Lecture 2.

Prediction, innovation
and
the Wold decomposition
Version 2
September 27, 2020

2020.



REMINDER



Wide sense stationary processes

Random variables: defined over a probability space (22, F, P).
A discrete time stochastic process: y = (y,), with —oo < n < +oc0.

y = (y») is wide sense stationary, w.s.st. for short, if

Eyn = 07 E(ys) < +0o0

and for any fixed 7 the auto-covariances below are independent of n:

r(T) = COV(YnJrTv)/n)'



The auto-covariance matrix R

Let R:=(Rjx)=r(k—})) k,=1,...,p.

For any p he auto-covariance matrix R is a symmetric Toeplitz matrix:

r(0) r(1) r(2) ... r(p—1)

r(—1) r(0) r(l) ... r(p—2)

R= r(=2) r(=1)  r(0) r(p—"3)
: : . r(1)
r(=p+1) r(-p+2) ... r(-1) r(0)

Note that the R is a Toeplitz matrix.
Recall: set Y = (Vn—1,---,¥n—p) . Show that R=E(YYT) > 0.



Prediction based on finite past

Predict y, based on y, 1, ..., yn_p. Let r:=(r(1),...,r(p))".

Proposition. If R is nonsingular, then the LSQ linear prediction of y, in
terms of y,_1,...,¥n—p is uniquely defined as

p
Ynn—p = § OkYn—ky
k=1

where a = (a1, ...,a,)7 is the solution of the normal equation

Ra=r.

Exercise. Show that the prediction ¥, ,_, is a w.s.st. process.

Question: what happens if we start increasing p and p — o0?



Linear operations on orthogonal processes

Let (e,) be a real-valude w.s.st. orthogonal process and let us define
Yn=Cién_1+ -+ Cpen_p, with ¢, real.

The process (y,) is a moving average process. It is w.s.st. and

P
Ey? = Z c2a’(e).
k=1
What happens if p = 00?

Exercise. Show that the process

oo oo
Yn = E Ckeén—k under E c,f < 0
k=1 k=1

is well-defined and it is a w.s.st. process. (Hint: See next exercise).

Exercise. Let (v, ,) be a w.s.st. process for all p, and let v, = lim, v, ,

exist for all n. Show that (v,) is w.s.st.



PREDICTION



Prediction based on the infinite past, .

Consider the apparently impractical prediction problem with p = oc.

Consider the infinite dimensional linear space spanned by (yp—1,¥n—2-..) :

P
Lno1= {u : Zaky,,_k, a, € R for some p}

k=0
Let H,_1 be the closure of £,_1 in the metric of Ly(Q2, F, P) :
Hpy:=clLy 4
Then the one-step ahead LSQ prediction of y, is given by
Yn = (Yn|Hn-1),

the orthogonal projection of y, on the subspace H,_;.



Prediction based on the infinite past, Il.
W

Consider now the linear space spanned by (Yn—1,...,¥n—p) :

p
Enfl,nfp = {Zakynk D01, 0p € Ra } .
k=1

Obviosuly, £,_1,,—p is a finite dimensional subspace of H,_;.

Hence it is a Hilbert subspace of H,_1. Write L,_1 n—p =: Ha—1,n—p.

Proposition

We have, with convergence meant in Ly(Q2, F, P),

(yn|Hn71) (yn|Hn71,n7p)~

= lim
p—00

Prediction based on finite past approximates (y,|H,—1) arbitrarily well.



Remarks on Hilbert space geometry, |.

In a more general setting: let G be a Hilbert space and let
G, C G be a sequence of closed sub-spaces of G s.t. G, C Gpy1

with —oo < p < +00. lL.e. (G,) is monotone increasing. Let

Goo =l (UpGp).

with cl denoting the closure.

Lemma

Under the conditions above for any x € G we have

lim (x]Gy) = (x/Gic).

Apply: Gp = Hn—1,n—p and Go = H,—1. Projection on expanding past.



Remarks on Hilbert space geometry, Il.

Proof. First we show, replacing p by n, that for any x € G
(x1Gn) = ((x|Goo) [Gn). (1)

Cf. a projection on the (x, y) plane followed by projection to the x axis.

Indeed, let (x|Go) = y, and take an orthogonal decomposition
x =y + Ax, ()

where Ax L G. Then also Ax L G, for any n.

Projecting both sides of the equality (2) onto G, we get

(X‘Gn) = (y|Gn)



Remarks on Hilbert space geometry, lll.

Repeat: projecting both sides of the equality (2) onto G, we get
(X‘Gn) = (Y|Gn)'
Buty € Gy = cl (UG,) implies that

lim (y — (y|Gn)) = 0.

n—oo

Substituting y = (x|Gs) and (y|G,) = (x| G,) we get the claim:

lim ((x]Gc) — (x]Gy)) = 0.

n—oo



A dual result, |I.

