Chapter 1

Discussion of Probability and
Stochastic Processes

Introduction

The purpose of this book is to present some particular topics from the
theory of stochastic processes which have found applications in control and
communications engineering. The book has been written on the assumption
that the reader has already had an introductory course in probability
theory. Nevertheless, for a variety of reasons it seems appropriate and
useful to begin with a review of that subject.

In this chapter we provide a review of the main ideas from probability
theory that will be needed in understanding the material in this book.
Beyond that, we will introduce one or two ideas which will probably be new
to the reader, such as the Hilbert space of second-order random variables,
that also will be handy to have available. Finally, after we define some
terms and develop some concepts, we will explain what we hope the student
will acquire from studying the material in this book, and provide a brief
survey of the task to be undertaken.

In order to do that, we will provide a tentative definition of the term
“stochastic process,” as well as a brief discussion of certain kinds of
stochastic processes which will be encountered again subsequently. The end
of the chapter also contains a short statement explaining why the book has
been written the way it has.

Probability

It is widely agreed that a good way to study probability theory is to base it
on set theory. We will approach the subject from that standpoint. The term
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2 DISCUSSION OF PROBABILITY AND STOCHASTIC PROCESSES

““set” is, in very rigorous treatments, considered to be an undefined concept

which includes certain properties that are assumed in the initial axioms
upon which the whole subject is based. Intuitively, a set is a collection of
objects. In probability theory, these “objects” are elementary events. In set
theory, the set of all the objects with which one intends to deal is taken as
the universal set. In probability theory, the universal set is called the sample
space.

Suppose one does an experiment in which the element of randomness is
known to play a role. For example, conduct a survey by selecting some
category of people and asking them questions, or make repeated measure-
ments of some physical variable under circumstances where experimental
error is known not to be negligible. Such an experiment is sometimes called
a random experiment. It is not the structure of the experiment that is
random; instead, randomness refers to the fact that the outcome cannot be
predicted precisely in advance.

The suatistics of the experiment refers, at the most primitive level, simply
to the data itself. On a more refined level, “statistics” also refers to certain
properties the data is found to have after subjecting it to some numerical
processing. Probability theory is used to analyze such a random experiment.
It is used to decide what kind of numerical processing is appropriate for the
data and what kind of statements one can make with confidence concerning
the statistics. Even more basically, probability theory is used to determine
how the experiment should be structured so that one can make meaningful
statements with confidence.

In performing such an analysis using probability theory, it turns out to
be a disadvantage to have a sample space that is too large or too small.
Therefore, the choice of sample space is usually tailored to the experiment
in question. For example, suppose the experiment is to flip a coin 10 times,
and record the outcome of each flip, that is, whether it is heads or tails. A
sample space with only two points in it, heads and tails, is too small and is
actually not useful. A sample space with infinitely many points in it is
certainly large enough. The problem is, it is so large as to be unwieldy, and
it may lead one into mathematical distress of a kind that one prefers to
avoid if there be a way of avoiding it.

The sample space for the above experiment which turns out to be “just
right” is the set of all binary sequences of length 10. There are 21 = 1024 of
these, so this sample space contains 1024 points. Each point is an “elemen-
tary event,” that is, a complete sequence of 10 flips. A single flip is not an
elementary event.

In doing mathematical probability theory this way, a numerical probabil-
ity would first be assigned to each elementary event (each sequence of
length 10). The value of the probability assigned to each event must be a
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real number between 0 and 1, and the sum of the values over all 1024 points
of the sample space must be exactly 1.

At this juncture, we can look at various subsets of the sample space, for
example, the subset consisting of all sequences having heads occur on thp
first flip. The sum of the values of probability over all of the points in this
subset is, by definition, the probability of getting a head on the first flip. If
that number agrees with what you intuitively feel ought to be the case, then
you may say that your coin-flipping model is realistic. On the other hand, if
that is not the value that you think the event of getting a head on the first
flip should have, then you must change the probabilities assigned to the
elementary events until things come out the way you want them to.

Probability theory will show you how to make calculations from your
mathematical model concerning the probabilities of various events. It is up
to you to take the responsibility for deciding whether or not the model is
realistic. If you test it in situations where the correct answer is already
known, and the model gives you the correct answer there, then you may feel
confident in trusting it in situations where the answer is unknown.

