ξ_k is the following:

$$c_k = \frac{1}{2N+1} \sum_{n=-N}^{N} e^{in(\omega_k - \omega)} = \frac{1 + 2\sum_{n=1}^{N} \cos(n(\omega_k - \omega))}{2N+1}.$$

We shall use the formula for the Dirichlet kernel:

$$1 + 2\sum_{k=1}^{n} \cos(kx) = \frac{\sin\left((n + \frac{1}{2})x\right)}{\sin(x/2)}.$$

Thus

$$c_k = \frac{1}{2N+1} \frac{\sin\left(\left(N + \frac{1}{2}\right)(\omega_k - \omega)\right)}{\sin\left((\omega_k - \omega)/2\right)} \to 0 \quad \text{for} \quad N \to \infty.$$

It proves the Proposition.

Corrolary 1 The spectral weights σ_k^2 can be obtained as

$$\sigma_k^2 = \mathbf{E}|\xi_k|^2 = \lim_{N \to \infty} \mathbf{E} \left| \frac{1}{2N+1} \sum_{n=-N}^{+N} y_n e^{-in\omega_k} \right|^2.$$

Exercise 3.3 Prove the above corollary.

Solution: This follows simply from the fact that $\xi_N(\omega_k) \to \xi_k$ in $L_2(\Omega, \mathcal{F}, P)$.

3.3 Herglotz's theorem

Exercise 3.4 Show that the truncated $r_N(\tau)$ sequence itself is an auto-covariance sequence.

Solution: Obviously, $r_N(\tau)$ is a positive semi-definite sequence. Hence it is an autocovariance sequence.

Spectral theory II.

4.2 Random orthogonal measures. Integration

Exercise 4.1 Prove, that for any $0 \le a < b < 2\pi$ we have

$$F(b) - F(a) = E \left| \zeta(b) - \zeta(a) \right|^2,$$

thus F is monotone nondecreasing.

Solution: Write [0,b) as the union of [0,a) and [a,b). Then by definition

$$\zeta(b) - \zeta(a) \perp \zeta(a) - \zeta(0).$$

Apply Pythagoras theorem:

$$E|\zeta(b) - \zeta(a)|^2 + E|\zeta(a) - \zeta(0)|^2 = E|\zeta(b) - \zeta(0)|^2.$$

Substituting $\zeta(0) = 0$, and $E|\zeta(a)|^2 =: F(a)$ we get

$$E|\zeta(b) - \zeta(a)|^2 + F(a) = F(b).$$

Exercise 4.2 Let f, g be two left continuous step functions on $[0, 2\pi]$. Then

$$EI(f)\overline{I(g)} = \int_0^{2\pi} f(\omega)\overline{g(\omega)} dF(\omega). \tag{4.1}$$

Solution: Take a common subdivision for f and g, denote the intervals by $[\alpha_k, \beta_k)$, $k = 1, 2, \dots n$. Then

$$f(\omega) = \sum_{k=1}^{n} \lambda_k \chi_{[\alpha_k, \beta_k)},$$

$$g(\omega) = \sum_{k=1}^{n} \eta_k \chi_{[\alpha_k, \beta_k)},$$

and the product function:

$$f(\omega)\overline{g(\omega)} = \sum_{k=1}^{n} \lambda_k \overline{\eta_k} \chi_{[\alpha_k, \beta_k)}.$$

Thus the integral of $f\overline{g}$ on the right hand side of (4.1) is the following:

$$\int_0^{2\pi} f(\omega) \overline{g(\omega)} dF(\omega) = \sum_{k=1}^n \lambda_k \overline{\eta_k} (F(\beta_k) - F(\alpha_k)).$$

Let us compute the left hand side of (4.1). We have

$$I(f) = \sum_{k=1}^{n} \lambda_k(\zeta(\beta_k) - \zeta(\alpha_k)), \qquad I(g) = \sum_{k=1}^{n} \eta_k(\zeta(\beta_k) - \zeta(\alpha_k)).$$

The random variables $(\zeta(\beta_k) - \zeta(\alpha_k))$ $k = 1, 2, \dots n$ are independent, thus

$$EI(f)\overline{I(g)} = \sum_{k=1}^{n} \lambda_k \overline{\eta_k} E|\zeta(\beta_k) - \zeta(\alpha_k)|^2 = \sum_{k=1}^{n} \lambda_k \overline{\eta_k} (F(\beta_k) - F(\alpha_k)).$$

Exercise 4.3 Prove that

$$y_n = \int_0^{2\pi} e^{in\omega} d\zeta(\omega)$$

is w.s.st.

Solution: $Ey_n = 0$. Applying the isometry we get

$$Ey_n\overline{y_{n+\tau}} = \int_0^{2\pi} e^{in\omega} \overline{e^{i(n+\tau)\omega}} dF(\omega) = \int_0^{2\pi} e^{i(-\tau)\omega} dF(\omega),$$

which is independent of n.

4.3 Representation of a wide sense stationary process

Exercise 4.4 Prove the above implication.

Solution: Let $g(\omega) = \sum_{n \in \mathbb{N}} c_n e^{in\omega}$, $c_n \in \mathbb{C}$. Then g = 0 in $L_2^c(dF) = L_2^c([0, 2\pi), dF)$ means, that

$$\int_0^{2\pi} |g(\omega)|^2 dF(\omega) = 0.$$

The corresponding random variable is $I(g) = \sum_{n \in \mathbb{N}} c_n y_n$. Then

$$EI(g) = 0, \qquad EI(g)\overline{I(g)} = \sum_{n} \sum_{m} c_n \overline{c_m} \int_0^{2\pi} e^{i(n-m)\omega} dF(\omega) = \int_0^{2\pi} |g(\omega)|^2 dF(\omega) = 0.$$

Thus
$$I(g) = 0$$
 a.s. in $L_2^c(\Omega, \mathcal{F}, P)$.

Exercise 4.5 Show that the structure function of the random orthogonal measure ζ is F, predetermined by the spectral distribution function of y.

Solution: Indeed, we have

$$dF(\omega) = dF^y(\omega) \cdot \frac{1}{2\pi},$$

since
$$y_n = \int_0^{2\pi} e^{in\omega} d\zeta(\omega)$$
, thus

$$E(y_{n+\tau}\overline{y_n}) = \int_0^{2\pi} e^{i(n+\tau)\omega} e^{-in\omega} dF(\omega) = \int_0^{2\pi} e^{in\tau} dF(\omega).$$

4.4 Change of measure

Let $d\zeta(\omega)$ be a random orthogonal measure on $[0, 2\pi)$ with the structure function $F(\omega)$. Let $g \in L_2^c(dF)$, and define

$$\eta(\omega) = \int_0^\omega g(\omega') d\zeta(\omega') \qquad 0 \le \omega < 2\pi.$$

Exercise 4.6 Show that $d\eta(\omega)$ is a random orthogonal measure, with the structure function

$$dG(\omega) = |g(\omega)|^2 dF(\omega).$$

Solution: We have $\eta(0) = 0$. For any two non-overlapping intervals [a,b) and [c,d) contained in $[0,2\pi)$ we have

$$\eta(d) - \eta(c) = \int_{c}^{d} g(\omega') d\zeta(\omega'), \qquad \eta(b) - \eta(a) = \int_{a}^{b} g(\omega') d\zeta(\omega').$$

As the domains of integration are non-overlapping,

$$\eta(d) - \eta(c) \perp \eta(b) - \eta(a)$$
.