Let G be and G,, C G be as above, so that G,, C G,,;1, and let

G_oo = NmG_p.
Recall that —oco < m < +00. Note that G_, is automatically closed.

Lemma

Under the conditions above for any x € G we have
im (x]Gm) = (x|G_c0).
Apply with G = L,(Q, F, P), and G, = H,,. Projection on shrinking past:

lim (x|Hp—p) = (x[H-c0). (3)

p—00



Proof of the dual result

1 .
Jug <N

Let us denote the orthogonal complement of G_,,, in G by G
G=G_n® Gt .
From here we get

(x|G-m) = x = (x|G2,,).

Obviously, G-

—m

is monotone increasing. Let F = cl (U,,G*,)). Then

lim (x|G%,) = (x|F),

m—00

by Lemma 1. The lemma then follows from the next exercise.

Excercise. Show that F = G*__. (Hint: Verify inclusion both way).



The innovation process, |.

Question: express the new information in y, not contained in H,_;
This is a key object in the theory of w.s.st. processes given below.

From now on we will use superscripts such as H2_; for H,_.

Definition

The innovation process of (y,) is defined as:

€n = Yn— ()’n|H,}1/—1)'



The innovation process, II.

Define the prediction error process based on finite past

€n,n—p ‘= Yn — (yn|Hn71,n7p)~

Exercise. Prove that (e,) is a w.s.st. process. (Hint: Recall that

liMp_s00 €nn—p = €n.).

Exercise HW Prove that (e,) is a w.s.st. orthogonal process.



Autoregressive processes, |.
Assume that a finite segment of past values is sufficient to compute y,,:
Yn = .Vn‘H Zak.)/n k-

Noting that e, = y, — ¥, we get

p
=Y aynkten
k=1



Autoregressive processes |l.

p
Yn = Z dkYn—k + éen. (4)
k=1

Definition
A wide-sense stationary process y = (y,) satisfying (4), with (e,) being
its innovation process, is called an autoregressive or AR process.

If a, # 0 then p is the order of the process, and y is an AR(p) process.

Q: Under what conditions on the coefficients a, does such a y exist ?



WOLD DECOMPOSITION



Wold decomposition, |.

Let us consider a process y = (y,) and write
Yo = en + (YalH)_1)-
Obviously, e, and HY_, span HY, and e, LHY_,. Thus we have

Hy = H(e,) ® H;_4

n

Vn, where H(e,) denotes the 1-dimensional linear space spanned by e,,

assuming e, # 0, and @ denotes orthogonal direct sum of sub-spaces.

- y : y
Consider now (y,|H,_;). It is an element of H._;. Hence we can

decompose it as a sum of orthogonal elements using

Hy_1 = H(en-1) & H,_,.



Wold decomposition, II.

Repeat: decompose (y,|H_;) a sum of orthogonal elements using

HY | = H(er1) & H._,.

Note shift 1 time unit back. Now, H(e,_1) is 1-dimensional, hence

for any v € H(e,—1) we have v = c e,_; with some ¢ € R.

Recall the identity on projecting on inclusive sub-spaces H | D HY ,:
((ynlHy_1)IHy_2) = (ynlH_2)-
Combining the two remarks above we get the decomposition

(yn|Hr};—1) =Cép—1+ (yan,{_z).



Wold decomposition, Ill.

Repeat: we obtain the following decomposition for (y,|H) ;) :
(valHi_1) = cren—1 + (valH_5).
Combining this with the definition of the innovation e, we get

Yn=¢6€r+C1ép_1+ (y,,|H,},/_2).

Iterating this decomposition we get, with ¢g = 1,

p
Yn = Z Ckén—_k + (_yn|H,}7/7p71)'
k=0



Wold decomposition, V.

Repeat: iterating the one-step decomposition we get, with ¢ = 1,

p
Yn = Z Ck€n—k + (}/n|H,{—p—1)'
k=0

To deal with the residual term define the prehistory of y as:

H o= H m

m>0

Recall that by Lemma 1 we have, with convergence in = L,(Q, F, P),
(valHZ ) = (val H. o).

lim
m—00

It follows that Zi:o Cken—k also converges when p — oo.



Wold decomposition, V.

Letting p — oo we arrive at the following decomposition:

Yn = Z Cken—k + (Yn|H{oo)
k=0

Exercise. Show that >_.2 ¢ < occ.

Consider the r.h.s. of (5) and define the processes

oo
Yo = Z Cken—k and Yo = (valH )
k=0

Exercise. Show that both (y/) and (y:) are w.s.st. processes. (Hint:

recall that y3 = limp_ oo (¥n|Hn—p)).