Let us now give some precise mathematical definitions. The fundamental
entity that we require in order to use probability theory is a probabflity trio
(2, o, P). The first member of the trio, £, is the sample space, which may
be either finite, countably infinite, or uncountably infinite. The second
member of the trio, &, is the algebra of admissible subsets of §, also called
the algebra of events, The third member of the trio, P, is the probability
measure defined on /. That is, P is a set function. Its argument is one of
the sets that belongs to &, and its value is a real number between 0 and 1.

If Q is a finite set, then ‘%7 is simply the collection of all subsets of £,
the so-called power set 2%. If @ is an infinite set, it is not possible in general
to assign a probability to every one of its subsets in a consistent way
without encountering mathematical difficulties. Therefore, the family of
subsets of 2 to which probabilities are assigned has to be specified. That is
what &/ is. Its members obey the rules of Boolean algebra with respect to
the operations of union, intersection, and complement. .

With these agreements in force, the only conditions that the set function
P must satisfy in order to be a probability measure are the following:

1. P(@) =0 where J = empty set

2. P()=1

3. P(A) =0 foreveryAin &

4. If A, A,,... are disjoint members of .+, then

P(kQAk) = glp(Ak)
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Random Variables

In addition to the function P defined on ./, we also consider functions
defined on £ itself. Any such function is called a random variable. If the
value of the function is a real number, it is called a real random variable; if
the value is a complex number it is called a complex-valued random
variable; if the value is a vector in R”, it is called a vector-valued random
variable; and so on. It is customary to abbreviate “random variable” by r.v.

If the set £ is infinite, then in order to avoid mathematical distress we
have to ban certain pathological functions. It is very unlikely such a
function would arise in most applications, but we will include this restric-
tion for the sake of precision. Let us explain it further.

The class of admissible random variables must agree with our algebra of
admissible sets. We will explain what “agree” means for real r.v.’s; the
extension to more general r.v.’s is a technicality. If X(w) is a real r.v., then
we want to discuss the probability that the value of X falls in some interval
1 of the real line. In order to do that, we have to be dealing with an event.
Therefore, define

X Y1) = {wE Q: X(w)e[} (1)

The symbol & means “belongs to.” It suffices for this condition to
consider only the class of semi-infinite intervals of the form I = (— o0, a],

- for every real number a. If for each a, the set X '(/) is a member of 2,
then X is an admissible r.v. ‘

Under those circumstances, we are assured that the probability P{— oo
< X < a} of the event that X is less than or equal to a is well defined. We
give this probability a special name. Since it is a function of the parameter
a, we call it the distribution function for the r.v. X. It is denoted by Fy(a).
In symbols:

Fy(a) = P{— o0 < X < a} Q)

Under appropriate circumstances, the distribution function Fy(a) turns
out to be differentiable with respect to the parameter a. This will happen
only when the sample space 2 is uncountably infinite. In those cases it is
convenient to work with the probability density function, defined as the
derivative of Fy. It has become a common practice to use the same letter
for the argument of this density function as is used to designate the random
variable itself. Although this system may be used without confusion by
those proficient in the subject, for students trying to master the fundamen-
tals it is misleading and confusing. In this book we will always use a capital
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letter for random variables. The parameter in the density function will then
be the corresponding lowercase letter.

DEFINITION. Let X be a real random variable haying a pxobability
distribution F, which is differentiable. Denote the derivative by fy. Then
we call f, the probability density function for the r.v. X. In symbols:

fo(x) = 2y (x) 3)

The values of F) are probabilities, but the values of fy are not.
Probabilities are found by integrating fx> for example:

Pla<X<b) = [Tx(x)dx (4)

It fc;llows directly from (2) that the distribution function Fy for any r.v.
X possesses the following four properties:

1. F, is nondecreasing: a < b implies Fy(a) < Fy(b)

2. lim, _,, Fy(x)=1

3. lim,, _  Fy(x)=0 &)

4. F, is continuous from the right, that is, at any discontinuity Fy
assumes the upper value.

If F, is piecewise constant, that is, a stairca§e function qonsisting of only
finite jumps and constant segments, then X is called a dlscrgte rv. If Fyy
has no discontinuities whatsoever, then X is called a continuous r.v. A
general 1.v. is sometimes called mixed. _ . .