The structure function can be computed using the isometry between $L_2^c(dF)$ and $L_2^c(\Omega, \mathcal{F}, P)$:

$$E|\eta(a)|^2 = E\eta(a)\overline{\eta(a)} = \int_0^{2\pi} g(\omega)\overline{g(\omega)}dF(\omega) = \int_0^{2\pi} |g(\omega)|^2 dF(\omega).$$

4.5 Linear filters

Exercise 4.7 Show that the spectral representation process of y is given by

$$d\zeta^{y}(\omega) = H(e^{-i\omega})d\zeta^{u}(\omega),$$

where

$$H(e^{-i\omega}) = \sum_{k=0}^{m} h_k e^{-ik\omega}.$$

Solution: The spectral representation of (u_n) gives

$$u_n = \int_0^{2\pi} e^{in\omega} d\zeta^u(\omega).$$

Thus

$$u_{n-k} = \int_0^{2\pi} e^{i(n-k)\omega} d\zeta^u(\omega), \quad \text{and} \quad h_k u_{n-k} = \int_0^{2\pi} h_k e^{i(n-k)\omega} d\zeta^u(\omega).$$

It follows, that

$$y_n = \sum_{k=0}^m h_k u_{n-k} = \int_0^{2\pi} \sum_{k=0}^m h_k e^{i(n-k)\omega} d\zeta^u(\omega) =$$

$$= \int_0^{2\pi} e^{in\omega} \left(\sum_{k=0}^m h_k e^{-ik\omega} d\zeta^u(\omega) \right) = \int_0^{2\pi} e^{in\omega} d\zeta^y(\omega).$$

Exercise 4.8 Show that the integrand on the right hand side converges to $e^{in\omega}H(e^{-i\omega})$ in $L_2^c(dF^u)$.

Solution: We know, that

$$\lim_{m \to \infty} H^m(e^{-i\omega}) = \lim_{m \to \infty} \sum_{k=0}^m h_k e^{-ik\omega}. = y_n$$

in $L_2^c(\Omega, \mathcal{F}, P)$. Thus due to isometry

$$\lim_{m\to\infty}\int_0^{2\pi}e^{in\omega}H^m(e^{-i\omega})d\zeta^u(\omega)=\int_0^{2\pi}e^{in\omega}H(e^{-i\omega})d\zeta^u(\omega).$$

AR, MA and ARMA processes

5.3 The AR(1) process

Exercise 5.1 Prove that (y_n) defined by $y_n = \sum_{k=0}^{\infty} (-a)^k e_{n-k}$ does indeed satisfy $y_n + ay_{n-1} = e_n$.

Solution: We have

$$y_n = e_n + \sum_{k=1}^{\infty} (-a)^k e_{n-k} = e_n + (-a) \sum_{k=1}^{\infty} (-a)^{k-1} e_{n-1-(k-1)} =$$
$$= e_n + (-a) \sum_{k=0}^{\infty} (-a)^k e_{n-1-k} = e_n - ay_{n-1}.$$

Here we used the fact, that the coefficient-sequence is absolute convergent, and (e_{n-k}) is an orthogonal sequence in $L_2(\Omega, \mathcal{F}, P)$.

Exercise 5.2 If |a| > 1 define

$$y_n = \sum_{k=0}^{\infty} (-\frac{1}{a})^k \frac{1}{a} e_{n+k+1}.$$

Show that the r.h.s. is well-defined, and (y_n) does indeed satisfy $y_n + ay_{n-1} = e_n$.

Solution: The r.v-s (e_{n+k}) , k = 1, 2, ... form an orthogonal sequence in $L_2(\Omega, \mathcal{F}, P)$. As |a| > 1, the coefficient sequence on the right hand side is absolute convergent. Thus the right hand side is well-defined.

We have

$$y_n = \frac{1}{a}e_{n+1} + \frac{1}{a}\sum_{k=1}^{\infty} (-\frac{1}{a})^{k-1} \left(-\frac{1}{a}\right) e_{n+k+1} = \frac{1}{a}e_{n+1} - \frac{1}{a}\sum_{k=0}^{\infty} (-\frac{1}{a})^k \frac{1}{a}e_{(n+1)+(k+1)},$$

thus

$$y_n = \frac{1}{a}e_{n+1} - \frac{1}{a}y_{n+1},$$

and it can be rearranged as

$$e_{n+1} = y_{n+1} + ay_n.$$

5.5 MA processes

Thus let $e = (e_n)$ be a wide sense stationary orthogonal process and define

$$y_n = \sum_{k=0}^{m} c_k e_{n-k}$$

Exercise 5.3 Show that (y_n) is a wide sense stationary process.

Solution: The mean value and the covariances are independent of n, since $Ey_n = 0$, and

$$E(y_n^2) = \sum_{k=0}^{m} \sum_{j=0}^{m} c_k c_j E(e_{n-k} e_{n-j}) = \sum_{k=0}^{m} c_k^2 \sigma^2.$$

For $0 < \tau \le m$ we have:

$$E(y_{n+\tau}y_n) = \sum_{k=0}^{m} \sum_{j=0}^{m} c_k c_j E(e_{n-k+\tau}e_{n-j}) = \sum_{k=\tau}^{m} c_k c_{k-\tau}.$$

Similarly, for $\tau > m$ we get $E(y_{n+\tau}y_n) = 0$.

Exercise 5.4 Show that $e_n = \sum_{k=0}^{\infty} (-1)^k b^k y_{n-k}$ is well-defined, if $\sum_{k=0}^{\infty} b^{2k} < \infty$, i.e. |b| < 1. Similarly, $e_n = \sum_{k=0}^{\infty} (-1)^k \frac{1}{b^k} z_{n-k}$ is well-defined if |b| > 1.

Solution: We shall use the Cauchy-Schwartz-Buniakovskii inequality in $L_2(\Omega, \mathcal{F}, P)$. Thus

$$|E(y_n y_{n-\tau})| = |\langle y_n, y_{n-\tau} \rangle| \le ||y_n|| \, ||y_{n-\tau}|| = \sqrt{Ey_n^2 \, Ey_{n-\tau}^2} = r^y(0).$$

Let us consider the |b| < 1 case. We have

$$e_n = \lim_{N \to \infty} e_n^N$$
, with $e_n^N = \sum_{k=0}^N (-1)^k b^k y_{n-k}$.

Then using CSB we get

$$E(e_n^N)^2 \le \sum_{k=0}^N b^{2k} r^y(0) < r^y(0) \frac{1}{1-b^2}.$$

Thus (e_n^N) , $N \in \mathbb{N}$ is a uniformly convergent Cauchy sequence, it is convergent.

5.6 ARMA processes

Proposition 2 Assume that $A(z^{-1}) \neq 0$ for |z| = 1. Then there is a unique w.s.st. process satisfying $A(q^{-1})y = C(q^{-1})e$.

Exercise 5.5 Prove the above proposition.

Solution: Let us assume, that such a process does exist. As (y_n) is a wide sense stationary process, there is a unique random orthogonal measure $d\zeta^y(\omega)$, such that

$$y_n = \int_0^{2\pi} e^{in\omega} d\zeta^y(\omega).$$

The spectral representation of the process $u_n = A(q^{-1})y_n = C(q^{-1})e_n$ is

$$u_n = \int_0^{2\pi} A(e^{-in\omega}) d\zeta^y(\omega) = \int_0^{2\pi} C(e^{-in\omega}) d\zeta^e(\omega).$$

From the uniqueness of the spectral representation it follows, that

$$d\zeta^{y}(\omega) = \frac{C(e^{-in\omega})}{A(e^{-in\omega})} d\zeta^{e}(\omega).$$

As (e_n) has spectral density function, (y_n) also has spectral density function:

$$f^{y}(\omega) = \frac{C(e^{in\omega})C(e^{-in\omega})}{A(e^{in\omega})A(e^{-in\omega})}f^{y}(\omega) = \frac{1}{2\pi}|H(e^{-in\omega})|^{2},$$

where

$$H(e^{-in\omega}) = \frac{C(e^{-in\omega})}{A(=e^{in\omega})}.$$

Now, since $A(-e^{in\omega}) \neq 0$ for $\omega \in [0, 2\pi]$, obviously $f(\omega) \geq 0$. Thus there exist a process with this spectral density function.

Proposition 3 Assume that $A(z^{-1})$ and $C(z^{-1})$ are stable polynomials. Then (e_n) is the innovation process of (y_n) .

Exercise 5.6 Prove the above proposition.

5.8 ARMA processes with unstable zeros

Exercise 5.7 Let G be an all-pass transfer function, and let e' be a w.s.st. orthogonal process. Then the process e defined by

$$d\zeta^{e}(\omega) = G(e^{-i\omega})d\zeta^{e'}(\omega)$$

is also a w.s.st. orthogonal process.