Wold decomposition, VI.

Claim: the processes (y,) and (y:) are orthogonal, y* | y", meaning:

vy Ly for all n, m.
Proof: For any fixed p we have

p
chen,kJ_H,},’_m for m> p.
k=0

But H2_,, D H” __, hence we get for any p:

p
g cken—k LH” .
k=0

Letting p — oo we get the claim.



Wold decomposition, VII.

What can we say about y5 = (y,|H” ..)?

Proposition
The history HY" =: Hs is independent of n, hence HS = H3_, for all n.

Proof: Fix n. Note that e, L H” . (Why ?) But then the known equality

HY = H(e,) ® HY_,, implies, by projecting all three terms onto H”
(HYIH o) = (Hy_1|H ).
To end the proof it is sufficient to show that for any m

(HnlH ) = H;

m-



Wold decomposition, VIII.

peat: to end the proof it is sufficient to show that for any m

(HnlH. o) = Hz,.
Recall the definition of HY, :

P
HY =cl L) = {u : Zakym,k, ax € R for some p}.
k=0

Projecting all the elements of £, onto H” __ we get, due to linearity:

p
(E{nHyoo)z{u:Zakyfnk, ax € R for some p}zﬁfn!

k=0

S
m-

Take the closure of both sides. On the r.h.s we get cl £;, = H

On the L.h.s. we get by the continuity of projections:

oL (LI H ) = (el Lol H” ) = (HAIHY.L),  qed.



SINGULAR PROCESSES



Singular processes, |.

Let us have a closer look at y; = (ya|H” ..). We have seen that for all n.

HS = HE_,.

Thus we get that the innovation process of y; is identically 0:

en =Y, — (yalHp_1) = 0!

Exercise. Verify the above equality. (Hint: Note that y3 € HS ).

Intuition: a truly random process must have non-trivial innovations.

Definition
A w.s.st. stochastic process (vy) is called singular, if its innovation
process is identically 0: v, — (v,|HY_1) = 0 for all n.



Singular processes, Il.

Exercise. Show that if HY = H”_, for a single n then it is true for all n.

How can we construct a singular process? Example: consider the process
yn = &™) —00 < n < 400,
where w € (0, 27) is a fixed frequency, £ is a complex-valued r.v. with

E¢ =0, E|£f =0° < +oo.

Exercise. Show that the complex-valued process y = (y,) is w.s.st.:

2 _iTw

r(7) = Eypiryn = 0"e

Note that r(7) = 02e/™ does not decay in absolute value, as 7 increases.



Singular processes Ill.

Consider now a finite sum of the above complex-valued w.s.st. processes:

m

Yo=Y Eee™x. (6)

k=1
Here wy # wj for k # j, and
E& =0, El&|* = of < +oo.

Assume in addition that &L for j # k, i.e.

E&E, =0, for k#J.



Singular processes, V.

m
Repeat: consider the process y = (y,) given by y, = kaeinwk.
k=1

Exercise. Show that the above complex-valued process y is w.s.st.:

m
r(T) = EYnJr'r}_/n = Zo—ieh—wk'
k=1

The variance of y, is obtained by setting 7 = 0:

n
E|yn‘2 = Zgi
k=1

In telecommunication E|y,|? is the energy of the signal.

The values Jﬁ show how the energy of y, is spread among frequencies.



Singular processes, V.

Proposition

m
The complex-valued process y, = E &€k, given above, is singular.
k=1

We note in passing: all the arguments of the present lecture carry over to

complex-valued processes with evident modifications.

An elegant way to establish singularity is given by the following exercise:

Exercise. Show that if dim(HY) < oo for some n, then y is singular.

(Hint: Prove that if y is not singular, then dim(H) = oo for all n.)

Exercise. Using the last exercise prove the proposition above.



Singular processes, VI.

How can we construct a real-valued singular process?

Let us consider the complex-valued w.s.st. process y = (y,). Let

vp = Rey,.

Now HY is a subspace of L5(£, F,P), the set of complex-valued
random variables ¢ with E|¢|? < oo. And HY C L2(Q, F,P).

Exercise. Prove that dim(HY) < oo for some n implies dim(HY) < oo.



Singular processes, VII.

Example: Consider the w.s.st. processes as above:

m
Yo=Y &e™ with & = oye', (7)
k=1

where the phases ¢, have uniform distribution on [0, 27], and are i.i.d.

We conclude that the real part of the process is given by
m
Vp = Z ok cos(inwk + pk)-
k=1
is singular. A simple special case for a real-valued singular process is:
Yn = cos(wn + ¢) w#£0,

where ¢ is a random phase with uniform distribution on [0, 27].