Strictly speaking, only continuous r.v.’s with Fy dlﬁ’erenuab}e can possess
density functions, although by resorting to the use of & functions, V.Vthh is
common in engineering practice, even a discrete r.v. can be assigned a

density. : :
Suppose X is a discrete r.v. which assumes only a finite set of possﬂjl.e
values 4y, d5,...,a,, with respective probabilities p;, ps, .., Pp- Intui-

tively, we may say that X can be expected to have value a, a fraction p, of
the time. If we make many different observations of X and average the
results, then as the number of observations becomes infinite the sample
average will approach the number

= Y aps ; (5)
k=1




6 DISCUSSION OF PROBABILITY AND STOCHASTIC PROCESSES

In (5) we have written u as a sum over the range of X, that is, the set of
values assumed by X. Conceptually, it is valuable to realize that this same

quantity could also be computed by a sum over the sample space £,
specifically

p= ) X(w)P{we Q: X(w)= a,} (6)

well

The summation in (6) is accomplished by partitioning £ into disjoint
subsets A4, 4,,..., 4, such that for each k, 4, is the set of points for
which X(w) assumes the same value a,.

When X is a continuous r.v., the definition (5) generalizes to

p= [ 2felx) ax (7)

The expression (6) generalizes into the Lebesgue integral, as defined in
measure theory. A discussion of that is beyond the scope of this book.

The quantity given by (5), (6), or (7) is called the mean or expected value
of X. In rigorous treatments, the most satisfactory way of introducing the
expected value operator is to base it on a precise version of (6), which we
have here written in a symbolic form to try to suggest the underlying
concept.

Since we will mainly be concerned with r.v.’s possessing density func-
tions, we will henceforth take (7) as the definition of the mean, without
further comment.

Higher moments are defined analogously, whenever the integrals exist:
2 n
o= [ xfy(x) dx )
—~®w

When considerable work has to be done involving moments, it is useful to

make use of the properties of the characteristic function M(u), which is just
the Fourier transform of the density: :

M(u) = f_ e’ f(x) dx )
When the moment p,, exits, it may be found by the formula
B = (=)L b () | (10)
i du” : u=0

If the characteristic function is known, then the density may be recovered
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by taking the inverse Fourier transform:
. 1 i —~iux 11
[(x) = g [ e M(u) du (11)

Be careful to note that in the above definitions, the word “inverse,” t‘he
factor 1/2#, and the minus sign in the exponent .have be;n permx}ted with
respect to the way they are commonly arranged in deﬁmng'Founer trans-
forms of functions of time. In dealing with such permutations, the thing
that always remains unchanged is the fact that

£y = [T 8(x = x)f(x) dx’ (12)
-
Now, the 8§ function can always be represented by either
1 at fu{x—-x'
8(x—x")= -i;f_we G=x") gy (13)
or by
1 & —iu(x—x’
8(x—x') =5 S (=X dy (14)

Depending upon what is called the forward transform and what is called
the inverse, it must always be true that either

f=FF /1 (15)
or
f=F1FUS] (16)

Whichever applies, (15) or (16) must reduce to (12) when the appropnate
representation of the 8 function is used from (13) or (1'4). ; :

Fourier transforms occur in this text not only in connection w%th
probability density and characteristic functions, but also in connection with
autocovariance and, to be defined later on, power spectral density func-
tions. Since the definitions of these objects do vary from one textbook to
another, it is hoped that the above discussion will help digpn?l some of the
resultant confusion. Any variation in the definition is permissible as long as
one remains consistent with their own definition and with the above
principles.
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A new r.v. Y can be generated from an existing r.v. X by making Y a
function of X:

Y =g(X) (17)

Applying the definition of the mean of Y leads us to define, in general, the
expected value of the function g( X) by

[e o]
E[g()] = [ 2(x)fx(x) dx (18)
whenever the integral exists,

It is also possible to have several r.v’s X, X,,..., X, defined on
the same underlying probability trio (£, ., P), where there is no func-
ti'onal relationship like (17) connecting one r.v. to another. To handle this
situation, one wuses the joint cumulative distribution function
Fy x,.. x(ayay,...,a,), defined by

Fy x,. . x(ay,a,,...,a,)
=P{-o0 <X, <a,-0<X,<a,,..., —o0 <X,<a,} (19)

If this function is jointly differentiable with respect to all of its arguments,
then the joint density function fy x(x), X,,..., x,) is defined by

,,,,,

fx,,)(2 ,,,,, X"(xl,xz,...,xn)

- ar
= Txy, 0%y, A Irxn., (X1 X500, %) (20)

In Fhis case it is usually expedient to introduce the vector-valued random
variable

X=1. (21)

}Vhen this is done, the joint density defined in (20) might be denoted simply
x(X).