Solution: The spectral density of e is

$$f(\omega) = |G(e^{-i\omega})|^2 f_{e'}(\omega) = f_{e'}(\omega),$$

since $|G(e^{-i\omega})|^2 = 1$. Thus the spectral density functions of e and e' are the same, e' is also a w.s.st. orthogonal process

Multivariate time series

6.1 Vector valued wide sense stationary processes

Exercise 6.1 Show that (z_n) is an \mathbb{R} -valued wide sense stationary process and we have

$$Ez_n^2 = \sum_{k=1}^p \sum_{l=1}^p a_k^\top R(k-l) a_l \ge 0.$$
 (6.1)

Solution:

$$Ez_n^2 = E\sum_{k=1}^p a_k^\top y_{n-k} \left(\sum_{l=1}^p a_l^\top y_{n-l}\right)^\top = E\sum_{k=1}^p a_k^\top y_{n-k} \cdot \sum_{l=1}^p y_{n-l}^\top a_l =$$

$$= \sum_{k=1}^p \sum_{l=1}^p a_k^\top \left(Ey_{n-k}y_{n-l}^\top\right) a_l = \sum_{k=1}^p \sum_{l=1}^p a_k^\top \left(R(n-k-(n-l))\right) a_l.$$

Exercise 6.2 Prove the converse statement: let $R(\tau)$, $-\infty < \tau < +\infty$ be a positive definite sequence of real-valued, $s \times s$ matrices. Then it is the auto-covariance sequence of an \mathbb{R}^s -valued, wide sense stationary Gaussian process.

Solution: (Sketch) First truncate the sequence as

$$R_N(\tau) = \begin{cases} R(\tau) & \text{if } |\tau| \le N \\ 0 & \text{if } |\tau| > N \end{cases}$$

Then there are random variables $\xi_{-N}, \ldots \xi_0, \ldots \xi_N$ with Gaussian distribution, such that the autocovariances are the given $R_N(\tau)$.

Now we can apply Kolmogorov extension theorem, since the measures satisfy the consistency conditions as $N \to \infty$. This theorem ensures, that there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a stochastic process with the above marginal distributions.

6.2 Prediction and the innovation process

Exercise 6.3 Show that $e_n \equiv 0$ is indeed equivalent to

$$H_n^y = H_{n-1}^y$$
 for all n .

Solution: It is the same, as in the scalar case.

6.3 Spectral theory

Exercise 6.4 Prove that a quadratic form $\alpha^{\top} F \alpha$, with F symmetric, determines the bilinear form corresponding to F uniquely as

$$\beta^{\top} F \gamma = \frac{1}{4} \left((\beta + \gamma)^{\top} F (\beta + \gamma) - (\beta - \gamma)^{\top} F (\beta - \gamma) \right).$$

Solution: We are in a Euclidian space. This formula gives the well-known connection between the norm an the scalar product. Especially, for $\beta = \gamma$ we get back the quadratic form:

$$\beta^{\mathsf{T}} F \beta = \frac{1}{4} \left((2\beta)^{\mathsf{T}} F(2\beta) - (\beta - \beta)^{\mathsf{T}} F(\beta - \beta) \right) = \frac{1}{4} \left((2\beta)^{\mathsf{T}} F(2\beta) \right).$$

Exercise 6.5 * Let $F(\cdot)$ be an $s \times s$ matrix-valued function on $[0, 2\pi]$ such that the increments $F(\cdot)$ are symmetric and positive semidefinite. Then for any $k, l = 1, \ldots, s$ the elements $F_{k,l}(\omega)$ are of finite variations.

Solution: For any fixed $\alpha \in \mathbb{R}^s$ the function $F_{\alpha}(\omega) = \alpha^{\top} F(\omega) \alpha$ is monotone non-decreasing. Recall the expression of the bilinear form $\beta^{\top} F(\omega) \gamma$ via the corresponding quadratic form.

Exercise 6.6 Show that for an \mathbb{R}^s -valued orthogonal wide sense stationary process (e_n) with covariance matrix $\Lambda = \mathbb{E}e_n e_n^{\top}$ we have

$$f(\omega) = \Lambda$$
 for $\forall \omega$.

Solution: Using the given $f(\omega)$ function we get

$$\frac{1}{2\pi} \int_0^{2\pi} e^{i\tau\omega} f(\omega) d\omega = \Lambda \frac{1}{2\pi} \int_0^{2\pi} e^{i\tau\omega} d\omega = \begin{cases} \Lambda & \text{if } \tau = 0 \\ 0 & \text{if } \tau \neq 0 \end{cases},$$

and this is the autocovariance matrix function of an orthogonal wide sense stationary process with covariance matrix Λ .

6.4 Filtering

Proposition 4 The spectral distribution of the process v is given by

$$dF^{v}(\omega) = H(e^{-i\omega})dF^{y}(\omega)H(e^{i\omega})^{\top}.$$

Exercise 6.7 Prove Proposition 4.

Solution: We have

$$Ey_{n+\tau}y_n^T = R(\tau) = \frac{1}{2\pi} \int_0^{2\pi} e^{i\tau\omega} dF(\omega).$$

Then

$$\begin{split} \mathbf{E} v_{n+\tau} v_n^T &= \mathbf{E} \sum_{k=0}^p h_k y_{n+\tau-k} \left(\sum_{j=0}^p h_j y_{n-j} \right)^T = \\ &= \sum_{k=0}^p \sum_{j=0}^p h_k \mathbf{E} \left(y_{n+\tau-k} y_{n-j}^T \right) h_j^T = = \sum_{k=0}^p \sum_{j=0}^p h_k \left(\frac{1}{2\pi} \int_0^{2\pi} e^{i(\tau-k+j)\omega} dF(\omega) \right) h_j^T \\ &= \frac{1}{2\pi} \int_0^{2\pi} e^{i\tau\omega} \left(\sum_{k=0}^p h_k e^{-ik\omega} \right) dF(\omega) \left(\sum_{j=0}^p h_j^T e^{ij\omega} \right) = \frac{1}{2\pi} \int_0^{2\pi} e^{i\tau\omega} dF^v(\omega). \end{split}$$

Proposition 5 Assume that the right hand side of

$$H(e^{-i\omega}) = \sum_{k=0}^{\infty} h_k e^{-i\omega k}$$

converges in $L_2^{c,r\times s}(dF)$. Then the process (v_n) under

$$v_n = \sum_{k=0}^{\infty} h_k y_{n-k}$$

is well-defined, i.e. the right hand side converges in $L_2^{c,r}(\Omega, \mathcal{F}, P)$, and the spectral distribution of (v_n) is given by

$$dF^{v}(\omega) = H(e^{-i\omega})dF^{y}(\omega)H^{\top}(e^{i\omega}).$$

Exercise 6.8 Prove the above proposition following the proof for the scalar case.

Solution: Truncate the infinite sum defining v_n at m, i.e. define

$$v_n^m = \sum_{k=0}^m h_k y_{n-k}.$$

Then the spectral representation of $v^m = (v_n^m)$ is given as

$$v_n^m = \int_0^{2\pi} e^{in\omega} H^m(e^{-i\omega}) d\zeta^u(\omega),$$

where

$$H^m(e^{-i\omega}) = \sum_{k=0}^m h_k e^{-ik\omega}.$$

Now letting m tend to infinity, the l.h.s. of the above equality converges to v_n in $L_2^{c,r}(\Omega, \mathcal{F}, P)$. Similarly, the integrand on the right hand side converges to $e^{in\omega}H(e^{-i\omega})$ in $L_2^{c,r\times s}(dF)$

6.5 Multivariate random orthogonal measures

Theorem 1 Let $d\zeta(\omega)$ be a \mathbb{C}^s -valued random orthogonal measure, with structure function $dF(\omega)$. Then the \mathbb{C}^s -valued process

$$y_n = \int_0^{2\pi} e^{in\omega} d\zeta(\omega)$$

is wide sense stationary, and its spectral distribution function is given by

$$dF^y(\omega) = 2\pi dF(\omega).$$

Exercise 6.9 Prove Theorem 1.

Solution: Apply previous Theorem about the isometry, stating

$$E I(g) I(h)^* = \int_0^{2\pi} g(\omega) \overline{h}(\omega) dF(\omega)$$

where

$$I(g) = \int_0^{2\pi} g(\omega) \cdot I \ d\zeta(\omega), \qquad I(h) = \int_0^{2\pi} h(\omega) \cdot I \ d\zeta(\omega).$$

Then

$$y_n = I(e^{in\omega}), \qquad y_{n+\tau} = I(e^{i(n+\tau)\omega}).$$

Thus

$$E y_n y_{n+\tau}^* = E I((e^{in\omega}) I(e^{i(n+\tau)\omega})^* = \int_0^{2\pi} e^{in\omega} \bar{e}^{i(n+\tau)\omega} dF(\omega) =$$

$$= \int_0^{2\pi} e^{-i\tau\omega} dF(\omega) = \frac{1}{2\pi} \int_0^{2\pi} e^{-i\tau\omega} 2\pi dF(\omega) = \frac{1}{2\pi} \int_0^{2\pi} e^{-i\tau\omega} dF^y(\omega).$$

6.7 Linear filters

Exercise 6.10 Show that the spectral representation process of v is given by

$$d\zeta^{v}(\omega) = H(e^{-i\omega})d\zeta^{y}(\omega).$$

Solution: The spectral representation of (y_n) gives

$$y_n = \int_0^{2\pi} e^{in\omega} d\zeta^y(\omega).$$

Thus

$$y_{n-k} = \int_0^{2\pi} e^{i(n-k)\omega} d\zeta^y(\omega), \quad \text{and} \quad h_k y_{n-k} = \int_0^{2\pi} h_k e^{i(n-k)\omega} d\zeta^y(\omega).$$

It follows, that

$$v_n = \sum_{k=0}^p h_k y_{n-k} = \int_0^{2\pi} \sum_{k=0}^p h_k e^{i(n-k)\omega} d\zeta^y(\omega) =$$

$$= \int_0^{2\pi} e^{in\omega} \left(\sum_{k=0}^p h_k e^{-ik\omega} d\zeta^y(\omega) \right) = \int_0^{2\pi} e^{in\omega} d\zeta^v(\omega).$$

Exercise 6.11 Assume, that the infinite series

$$H(e^{-i\omega}) = \sum_{k=0}^{\infty} h_k e^{-i\omega k}.$$

converges in $L_2^{c,r\times s}(dF^y)$. Then the spectral representation process of (v_n) is

$$d\zeta^{v}(\omega) = H(e^{-i\omega})d\zeta^{y}(\omega).$$

Solution: Truncate the infinite sum defining v_n at p, i.e. define

$$v_n^p = \sum_{k=0}^p h_k y_{n-k}.$$

Then the spectral representation of $v^p = (v_n^p)$ is given as

$$v_n^p = \int_0^{2\pi} e^{in\omega} H^p(e^{-i\omega}) d\zeta^u(\omega),$$

where

$$H^p(e^{-i\omega}) = \sum_{k=0}^p h_k e^{-ik\omega}.$$

Now letting p tend to infinity, the l.h.s. of the previous equality converges to v_n in $L_2^{c,s}(\Omega, \mathcal{F}, P)$.

Exercise 6.12 Re-derive the formula for the spectral distribution measure of v:

$$dF^{v}(\omega) = H(e^{-i\omega})dF^{y}(\omega)H^{\top}(e^{i\omega})$$

using the exercise above.

Solution: The spectral representation process of (v_n) is

$$d\zeta^{v}(\omega) = H(e^{-i\omega})d\zeta^{y}(\omega),$$

which means that the process can be represented as

$$v_n = \int_0^{2\pi} e^{in\omega} d\zeta^v(\omega) = \int_0^{2\pi} e^{in\omega} H(e^{-i\omega}) d\zeta^y(\omega).$$

Then also we have

$$v_{n-\tau} = \int_0^{2\pi} e^{i(n-\tau)\omega} H(e^{-i\omega}) d\zeta^y(\omega).$$

The covariance of these two random vectors can be written using the isometry:

$$Ev_n v_{n-\tau}^T = \int_0^{2\pi} e^{in\omega} H(e^{-i\omega}) dF^y(\omega) \overline{e^{i(n-\tau)\omega} H(e^{-i\omega})} = \int_0^{2\pi} e^{i\tau\omega} H(e^{-i\omega}) dF^y(\omega) H(e^{i\omega}).$$

Comparing it with the definition of the spectral distribution measure:

$$Ev_n v_{n-\tau}^T = \int_0^{2\pi} e^{i\tau\omega} dF^v(\omega)$$

we get the desired formula.

6.8 Proof of the spectral representation theorem

Exercise 6.13 Let $\zeta(a), 0 \leq a < 2\pi$ be an C^s -valued stochastic process such that for any $\alpha \in \mathbb{C}^s$ the complex-valued process $\alpha^{\top}\zeta(a), 0 \leq a < 2\pi$ has orthogonal increments. Then the process $\zeta(\cdot)$ itself has orthogonal increments.

Solution: Indirect. Let us assume, that there exist $0 \le a < b \le c < d \le 2\pi$, such that and the covariance matrix of the increments is not 0, i.e.

$$\mathrm{E}(\zeta(b) - \zeta(a))(\overline{\zeta}(d) - \overline{\zeta}(c))^{\top} = R \neq 0 \in \mathbb{R}^{s \times s}$$

But on the other hand for any $\alpha \in \mathbb{R}^s$ $\alpha^*R\alpha = 0$. Then also $\alpha^*R^*\alpha = 0$, and thus the quadratic form

$$\alpha^*(R+R^*)\alpha = 0, \Longrightarrow (R+R^*) = 0.$$

It means, that R is antisymmetric.

State-space representation

7.1 From multivariate AR(1) to state-space equations

Proposition 6 Let us consider the multivariate linear stochastic equation

$$x_{n+1} = Ax_n + Bv_n.$$

Let A be a stable $s \times s$ matrix. Then this equation has a unique wide sense stationary solution (x_n) , given by

$$x_{n+1} = \sum_{k=0}^{\infty} A^k B v_{n-k}.$$

It follows that x is a causal linear function of v, more exactly, for all n

$$H_{n+1}^x \subset H_n^v$$
.

Exercise 7.1 Prove the above proposition.

Solution: The spectral representation of x is given by

$$d\zeta^{x}(\omega) = A(e^{-i\omega})^{-1}d\zeta^{v}(\omega),$$

where

$$A(e^{-i\omega})^{-1} = (e^{i\omega}I - A)^{-1}B.$$

As A is stable, $\det(zI - A)$ is not zero for $|z| \ge 1$. It follows, that

$$(zI - A)^{-1} = \sum_{k=0}^{\infty} A^k z^k$$

is well defined for $|z| \geq 1$, i.e.

$$\sum_{k=0}^{\infty} A^k z^{-k}$$

is well defined for |z| < 1. Then

$$\sum_{k=0}^{\infty} A^k B v_{n-k}$$

is well defined.

Lemma 3 Let A be an $s \times s$ stable real matrix. Then

$$(e^{i\omega}I - A)^{-1} = \sum_{k=1}^{\infty} h_k e^{-ik\omega}, \qquad h_1 = I$$

with some sequences of $s \times s$ real matrices h_k , where convergence in the right hand side is understood in the sense of $L_2^{c,s\times s}(d\omega)$. In fact, convergence is also uniform in ω .

Exercise 7.2 Prove the Lemma 3.

Solution: Note that the matrix-valued function $(zI-A)^{-1}$ is analytic in $\{z: |z| > 1-\varepsilon\}$ for some $\varepsilon > 0$. Then it is analytic for |z| = 1, it can be represented as a Taylor series for $z = e^{i\omega}$.

Exercise 7.3 Prove the Proposition 6 using Lemma 3.

Solution: It was already done in Exercise 7.1.

Proposition 7 Assume, that $e^{i\omega}I - A$ is not singular for all $\omega \in [0, 2\pi]$. Then

$$x_{n+1} = Ax_n + Bv_n$$

has a unique solution.