Most of the features of one-dimensional densities can be extended in an
obvxqus way to joint densities. For example, by use of the n-dimensional
Fourier transform, a joint characteristic function is defined as a generaliza-
tion of (9).
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Independence and Conditional Probability

Given a probability trio (2, &, P), let 4 and B be two members of &7, If
the measure P assigns probabilities in such a way that

P(A N B) = P(A)P(B) (22)

then we say that the events A and B are independent.
Whether A and B are independent or not, if P(B) > 0 it is customary to
define the ratio

P(A N B)

P(B) = P(AIB) (23)

and P(A|B) is called the conditional probability of A given B. In terms of it,
the condition (22) for independence may be written

P(A|B) = P(A4) (24)

which says, knowledge of whether or not the event B has occurred has no
influence upon the probability that event 4 occurs.

Suppose X and Y are r.v.’s defined on the same trio (2, &, P). Assume
they are continuous r.v.’s, and let their joint density be fxy(x, ¥). The two
one-dimensional densities for each r.v. considered by itself, denoted respec-
tively f,(x) and fy(y), are called marginal densities. They can each be
found by marginal integration:

1) = [ fr(x ) d (25)
1) = [ Jrlx y) de (26)
Two r.v.’s that possess a joint density function are independent if and only if
Fxv(x, ¥) = fx () () 27

The ratio
Lalted) ) (8)

is called the conditional density for X, given that Y = y.
For example if a and b are two real numbers, then

[fxr(xiy) de = P((a s X < bYH(Y =) (29)
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If Y is a continuous r.v., then the event {Y =y} has probability zero.
The conditional probability on the right-hand side of (29) therefore cannot
be defined by a simple straightforward application of the definition (23).
The conditional probability in (29) can, nevertheless, be defined in a way
that is totally satisfactory from a rigorous standpoint, but it requires use of
a technical device from measure theory, called a sigma-field, which is
beyond the scope of this text.

Let X, X,,..., X, all be continuous r.v.’s defined on the same trio
(£2, o7, P), and suppose they have a joint density Txix, o x (X1 X950, X,).
Let m be an integer such that 1 < m < n. The conditional density for

Xpwi1» Xppinr oo, X,, given Xy, Xy, 0.0, X,,, denoted
Txoo XX x(Zs 1o ooy X|X15 ..., x,,) is defined as the ratio
m+1 H nI 1 m
fx,,,“ ..... X, X, .., Xm(xm+l""7xnl‘x1""’xm)
f,\',,,\(2 ,,,,, X,,(xuxz’---»xn) (30)
f,vrl,x2 ,,,,, X,,,(xl’xz""’xm)

The denominator of (30) is found by marginal integration:

fxl.xz ,,,,, Xm(xbe!""xm)

o0 o0
2/ '.'_/ fx]~X2 ,,,,, X,,(xl’xZ""’xn) dxm+1"“’dxn (31)
-~ o0

The Hilbert Space of Second-Order Random Variables

A Hilbert Space is a vector space equipped with an inner product and a
norm that is derived from the inner product. Finite-dimensional Hilbert
space is just an abstraction and generalization of finite-dimensional
Euclidean space. Infinite-dimensional Hilbert space is the extension of this
concept to an infinite number of dimensions. In that case the definition
must also be expanded to include the attribute “complete.” “Complete”
means that every infinite sequence of vectors drawn from the space, which
is Cauchy in the sense of the norm, converges to a limit vector that also
belongs to the space.

We will discuss the finite-dimensional case first. Suppose we have a set of

n random variables X, X,,..., X,, each of which has finite second mo-
ment:

EX}< o, k=12,....n (32)
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An r.v. X that obeys (32) is called a second-order r.v.
Our first task is to introduce the concepts of linear independence and
statistical independence.