Exercise 7.4 Prove the above Proposition 7.

Solution: Assume that a wide sense stationary solution (x_n) exists. There is a unique random orthogonal measure $d\zeta^x(\omega)$, such that

$$x_n = \int_0^{2\pi} e^{in\omega} d\zeta^x(\omega).$$

Then also show that necessarily

$$x_{n+1} = \int_0^{2\pi} e^{i(n+1)\omega} d\zeta^x(\omega).$$

and

$$Ax_n + Bv_n = \int_0^{2\pi} e^{in\omega} \left(Ad\zeta^x(\omega) + B \right) d\zeta^v(\omega).$$

From the uniqueness of the orthogonal measure we get

$$d\zeta^{x}(\omega) = (e^{i\omega}I - A)^{-1}B \, d\zeta^{v}(\omega).$$

Then the spectral representation of the autocovariance matrices gives

$$dF^{x}(\omega) = (e^{i\omega}I - A)^{-1}BdF^{y}(\omega)\left((e^{-i\omega}I - A)^{-1}B\right)\top.$$

The condition of Proposition 7 ensures, that $dF^x(\omega)$ is well-defined. Thus the state-space equation has a unique solution.

7.2 Auto-covariances and the Lyapunov-equation

Exercise 7.5 Show that P can be written as

$$P = \sum_{k=0}^{\infty} A^k B \Sigma_{vv} B^T (A^T)^k.$$

Solution: We can use the expression of (x_n) given by

$$x_{n+1} = \sum_{k=0}^{\infty} A^k B v_{n-k}.$$

The solution follows from the orthogonality of (v_n) , i.e.

$$\mathbf{E}v_n^T v_m = \begin{cases} \Sigma_{vv} & \text{if} & n = m \\ 0 & \text{if} & n \neq m \end{cases}$$

Exercise 7.6 Show directly, with purely algebraic arguments, that, if A is stable, the Lyapunov-equation

$$P = APA^T + B\Sigma_{vv}B^T$$

has a unique solution P, and show that it can be written in the form

$$\sum_{k=0}^{\infty} A^k B \Sigma_{vv} B^T (A^T)^k.$$

Prove that the solution P, given by this formula, is positive semi-definite.

Solution: Iterate equation

$$P = APA^T + B\Sigma_{m}B^T$$
.

We get

$$P = APA^{T} + B\Sigma_{vv}B^{T} = A^{2}P(A^{T})^{2} + AB\Sigma_{vv}B^{T}A^{T} + B\Sigma_{vv}B^{T} = \dots$$
$$= A^{n+1}P(A^{T})^{n+1} + \sum_{k=0}^{n} A^{k}B\Sigma_{vv}B^{T}(A^{T})^{k}.$$

The first term on the last expression tends to zero with exponential rate, since A is stable. Thus we get the given representation.

Exercise 7.7 Consider two Lyapunov equations

$$P = APA^T + B\Sigma_{vv}B^T$$

with a common stable A and such that

$$B_1 \Sigma_{1,vv} B_1^T \leq B_2 \Sigma_{2,vv} B_2^T$$
.

Let the solutions be denoted by P_1 and P_2 . Show that $P_1 \leq P_2$.

Solution: If A is stable, then

$$B_1 \Sigma_{1,vv} B_1^T \le B_2 \Sigma_{2,vv} B_2^T \qquad \Longrightarrow \qquad A B_1 \Sigma_{1,vv} B_1^T A^T \le A B_2 \Sigma_{2,vv} B_2^T A^T.$$

Thus

$$P_1 = \sum_{k=0}^{\infty} A^k B_1 \Sigma_{vv} B_1^T (A^T)^k \le \sum_{k=0}^{\infty} A^k B_2 \Sigma_{vv} B_2^T (A^T)^k = P_2.$$

Exercise 7.8 Prove that for $\tau < 0$ we have $R(\tau) = R(-\tau)^T$.

Solution:

$$R(\tau) = E y_{n+\tau} y_n^T = (E y_n y_{n+\tau}^T)^T = (E y_{n-\tau} y_n^T)^T = R(-\tau)^T.$$

Exercise 7.9 Prove the validity of the recursion

$$P_{n+1} = AP_nA^T + BB^T$$

for P_n .

To get the covariance function of (x_n) take the dyadic product of

$$x_{n+1} = Ax_n + Bv_n$$

with itself:

$$x_{n+1}x_{n+1}^{T} = Ax_{n}x_{n}^{T}A^{T} + Bv_{n}v_{n}^{T}B^{T} + Ax_{n}v_{n}^{T}B^{T} + Bv_{n}x_{n}^{T}A^{T}.$$

Now as $x_n \in H_{n-1}^v$, we have

$$x_n \perp v_n$$
.

Then taking expectation on both sides of the above equation we get given recursion.

Exercise 7.10 Show that if A is stable, then P_n converges to the unique solution of

$$P = APA^T + B\Sigma_{vv}B^T.$$

Solution: Reiterating the previous recursion, we get

$$P_{n+1} = AP_nA^T + BB^T = A(AP_{n-1}A^T + BB^T)A^T + BB^T =$$

$$= A^2P_{n-1}A^{2T} + ABB^TA^T + BB^T = \dots = A^nP_0(A^n)^T + \sum_{k=0}^{n-1} A^kBB^T(A^T)^k.$$

As A is stable:

$$\lim_{n \to \infty} A^n P_0(A^n)^T = 0,$$

thus

$$\lim_{n \to \infty} P_n = \sum_{k=0}^{\infty} A^k B B^T (A^T)^k = P_{\infty}.$$

In Exercise 7.6 we have shown that this is the solution of the discrete Lyapunov equation. \Box

7.3 State space representation of ARMA processes

Exercise 7.11 Prove that R_N is non-singular by taking a state-space representation of y.

Kalman filtering

8.1 The filtering problem

Exercise 8.1 Provide an argument for the validity of

$$H_n^y = H_{n-1}^y \oplus \mathcal{L}(\nu_n).$$

Solution: We have $\nu_n = y_n - (y_n | H_{n-1}^y)$, thus ν_n is the innovation process of y_n .

8.2 The Kalman-gain matrix

Exercise 8.2 Prove that the projection of the random vector $x \in L_2^s(\Omega, \mathcal{F}, P)$ onto the finite dimensional subspace of $L_2(\Omega, \mathcal{F}, P)$ spanned by the components of ν is given by

$$\widehat{x} = \mathbf{E}(x\nu^T)(\mathbf{E}(\nu\nu^T))^{-1}\nu.$$

Solution: Obviously, \widehat{x} is an element of the finite dimensional subspace of $L_2(\Omega, \mathcal{F}, P)$ spanned by the components of ν . Also, $x - \widehat{x}$ is orthogonal to the components of ν , since

$$E((x-\widehat{x})\nu^{T}) = Ex\nu^{T} - E\widehat{x}\nu^{T} = Ex\nu^{T} - E(E(x\nu^{T})(E(\nu\nu^{T}))^{-1}\nu)\nu^{T} =$$

$$= Ex\nu^{T} - E(x\nu^{T})(E(\nu\nu^{T}))^{-1}E(\nu\nu^{T}) = 0.$$

Thus \widehat{x} is the projection.

Exercise 8.3 Derive the above expression

$$H^{-1}(q^{-1}) = I - C(qI - A + KC)^{-1}K$$

from $H(q^{-1}) = C(qI - A)^{-1}K + I$ using the matrix inversion lemma.

Solution: The matrix inversion Lemma is the following: Let

$$F = \left(\begin{array}{cc} A_0 & B_0 \\ C_0 & D_0 \end{array}\right)$$

be a 2×2 block-matrix with A_0 and D_0 being square matrices. Assume that A_0 , D_0 are non-singular and so is $A_0 - B_0 D_0^{-1} C_0$. Then

$$(A_0 - B_0 D_0^{-1} C_0)^{-1} = A_0^{-1} + A_0^{-1} B_0 (D_0 - C_0 A_0^{-1} B_0)^{-1} C_0 A_0^{-1}.$$

Now we apply this lemma with the following choices:

$$A_0 = I$$
, $B_0 = C$, $C_0 = -K$, $D_0 = qI - A$.

Then we get

$$(I + C(qI - A)^{-1}K)^{-1} = I - C(qI - A + KC)^{-1}K.$$

Identification of AR processes

9.1 Least Squares estimate of an AR process

Exercise 9.1 Prove that R^* is non-singular.

Solution: Obviously R^* is positive semidefinite, as it is the covariance matrix of $(y_{n-1}, \ldots y_{n-p})$. The singularity of R^* would imply the singularity of the process y. \square

Exercise 9.2 Prove that R^* is non-singular by taking a state-space representation of y.

Hint: Show that the pair (\tilde{A}, b) , as defined in Section 7, is controllable.

Exercise 9.3 * Show that Condition

$$\lim_{N} (-r_N) = \lim_{N} \frac{1}{N} \sum_{n=1}^{N} \varphi_n y_n = E\varphi_n y_n = -r^* \quad \text{a.s.}$$

implies that

$$\lim_{N} \frac{1}{N} \sum_{n=1}^{N} \varphi_n e_n = E \varphi_n e_n = 0 \quad \text{a.s.}$$
(9.1)

9.2 The asymptotic covariance matrix of the LSQ estimate

Exercise 9.4 Assume that (e_n) is Gaussian. Show that $(\sum_{n=1}^N y_{n-1}y_{n-1})^{-1}$ has no finite expectation.

Solution: We have

$$\sum_{n=1}^{N} y_{n-1} y_{n-1} \le C \sum_{n=1}^{N} y'_{n-1} y'_{n-1},$$

where y'_n is an i.i.d. sequence of standard normally distributed random variables, hence the latter sum has a χ^2 distribution with N degrees of freedom.

9.3 The recursive LSQ method

Exercise 9.5 Assume that A and D are non-singular. Then

$$\frac{d}{d\varepsilon} \left(A - \varepsilon B D^{-1} C \right)^{-1} \bigg|_{\varepsilon=0} = A^{-1} B D^{-1} C A^{-1}.$$

Solution: If $A = A(\varepsilon)$ is nonsingular, differentiable function of ε , then

$$\frac{d}{d\varepsilon} (A(\varepsilon))^{-1} = (A(\varepsilon))^{-1} \frac{d}{d\varepsilon} A(\varepsilon) (A(\varepsilon))^{-1}.$$

Now $A(\varepsilon) = A - \varepsilon B D^{-1} C$, thus

$$\frac{d}{d\varepsilon} \left(A - \varepsilon B D^{-1} C \right)^{-1} = \left(A - \varepsilon B D^{-1} C \right) \left(A - \varepsilon B D^{-1} C \right) \left(A - \varepsilon B D^{-1} C \right).$$

Substituting $\varepsilon = 0$ we get the proposition of the exercise.

Exercise 9.6 Prove the Sherman-Morrison lemma.

Solution: This is a special case of the matrix inversion lemma. We consider the following block-matrix:

$$F = \left(\begin{array}{cc} A & b \\ c^T & -1 \end{array}\right).$$

Then we have

$$(A - b(-1)c^{T})^{-1} = A^{-1} + A^{-1}b((-1) - c^{T}A^{-1}b)^{-1}c^{T}A^{-1} =$$

$$= A^{-1} + A^{-1}bc^{T}A^{-1}\frac{-1}{1 + c^{T}A^{-1}b}.$$

Identification of MA and ARMA models

10.1 Identification of MA models

Exercise 10.1 Prove that the stability of $C(z^{-1})$, implying the stability of \widetilde{C} , yields that

$$E |x_n^*(\theta) - x_n(\theta)|^2 = O(\gamma^n)$$

with any γ such that $\gamma > \varrho(\widetilde{C})$, with $\varrho(\widetilde{C})$ denoting the spectral radius of \widetilde{C} (known to be less then 1).

Solution: Use the state-space representations for both processes, and take the difference of the two state-space equations. Exploit linearity to see the effect of the differences in initial values.

Exercise 10.2 Provide an expression of the coefficients c_l in terms of the roots, say γ_l , and express $\frac{\partial}{\partial \gamma}$ via $\frac{\partial}{\partial \theta}$.

Solution: The connection can be expressed via the following equation:

$$C(z^{-1}) = 1 + \sum_{l=1}^{r} c_l z^{-l} = \prod_{l=1}^{r} (1 - z^{-1} \gamma_l).$$

The derivative w.r.t. γ_l is:

$$\frac{\partial}{\partial \gamma_l} C(z^{-1}) = z^{-1} \prod_{j \neq l} (1 - z^{-1} \gamma_j) = \frac{z^{-1}}{1 - z^{-1} \gamma_l} C(z^{-1}).$$

10.2 The asymptotic covariance matrix of $\widehat{\theta}_N$

Exercise 10.3 Show that the first term on the r.h.s. of the equality

$$\lim_{N} \frac{1}{N} V_{\theta\theta N}(\theta^*) = \mathbf{E} \bigg(\varepsilon_{\theta\theta n}^*(\theta^*) e_n + \varepsilon_{\theta n}^*(\theta^*) \varepsilon_{\theta n}^{*T}(\theta^*) \bigg).$$

is zero.

Solution: As we have seen before $\varepsilon_{\theta\theta n}^*(\theta)$ is in the subspace spanned by $\{\varepsilon_{n-k}(\theta): k=1,2,\ldots\}$. For $\theta=\theta^*$ this set is H_{n-1}^e , and $e_n\perp H_{n-1}^y$.

10.3 Identification of ARMA models

Exercise 10.4 Show that if $A^*(z^{-1})$ and $C^*(z^{-1})$ have no common factor then R^* is non-singular.

Solution: Write $R^* = \mathbb{E}\varepsilon_{\theta n}^{*T}(\theta^*)\varepsilon_{\theta n}^*(\theta^*)$, and assume that R^* is singular. Then there exists a pair of vectors, say (u^T, v^T) such that

$$(u^T, v^T)\varepsilon_{\theta n}^{*T}(\theta^*) = 0$$

a.s. Defining the polynomials $U(q^{-1})$ and $V(q^{-1})$ with their coefficients being equal to the components of u and v, resp., we arrive to the equality

$$\frac{U}{A^*}e - \frac{V}{C^*}e = 0$$

a.s. Rearranging this we get

$$UC^* - VA^* = 0,$$

which contradicts to the assumption that $A^*(z^{-1})$ and $C^*(z^{-1})$ have no common factor.

Exercise 10.5 Show that if $A^*(z^{-1})$ and $C^*(z^{-1})$ have a common factor then R^* is singular.

Solution: Apply the previous arguments in reverse order.

Exercise 10.6 Compute the gradient process for the following models: MA(1), AR(1), ARMA(1,1).

Solution:

MA(1): The process is

$$y_n = e_n + c^* e_{n-1}.$$

The inverse process for |c| < 1 is:

$$\varepsilon_n + c\varepsilon_{n-1} = y_n.$$

The gradient process can be written as

$$\varepsilon_{c,n} + c\varepsilon_{c,n-1} + \varepsilon_{n-1} = 0, \implies \varepsilon_{c,n} + c\varepsilon_{c,n-1} = -\varepsilon_{n-1}.$$

AR(1): The process is

$$y_n + a^* y_{n-1} = e_n.$$

The inverse process for |a| < 1 is:

$$\varepsilon_n = y_n + ay_{n-1}.$$

The gradient process can be written as

$$\varepsilon_{a,n} = y_{n-1}$$
.