DEerFINITION. The set of second-order r.v’s X, X,,..., X, is called /in-
early independent if and only if the equation
agXyt X+ 40, X,=0
141 T 64y (33)
implies ¢;=¢,= - =¢,=10

Let Fy . y(x4, X3,..., x,) be the joint cumulative distribution of
Ts A2revey "

Xy, Xy, ..., X, that is,

Fy x,. .. x (X1, X5, x,) =P{~-00 <X, <x;, k=1,2,...,n}

Let Fy(x,), k=1,2,..., n be the marginal cumulative distribution func-

tion for eachrv. X, k=1,2,..., n.
DeriNITION.  The set of r.v.’s X|, X,, ..., X, is called statistically indepen-

dent if and only if
FXI,XZ ,,,,, x,,(xpxz’-“’xn) = klleXk(Xk) (34)

This is the usual definition of mutual independence, generalizing (27).
The r.v.s X,,..., X, need not have finite second moments in order for this
definition to be usable. Also, there is no assumption that the means E[ X, ]
are zero. However, if they all have both zero mean and finite second
moment, then statistical independence implies linear independence, but not
conversely.

DEFINITION. Let X; and X, be second-order r.v.’s. Their inner product,
denoted ( X, X, ), is defined as

(X;, X,) = E[X; X, ] (35)

DEFINITION. Let X be a second-order r.v. Its norm, denoted | X||, is
defined as

I X|l = VE[ X?] (36)

Now let X;, X,,..., X, be any set of n linearly independent second-order
r.v.’s Consider the set of all possible liner combinations of these r.v.’s, that
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is, all other r.v.’s of the form

Y = i‘ X, (37)

k=1

” 2
&= (2:‘%3;)
k=1

n

= Z zn:ckchka (38)

k=1 j=1

We then have

where we have written the product of two single sums as a double
summation by changing the dummy index.

One of the problems at the end of the chapter is to prove the Schwarz
inequality
KX, Y) < IX| )Y} (39

Taking the expected value of both sides of (38) yields

IYI?=E[Y?]= ¥ ¥ ecE[X,X)]

h=1 j=1
b Z ch"j<Xk’ X;)
k-1 j=1
< 2 X ledlef K X, X))
k=1 j=1
< 2 Tledle XX,
k=1 j=1
n 2
= ( e uXku) (40)
k=1

Thus [[Y]]2 < (E7_ el 1 X D2 < oo provided lexl < o0, k=1,2,... n, so
every such r.v. of the form (37) is a second-order r.v. The set of all such
t.v.’s Y is our Hilbert space.
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We may construct an orthogonal basis for the space Vl, Vs,..., V, by
applying the Gram~Schmidt procedure to X, X, ...

Vi=X
V= x,- T2y, i
AR L L VM
and for arbitrary k,
ksl <Xk’ V‘>
V, =X, 1 41b
k k J§1 (V;’ V;) J ( )

If the original set { X;, X,,..., X, } were not in fact all linearly indepen-
dent, then the above procedure will simply return zero for the correspond-
ing V,, whenever X, is not linearly independent of { X;,..., X,_,}. In that
case, merely continue with the procedure, deleting V,. When finished, the
resulting set {1}, V;,...,V,,} for some m < n will be an orthogonal basis,
and m will be the dimension of the space spanned by { X;, X,,..., X, }.

The same procedure can be used in the case of infinitely many elements
Xy, X,,..., and in principle could be used to determine whether the
HlIlbert space is finite-dimensional or infinite-dimensional. The possibility
that we may be dealing with an infinite number of r.v.’s all defined on the
same probability trio (£, &, P), which are mutually linearly independent,
will be very important to us for the remainder of this book, because it is a
fundamental concept in the theory of random processes, to which we now
turn. v

Random Processes

Having raised the possibility of an infinite family of r.v.’s all defined on the
same sample space, we now formalize the concept.

DEFINITION. A random process (equivalently: stochastic process) is a family
{ X,: t € T'} of random variables, all defined on the same probability trio
(2, o, P). The set T is the parameter set of the random process.

In this book, all of our random processes will either be real valued,
complex valued, or vector valued (vector in R”"). If the parameter set T is
the set of integers or a subset thereof, the process is called a discrete
parameter process. If T is a subset of the real line, then the process is called
a continuous parameter process.
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In general, pthcr possibilities exist for the space in which the r.v.’s take
values (sometimes called the srare space of the process) and for the
parameter set. The ones mentioned above are the only ones used in this
book.

In Chapters 7 and 10 we will discuss a particular category of random

processes known as Markov processes. It is appropriate to provide the
relevant definition here.

DEFI‘NITION. The random process { X,: 1 € T'} is called a Markov process
provided the following circumstances hold:

Let S be any subset of the state space. Let t; (the future time) and ¢
(the present time) be any two elements of T with ;> 1, Let Q (the set of

past timCS) be any subset of 1 contammg t  such that for every te Q
14 4 ?
tp =1 Then

P{X, e5|X, 10} =P(X, e S|X, ) (42)

In words, this definition says that a Markov process is one having
the property that, given the present state of the process, the future
becomes conditionally independent of the past. To illustrate this further,
suppose {X,: t € T} is a Markov process such that all of the r.v.’s
X, are continuous r.v.’s. Let 1, <, < -.- < t,-1 <1, be a set of points
in 7. Then we may consider the joint density function
Ix. x ... X,,,( X1y X3,..., X,) and the associated conditional density function

1t tegrc

(with1 < m < n)

fx

fma1® Mima2

ol Xep Xy X,m(xm+1’xm+2"-"xnlx1sx2""’xm)

as defined in (30). Let t,, play the role of the present time r in the
preceding definition. Consider ¢, ., ..., t, as future times, and ¢,, fj. 50 et
as past times. Then, for any set {t1,5,...,1,} chosen from T with ’:he
preceding properties, the Markov nature of {X,;: t € T} means that the
following equation is identically true:

..... X, 1%, X,m(xm+1’ e XplXg, e, x,)
X,nlz\’,m(xm+l"“’xnlxm) (43)
That completes our consideration of Markov processes in this chapter. We
return to the discussion of general random processes.

‘Sihce the qualification “r € 77 is always understood, henceforth in
this book we shall simply write a random process as {X,}. Again let
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t, <t,< --- <t, be an ordered set of parameter points (usually the
parameter will be interpreted as time). Consider the random vector X of the
values th’ 2. pns X,", as in (21), and denote the joint density function by
fx(X).

Let C be an n X n matrix of real numbers, which is symmetric and
positive definite. Let p be an n-vector of real numbers. We will provide a
fuller discussion of Gaussian distributions in Chapters 2 and 3, but it is
appropriate to introduce the following definition now:

DErINITION. The random process { X,} is called a Gaussian process
provided that for any selection of the ordered set {1, 1,,...,¢,} from T,
for any integer n, there exists a positive definite n X n matrix C and an
n-vector p such that the joint density function for the random vector X
pertinent to these time points is given by

-

W exp{ ~ix-p)C(x - p.)} (44)

fx(x) =

Much of the remainder of this book is devoted to the consideration of
Gaussian processes. In (44), the notation |C| means the determinant of the
matrix C.

Two very important entities associated with any Gaussian process { X,}
are its mean p.,,

po=E{X} (45)
and its autocovariance c,,,
¢ =E{[X, - p][X, - ]} (46)

both defined for all ¢, s in T. Conversely, we show later that knowledge of
these two entities is sufficient to characterize completely a Gaussian pro-
cess.

Be careful not to jump to the conclusion that, just because the mean g,
and covariance c,; are given for some process { X,}, it necessarily follows
that { X,} is Gaussian. This conclusion is false. There are many possible
distribution laws having the same first two moments as a particular Gaus-
sian distribution, but for which the higher moments are entirely different.
As a specific example, the distribution could be bimodal. There is no way to
tell whether a distribution is unimodal, bimodal, or multimodal by looking
only at the first two moments.
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In the applications for the material presented in this book, one is usually
dealing with a physical situation in which there is an element of random-
ness and where important features of the situation are investigated by
examining a collection of measurements that emerge sequentially in time.
That is the sort of situation one would attempt to model by means of a
random process. After constructing such a model one would hope that
mathematical analysis of the model will lead one to insights that are valid
and pertinent to the actual physical situation.