ARMA(1,1): The process is

$$y_n + a^* y_{n-1} = e_n + c^* e_{n-1}.$$

The inverse process for |a| < 1 and |c| < 1 is:

$$\varepsilon_n + c\varepsilon_{n-1} = y_n + ay_{n-1}.$$

The gradient process can be written as

$$\varepsilon_{c,n} + c\varepsilon_{c,n-1} = -\varepsilon_{n-1},$$

$$\varepsilon_{a,n} + c\varepsilon_{a,n-1} = y_{n-1}.$$

Exercise 10.7 Show that for $\theta = \theta^*$ we have

$$\varepsilon_{\theta}(\theta)_{|\theta=\theta^*} = \left(\frac{1}{A^*} \left[q^{-1} \dots q^{-p} \right] e, -\frac{1}{C^*} \left[q^{-1} \dots q^{-r} \right] e \right)^T.$$

Solution: In Lemma 10.10. it was proved, that

$$C(q^{-1}) \varepsilon_{\theta}(\theta) = -\phi(\theta).$$

Substituting $\theta = \theta^*$ we get

$$C^*(q^{-1}) \varepsilon_{\theta}(\theta^*) = -\phi(\theta^*) = -(-y_{n-1}, ..., -y_{n-p}, e_{n-1}, ..., e_{n-r})^T.$$
(10.1)

Here we used $\varepsilon_n(\theta^*) = e_n$. The first part of the vector can be written as

$$(y_{n-1},...,y_{n-p})^T = ([q^{-1}...q^{-p}]y)^T = ([q^{-1}...q^{-p}]\frac{C^*}{A^*}e)^T.$$

The second part of the vector is simply:

$$-(e_{n-1},...,e_{n-r})^T = -(\lceil q^{-1}...q^{-r}\rceil e)^T$$

Then dividing equation (10.1) by $C^*(q^{-1})$ we get the statement of the exercise.

Stochastic volatility: ARCH and GARCH models

12.2 Stochastic volatility models

Exercise 12.1 Show that that the triplet $(\varepsilon_n, y_n, \sigma_n)$ itself is jointly strictly stationary.

Solution: First we show that (y_n, σ_n) is jointly strictly stationary. Once we know $y_n, y_{n-1}, y_{n-2}, \ldots$, any σ_k is a deterministic function of them for $k \leq n+1$. Moreover, the equation $\varepsilon_n = y_n/\sigma_n$ allows a deterministic computation of the error process if we know the other two. The process (y_n) is strictly stationary, thus the joint distribution of the history $y_n, y_{n-1}, y_{n-2}, \ldots$ does not change under time shift. $(\varepsilon_n, y_n, \sigma_n)$ is obtained by a deterministic function from (y_n) , consequently their joint distributions are also insensitive to time shifts.

Exercise 12.2 Show that under the conditions above

$$E[y_n|\mathcal{F}_{n-1}^y] = 0 \quad \text{a.s.}$$

In other words (y_n) is a martingale difference process.

Solution: Write

$$E[y_n|\mathcal{F}_{n-1}^y] = E[\sigma_n \varepsilon_n | \mathcal{F}_{n-1}^y] = \sigma_n E[\varepsilon_n | \mathcal{F}_{n-1}^y] = 0.$$

The first equality is just the definition of y_n , the second uses the fact that σ_n is a function of the history of (y_n) . The is the result of (ε_n) being i.i.d.

Exercise 12.3 Show that under the conditions above

$$\mathrm{E}[y_n^2|\mathcal{F}_{n-1}^y] = \sigma_n^2$$
 a.s.

Solution: Following the lines of the previous solution we get

$$E[y_n^2|\mathcal{F}_{n-1}^y] = E[\sigma_n^2 \varepsilon_n^2 | \mathcal{F}_{n-1}^y] = \sigma_n^2 E[\varepsilon_n^2 | \mathcal{F}_{n-1}^y] = \sigma_n^2.$$

Exercise 12.4 Show that under the conditions above (y_n) is a w.s.st. orthogonal process.

Solution: For n > m we have

$$E[\sigma_n \varepsilon_n \sigma_m \varepsilon_m | \mathcal{F}_{n-1}^y] = E[\sigma_n \varepsilon_n \sigma_m \varepsilon_m | \mathcal{F}_{n-1}^\varepsilon] = \sigma_n \sigma_m \varepsilon_m E[\varepsilon_n | \mathcal{F}_{n-1}^\varepsilon] = 0.$$

12.4 State space representation

Exercise 12.5 Show that X_n defined by the right hand side of

$$X_n^* = u_n + \sum_{k=1}^{\infty} A_n A_{n-1} \dots A_{n-k+1} u_{n-k}$$

satisfies the state equation

$$X_{n+1}^* = A_{n+1}^* X_n^* + u_{n+1}, \quad n \in \mathbb{Z}$$

corresponding to the GARCH process.

Solution:

$$A_{n+1}X_n^* = A_{n+1}u_n + A_{n+1}\sum_{k=1}^{\infty} A_n A_{n-1} \dots A_{n-k+1}u_{n-k}$$
$$= \sum_{k=0}^{\infty} A_{n+1}A_n \dots A_{n-k+1}u_{n-k} = X_{n+1}^* - u_{n+1}$$

Exercise 12.6 Prove uniqueness as stated in the theorem.

Hint: Let (X_{1n}) and (X_{2n}) be two solutions. Consider the dynamics for the difference process $(X_{1n} - X_{2n})$.

12.5 Existence of a strictly stationary solution

Exercise 12.7 Show that (u_n) is sub-additive, i.e. we have for any n, m > 0 the inequality $u_{n+m} \leq u_n + u_m$.

Solution: We have

$$u_{n+m} = E \log ||A_{n+m} \dots A_{n+1} A_n \dots A_1||.$$

The norm is sub/multiplicative, i.e.

$$||A \cdot B|| \le ||A|| \cdot ||B||.$$

Thus

$$\log \|A_{n+m} \dots A_{n+1} A_n \dots A_1\| \leq \log(\|A_{n+m} \dots A_{n+1}\| \cdot \|A_n \dots A_1\|)$$

$$= \log \|A_{n+m} \dots A_{n+1}\| + \log \|A_n \dots A_1\|.$$

Taking expectation we get the statement of the Exercise.

Lemma 4 Let (u_n) be a sub-additive sequence. Then the limit

$$\lambda = \lim_{n \to \infty} \frac{1}{n} u_n$$

exists, where $-\infty \leq \lambda < +\infty$, moreover

$$\lambda = \inf_{n \to \infty} \frac{1}{n} u_n.$$

Exercise 12.8 Prove the above lemma.

Solution: Let $\lambda = \inf_{n \to \infty} \frac{1}{n} u_n$. Take $\varepsilon > 0$ and choose a k such that $u_k/k < \lambda + \varepsilon$. Then for any integer n we have

$$u_{nk} \le nu_k, \quad \Longrightarrow \quad \frac{u_{nk}}{nk} < \lambda + \varepsilon.$$

Moreover, for any $0 \le r < k$ and n large enough we get

$$\frac{1}{nk+r}u_{nk+r} \le \frac{1}{nk+r}(u_{nk}+u_r) \le \frac{1}{nk+r}(u_{nk} + \max_{0 \le s \le k} u_s) < \lambda + 2\varepsilon.$$

Consequently $\limsup_{n\to\infty} \frac{1}{n}u_n < \lambda + 2\varepsilon$.

Exercise 12.9 Prove that for any $\varepsilon > 0$ there exist finite r.v.-s $C_n(\omega, \varepsilon)$ such that for any n we have

$$||A_n A_{n-1} \dots A_{n-k+1}|| \le C_n(\omega, \varepsilon) e^{(\lambda(A) + \varepsilon)(n-k)}.$$

Show that $C_n(\omega, \varepsilon)$ can be assumed to be a stationary sequence.

Solution: After taking the logarithm we get the following constraint for $C_n(\omega, \varepsilon)$:

$$\log ||A_n A_{n-1} \dots A_{n-k+1}|| - (\lambda(\mathcal{A}) + \varepsilon)(n-k) \le \log C_n(\omega, \varepsilon).$$

By the definition of the top-Lyapunov exponent the left hand side tends to $-\infty$ as $k \to \infty$. Therefore

$$\sup_{k} (\log ||A_n A_{n-1} \dots A_{n-k+1}|| - (\lambda(A) + \varepsilon)(n-k)) < \infty.$$

Choose this value as $C_n(\omega, \varepsilon)$.