In the selection and construction of such a model, there is always the
question of how detailed and explicit to make it. In the present context, this
question would be relevant to the selection of an appropriate model when
all one knows about some process { X,} are data that are equivalent to the
first two moments, or equivalently, to the mean p, and the autocovariance
¢,,- The decision that has to be made in that case is whether to commit
oneself to a specific probability distribution law or whether to leave that
feature open.

The disadvantage of choosing a model based on an explicitly specified
distribution (e.g., Gaussian) is that one has made the model more detailed
and explicit than the situation, or the data available, actually warrants. In
turn, this leads one into a false sense of confidence to make inferences and
extrapolate results far beyond what is justified by the knowledge available.
This is the peril of overspecificity.

On the other hand, if one chooses to duck the issue and assume no
specific probability law, then the only calculations that can ever be made
are those based specifically (in the case under consideration) on the first two
moments. Means and covariances of various r.v.’s can be calculated, but it
is never possible to calculate probabilities of events.

If the only operations ever performed on the processes under considera-
tion are linear, then it turns out that only the pertinent mean and covari-
ance functions ever need be considered. That is, the mean, autocovariance
of the output, and cross-covariance between output and input of a linear
system can be calculated knowing only the mean and autocovariance of the
input and the transfer function of the system. A body of theory exists for
carrying out precisely such calculations for second-order processes in linear
systems. In this way a stochastic system can be analyzed using only
deterministic quantities. For many years, this was considered to be a great
advantage.

There is a recent development that tends to reverse the situation: the
widespread popularity of computer simulation. Rather than just using the
computer to carry out the above-mentioned calculations based on second-
order theory, the incredibly high speed of modern computers makes it
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feasible both technically and economically to do so-called Monte Carlo
simulations of stochastic systems. In such a simulation, the computer
generates an ensemble of waveforms with the appropriate statistical char-
acteristics. These waveforms are applied, one by one, as inputs to the

- system, and the resulting outputs are recorded. Statistical analysis of the

resulting ensemble of outputs then permits one to make whatever calcula-
tions and inferences are appropriate to the system under consideration.

Because Monte Carlo simulation can be performed just as readily for
time-varying and nonlinear systems as for time-invariant linear systems,
this approach is steadily gaining wider acceptance and greater favor. The
reason the use of Monte Carlo simulations reverse the preference for
second-order models over specifically Gaussian models is that, in setting up
the simulation, one has to adopt some specific distribution for the random
numbers being generated. There are more compelling reasons to choose the
Gaussian distribution than any other with the same second-order statistics.

It is quite likely that any contemporary serious worker in applied
stochastic processes will become involved in computer simulations. In this
work, he will find it very handy to know some techniques for working with
actual Gaussian distributions, beyond the methods of second-order theory.
For this reason, this book includes considerable discussion of certain
features of Gaussian distributions that are likely to be useful in running
computer simulations. In particular, the next three chapters focus on this
material.

Starting with the simple one-dimensional Gaussian distribution in
Chapter 2, we cover the multidimensional distribution in Chapter 3 and
move toward random process theory by discussing sequences of finite
length in Chapter 4. Finally in Chapter 5 we present the classical second-
order theory for discrete time sequences, and move to continuous-time
processes in Chapter 6. Chapters 7, 8, and 9 cover more advanced subjects
involving continuous-time stochastic processes. Chapters 10 and 11 cover
some advanced subjects involving discrete-time stochastic processes. After
having completed the study of Chapters 1-6, the sets {7, 8,9} and {10,11}
are independent of each other. Either set may be studied on its own, at the
students’ (or the instructor’s) convenience and discretion.

Another recurring theme throughout this book is triangular factorization
of covariance matrices, which finds its parallel in continuous time in the
spectral factorization technique. In order to attempt to dispel the mystery
of this topic, it is introduced in the next chapter in the familiar procedure of
completing the square. Appendix 1 gives the basic pertinent theorem. The
idea reaches another culmination in the final chapter of the book, where it
is used to derive the Kalman filter via the concept of the innovations
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process. In the discussion of the innovations process in Chapter 11, we will
again meet the Gram-Schmidt orthogonalization procedure in the Hilbert
space of second-order random variables.

This book not only moves upward and outward to provide the reader
with an ongoing confrontation with new topics, but also periodically revisits
topics already discussed, showing how they reappear in a new guise. To
some extent, the organization of the book therefore resembles a spiral. We
hope the reader enjoys the journey.

Problems

1. The sample space S has three elements: S = {s, s,,5;}. The set
function Q(-) assigns numbers as follows:

(s =% QW{s}) =4
0({s,}) = 2(s) =1
Is Q(-) a probability measure? If not, what conditions must be

changed to make it one?

2. For every subset A of the real line, let N(A4) be the set function whose
value at A4 is equal to the number of points in 4 which are positive
integers. For example, if 4, = {x: 65 < x < 7%}, then N(4,) = 1.

Now let

o

A, = {x: x is a multiple of 3 and x < 50}
A, = {x: x is a multiple of 7 and x < 50}

a. Find N(A4,), N(4;), N(4, U 4,), N(4, N 4,).
b. Verify that N(4, U 4,) = N(A4,) + N(4,) — N(4; N 4,).

3. A bag contains seven red balls and three green balls. A box contains
five red balls and six green ones. Three balls are selected at random
from the bag and are transferred to the box, after which a ball is
selected at random from the box.

a. What is the probability that the ball drawn from the box is red?

b. Given that the ball from the box is red, what is the conditional
probability that two or more of the balls transferred were red?

4. The bivariate r.v. (X, Y) has the joint density function

2,2
= 5——-——))—(", 0<x<oo,—x<ysx
fxv(x,p) = 8

0, otherwise

6*.

T*.
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Find the marginal densities f,(x) and f,(y), and the conditional
density fy (y|X = x).

Let X be a Gaussian random variable having the probability density
function

fulw) = @m) Pesp( - 5

The random variable Y is defined as ¥ = X>. Determine and plot the
probability density function for Y.

The stochastic process X(r) is defined by
X(t) = sin(at + B)

where a is constant and B is a random variable uniformly distributed
on the interval [0,27). Find the cumulative distribution function

Fy(u) = P{~o0 < X(1) < u)

and the probability density function

d
fx(u) = EFX(Z‘)
The stochastic process X(¢) is defined by
X(t)=e", 0<t<oo

where A is a random variable with probability density function f,(a).
Find the distribution function

Fy(u) = P(~ o0 < X(1) < u}

and the density
d
fx(u) = = Fy(u)

Umn #1 and urn #2 each initially contain six red, four white, and
eight blue balls. At each step, one ball is selected at random from each
urn, and the two balls interchange urns.

*Note: In Problems 6 and 7, the distribution and density functions will also depend on the

time £.
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At time n, let the random variable X, be the number of white balls
in urn #1. Is the random sequence X, X, X,...., X,,..., a Markov
chain?

If you say yes, then determine the transition function P(x, y)
defined as P(x, y) = P{ X, =x|X,_, =y}

If you say no, explain why it'’s not Markov.

Suppose the procedure in Problem 8 is modified as follows: At each
step, one ball is still selected at random from each urn. However, if it
is red, then it is replaced in the same urn from which it was drawn. If
it is blue or white, then it is placed in the opposite urn.

Repeat Problem 8 for this situation.

Let 5 be a Hilbert space, with inner product { - ,- ) and norm || - ||.
Prove the Schwarz inequality: for any vectors x, y in ¢, it holds that

Kx, w1 < Iixl - ol

Hint: Start from the fact that for all choices of scalars a, B8, it holds
that

((ax + By), (ax + By)) 2 0

and choose « and B suitably.

Chapter 2

The Gaussian Distribution
in One and Two Dimensions

The One-Dimensional Gaussian Distribution

A real-valued random variable X is said to possess a Gaussian distribution
if, for real numbers a, b with a < b it holds that

1

V2#o?

In this expression, p and o are parameters of the distribution. By direct
calculation, one finds that

Pla<X<b) = f”e*w)z/%z dx 1)

E{X}=p
E{(X—-p,)z} = g2

so that p is the mean and o? is the variance of the random variable X.
The integral in (1) cannot be evaluated analytically, so in order to do
numerical calculations, one must resort to tables.
The function under the integral sign in (1), specifically,

1

mo?

flx) =

e—(X’;A)z/ZaZ (2)

is called the Gaussian probability density function. We assume that its
principal features are already familiar to the student.
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