Exercise 12.10 Prove that for any sequence of r.v.-s (u_n) the condition

$$\sup_{n} E \log^{+} |u_{n}| < +\infty$$

implies that for any $\varepsilon > 0$ there exists a r.v. $C(\omega, \varepsilon)$ such that

$$|u_n| \le C(\omega, \varepsilon)e^{\varepsilon n}$$
.

Hint: Show that for any fix C > 0 the probability that the events $\{|u_n| > Ce^{\varepsilon n}\}$ occur infinitely often is 0. For this use the Borel-Cantelli lemma.

High-frequency data. Poisson processes

13.3 Poisson point processes on a general state space

Exercise 13.1 Show that μ is non-atomic, i.e. for all $x \in S$ we have $\mu(\{x\}) = 0$.

Solution: Clearly $N(\{x\}) = |\Pi \cap \{x\}|$ can only be 0 or 1. On the other hand, if we had $\mu(\{x\}) = \varepsilon > 0$, then $N(\{x\})$ would follow a Poisson distribution with a positive parameter. But this can take values larger than one with positive probability, which is a contradiction.

Exercise 13.2 Show that for any $A_1, A_2 \in \mathcal{G}$ with $\mu(A_i) < \infty$ we have

$$cov(N(A_1), N(A_2)) = \mu(A_1 \cap A_2).$$

Solution: Let $B = (A_1 \cap A_2)$. We may write the covariance as follows:

$$cov(N(A_1), N(A_2)) = cov(N(A_1 \setminus B) + N(B), N(A_2 \setminus B) + N(B)).$$

Using the bi-linearity of the covariance we can expand the r.h.s., and observe that all but one term vanishes due to independence. Thus

$$\operatorname{cov}(N(A_1),N(A_2)) = \operatorname{cov}(N(B),N(B)).$$

But the variable N(B) follows a Poisson distribution with parameter $\mu(B)$, consequently its variance is indeed $\mu(B)$.

Theorem 2 Let Π be a Poisson process with mean measure μ on S and let $S_1 \subset S$ be measurable. Then

$$\Pi_1 = \Pi \cap S_1$$

is a Poisson process on S with mean measure

$$\mu_1(A) = \mu(A \cap S_1).$$

Exercise 13.3 Prove the above theorem.

Solution: We verify the requirements of the definition. For Π , (i) holds for any $A_1 \cap S_1, A_2 \cap S_1, \ldots, A_n \cap S_1 \subset S$ provided that A_i are disjoint. But

$$N(A_i \cap S_1) = N_1(A_i),$$

thus (i) holds for Π_1 . Similarly

$$N_1(A) = N(A \cap S_1) \stackrel{\mathcal{L}}{=} P(\mu(A \cap S_1)) = P(\mu_1(A)).$$

Theorem 3 Let Π be a Poisson process in \mathbb{R}^D with rate function $\lambda(x_1,...,x_D)$. Let d < D and let

$$\Pi_d$$

be the projection of Π on the first d coordinates. Then Π_d is a Poisson-process with rate function

$$\lambda^*(x_1, ..., x_d) = \int ... \int \lambda(x_1, ..., x_D) dx_{d+1} ... dx_D.$$

Exercise 13.4 Prove the above projection theorem.

Solution: Apply the mapping theorem with

$$f(x_1,...,x_D) = (x_1,...,x_d).$$

13.4 Construction of Poisson processes

Proposition 8 Let $X_1, ..., X_n$ be i.i.d. on S according to the probability measure η . Assume that η has no atom. Then

$$\Pi = \{X_1, ..., X_n\}$$

is a Bernoulli process.

Exercise 13.5 Prove the above proposition.

Solution: Verify

$$P(N(A_0) = n_0, ..., N(A_k) = n_k) = \frac{n!}{n_0! ... n_k!} \eta(A_0)^{n_0} ... \eta(A_k)^{n_k}$$

for the counts

$$N(A) = \#\{r : X_r \in A\}.$$

Use the fact that all X_i are different almost surely.

Exercise 13.6 Work out the details of the proof of the existence of a Poisson process.

Solution: First assume that $\mu(X) = \lambda < \infty$. Define $\eta(A) = \mu(A)/\mu(X)$. Choose the number of points in X, say N according to $P(\lambda)$. With N being fixed, construct the realization of a Bernoulli process. Then the resulting process will be a Poisson point process with intensity measure μ . The case $\mu(X) = \infty$ is handled by first writing

$$X = \bigcup_{i=1}^{\infty} X_i$$

so that $\mu(X_i) = \lambda_i < \infty$, (assuming that μ is σ -finite.)

13.5 Sums and integrals over Poisson processes

Exercise 13.7 Prove the two identities:

$$E(\Sigma) = \int_{S} f(x)\mu(dx).$$

and, if

$$\Sigma_1 = \sum_{x \in \Pi} f_1(x), \qquad \Sigma_2 = \sum_{x \in \Pi} f_2(x),$$

then

$$Cov(\Sigma_1, \Sigma_2) = \int_S f_1(x) f_2(x) \mu(dx).$$

Solution: Both identities are true for step-functions. From there the final result follows by a simple limiting argument. \Box

Exercise 13.8 Provide a formal proof for the above expression of $var(\Sigma)$ by differentiating the master equation

$$E(e^{it\Sigma}) = \exp\{\int_{S} (e^{itf(x)} - 1)\mu(dx)\}$$

w.r.t. t once and twice, and setting t = 0.

Solution: Formal differentiation of the l.h.s. gives

$$\frac{d}{dt}E(e^{it\Sigma}) = Ei\Sigma(e^{it\Sigma}) = Ei\Sigma,$$

when setting t = 0. Similarly, formal differentiation of the r.h.s. gives

$$\exp\left\{\int_{S} \left(e^{itf(x)} - 1\right)\mu(dx)\right\} \cdot \int_{S} if(x)e^{itf(x)}\mu(dx) = \int_{S} if(x)\mu(dx)$$

when setting t = 0, which proves the first claim. We proceed with the second derivatives similarly.

Exercise 13.9 Provide a formal proof for the above expression of $cov(\Sigma_1, \Sigma_2)$ by considering the master equation

$$E(e^{it_1\Sigma_1 + it_2\Sigma_2}) = \exp\{\int_S (e^{it_1f_1(x) + it_2f_2(x)} - 1)\mu(dx)\}.$$

and taking mixed second order partial derivatives

$$\frac{\partial^2}{\partial t_1 \partial t_2}$$

and setting $t_1 = t_2 = 0$.

Solution: Follow the proof of the previous exercise.

High-frequency data. Lévy Processes

14.1 Motivation and basic properties

Exercise 14.1 Show that the characteristic function of L_t can be written in the form

$$Ee^{iuL_t} = e^{t\psi(u)}$$
.

Solution: Write $Ee^{iuL_t} = e^{\rho_t(u)}$. Since the increments are i.i.d. we have

$$\rho_t(u) + \rho_{\Delta t}(u) = \rho_{t+\Delta t}(u).$$

Since $\rho_t(u)$ is continuous in t, it follows that $\rho_t(u) = t\psi(u)$ with some $\psi(u)$, as stated.

Theorem 4 Let (L_t) be a pure-jump Lévy process (having no Brownian motion component), with finite variation trajectories, defined by

$$L_t = \int_0^t \int_{\mathbf{R}^1} x N(ds, dx). \tag{14.1}$$

Then

$$E\left[e^{iuL_t}\right] = \exp\left[t\left(ibu + \int_{\mathbf{R}^1} \left(e^{iux} - 1\right)\nu(dx)\right)\right].$$

Exercise 14.2 Provide a derivation of the above simplified version of the Lévy-Khintchine formula for processes with finite variation trajectories, using Campbell's theorem.

Solution: For pure-jump Lévy processes with finite variation trajectories given by (14.1) the integrability condition

$$\int_{\mathbf{R}^1} \min(|x|, 1) \nu(dx) < \infty,$$

implies the integrability condition present in Campbell's theorem with f(t',x) = x for $0 \le t' \le t$. Then we will have $\Sigma_f = L_t$. The expression given for $\mathrm{E}\left[e^{iuL_t}\right]$ given by Campbell's theorem is then just the simplified form of the Lévy-Khintchine formula: