

Stochastic signals and systems

Lecture 2.

Prediction, innovation and the Wold decomposition Version 2 September 27, 2020

2020.

REMINDER

Wide sense stationary processes

Random variables: defined over a probability space (Ω, \mathcal{F}, P) . A discrete time stochastic process: $y = (y_n)$, with $-\infty < n < +\infty$. $y = (y_n)$ is wide sense stationary, w.s.st. for short, if

 $Ey_n = 0, \qquad E(y_n^2) < +\infty$

and for any fixed τ the auto-covariances below are independent of *n*:

 $r(\tau) = \operatorname{Cov}(y_{n+\tau}, y_n).$

The auto-covariance matrix *R*

Let
$$R := (R_{j,k}) = r(k-j)$$
 $k, l = 1, ..., p.$

For any p he auto-covariance matrix R is a symmetric **Toeplitz matrix**:

$$R = \begin{pmatrix} r(0) & r(1) & r(2) & \dots & r(p-1) \\ r(-1) & r(0) & r(1) & \dots & r(p-2) \\ r(-2) & r(-1) & r(0) & \dots & r(p-3) \\ \vdots & \vdots & \ddots & \ddots & r(1) \\ r(-p+1) & r(-p+2) & \dots & r(-1) & r(0) \end{pmatrix}$$

Note that the R is a Toeplitz matrix.

Recall: set $Y = (y_{n-1}, \ldots, y_{n-p})^T$. Show that $R = \mathbb{E}(YY^T) \ge 0$.

Prediction based on finite past

Predict y_n based on $y_{n-1}, ..., y_{n-p}$. Let $r := (r(1), ..., r(p))^T$.

Proposition. If *R* is nonsingular, then the LSQ linear prediction of y_n in terms of y_{n-1}, \ldots, y_{n-p} is uniquely defined as

$$\widehat{y}_{n,n-p} := \sum_{k=1}^{p} \alpha_k y_{n-k},$$

where $\alpha = (\alpha_1, \dots, \alpha_p)^T$ is the solution of the normal equation

 $R\alpha = r.$

Exercise. Show that the prediction $\hat{y}_{n,n-p}$ is a w.s.st. process. Question: what happens if we start increasing p and $p \to \infty$?

Linear operations on orthogonal processes

Let (e_n) be a real-value w.s.st. orthogonal process and let us define

 $y_n = c_1 e_{n-1} + \cdots + c_p e_{n-p}$, with c_k real.

The process (y_n) is a moving average process. It is w.s.st. and

$$\mathbb{E} y_n^2 = \sum_{k=1}^p c_k^2 \sigma^2(e).$$

What happens if $p \to \infty$?

Exercise. Show that the process

$$y_n = \sum_{k=1}^{\infty} c_k e_{n-k}$$
 under $\sum_{k=1}^{\infty} c_k^2 < \infty$

is well-defined and it is a w.s.st. process. (Hint: See next exercise).

Exercise. Let $(v_{n,p})$ be a w.s.st. process for all p, and let $v_n = \lim_p v_{n,p}$ exist for all n. Show that (v_n) is w.s.st.

PREDICTION

Consider the apparently impractical prediction problem with $p = \infty$.

Consider the infinite dimensional linear space spanned by $(y_{n-1}, y_{n-2}...)$:

$$\mathcal{L}_{n-1} = \left\{ u : \sum_{k=0}^{p} \alpha_k y_{n-k}, \quad \alpha_k \in \mathbb{R} \quad \text{for some } p \right\}$$

Let H_{n-1} be the closure of \mathcal{L}_{n-1} in the metric of $L_2(\Omega, \mathcal{F}, P)$:

 $H_{n-1} := \operatorname{cl} \mathcal{L}_{n-1}$

Then the one-step ahead LSQ prediction of y_n is given by

 $\widehat{y}_n = (y_n | H_{n-1}),$

the orthogonal projection of y_n on the subspace H_{n-1} .

Prediction based on the infinite past, II.

Consider now the linear space spanned by $(y_{n-1}, \ldots, y_{n-p})$:

$$\mathcal{L}_{n-1,n-p} = \left\{ \sum_{k=1}^{p} \alpha_k y_{n-k} : \alpha_1, \dots, \alpha_p \in \mathbb{R}, \right\}.$$

Obviosuly, $\mathcal{L}_{n-1,n-p}$ is a finite dimensional subspace of H_{n-1} .

Hence it is a Hilbert subspace of H_{n-1} . Write $\mathcal{L}_{n-1,n-p} =: H_{n-1,n-p}$.

Proposition

We have, with convergence meant in $L_2(\Omega, \mathcal{F}, P)$,

$$(y_n|H_{n-1}) = \lim_{p\to\infty} (y_n|H_{n-1,n-p}).$$

Prediction based on finite past approximates $(y_n|H_{n-1})$ arbitrarily well.

Remarks on Hilbert space geometry, I.

In a more general setting: let G be a Hilbert space and let $G_p \subset G$ be a sequence of closed sub-spaces of G s.t. $G_p \subset G_{p+1}$ with $-\infty . I.e. <math>(G_p)$ is monotone increasing. Let

 $G_{\infty} = \operatorname{cl} (\cup_{p} G_{p}).$

with \underline{cl} denoting the closure.

Lemma

Under the conditions above for any $x \in G$ we have

 $\lim_{p\to\infty}(x|G_p)=(x|G_\infty).$

Apply: $G_{\rho} = H_{n-1,n-\rho}$ and $G_{\infty} = H_{n-1}$. Projection on expanding past.

Proof. First we show, replacing p by n, that for any $x \in G$

$$(x | G_n) = ((x | G_\infty) | G_n).$$
 (1)

Cf. a projection on the (x, y) plane followed by projection to the x axis.

Indeed, let $(x|G_{\infty}) = y$, and take an orthogonal decomposition

$$x = y + \Delta x, \tag{2}$$

where $\Delta x \perp G_{\infty}$. Then also $\Delta x \perp G_n$ for any *n*.

Projecting both sides of the equality (2) onto G_n we get

 $(x|G_n)=(y|G_n).$



Repeat: projecting both sides of the equality (2) onto G_n we get

 $(x|G_n)=(y|G_n).$

But $y \in G_{\infty} = \operatorname{cl} (\cup G_n)$ implies that

 $\lim_{n\to\infty}(y-(y|G_n))=0.$

Substituting $y = (x|G_{\infty})$ and $(y|G_n) = (x|G_n)$ we get the claim:

 $\lim_{n\to\infty}((x|G_{\infty})-(x|G_n))=0.$

A dual result, I.

Let G be and $G_m \subset G$ be as above, so that $G_m \subset G_{m+1}$, and let

 $G_{-\infty} = \cap_m G_{-m}.$

Recall that $-\infty < m < +\infty$. Note that $G_{-\infty}$ is automatically closed.

Lemma

Under the conditions above for any $x \in G$ we have

 $\lim_{m\to\infty}(x|G_{-m})=(x|G_{-\infty}).$

Apply with $G = L_2(\Omega, \mathcal{F}, P)$, and $G_m = H_m$. Projection on shrinking past:

$$\lim_{p \to \infty} (x|H_{n-p}) = (x|H_{-\infty}).$$
(3)

Proof of the dual result

Let us denote the orthogonal complement of G_{-m} in G by G_{-m}^{\perp} , i.e.

$$G=G_{-m}\oplus G_{-m}^{\perp}.$$

From here we get

$$(x|G_{-m})=x-(x|G_{-m}^{\perp}).$$

Obviously, G_{-m}^{\perp} is monotone increasing. Let $F = cl \ (\bigcup_m G_{-m}^{\perp})$. Then

$$\lim_{m\to\infty}(x|G_{-m}^{\perp})=(x|F),$$

by Lemma 1. The lemma then follows from the next exercise.

Excercise. Show that $F = G_{-\infty}^{\perp}$. (*Hint*: Verify inclusion both way).

The innovation process, I.

Question: express the new information in y_n not contained in H_{n-1} This is a key object in the theory of w.s.st. processes given below. From now on we will use superscripts such as H_{n-1}^{y} for H_{n-1} .

Definition

The innovation process of (y_n) is defined as:

 $e_n := y_n - (y_n | H_{n-1}^{\mathcal{Y}}).$

The innovation process, II.

Define the prediction error process based on finite past

$$e_{n,n-p} := y_n - (y_n|H_{n-1,n-p}).$$

Exercise. Prove that (e_n) is a w.s.st. process. (*Hint*: Recall that $\lim_{p\to\infty} e_{n,n-p} = e_n$.).

Exercise HW Prove that (e_n) is a w.s.st. orthogonal process.

Autoregressive processes, I.

Assume that a **finite segment** of past values is sufficient to compute \hat{y}_n :

$$\widehat{y}_n = (y_n | \mathcal{H}_{n-1}^{\nu}) = \sum_{k=1}^{p} a_k y_{n-k}.$$

Noting that $e_n = y_n - \hat{y}_n$, we get

$$y_n = \sum_{k=1}^p a_k y_{n-k} + e_n.$$

Autoregressive processes II.

Repeat:

$$y_n = \sum_{k=1}^{p} a_k y_{n-k} + e_n.$$
 (4)

Definition

A wide-sense stationary process $y = (y_n)$ satisfying (4), with (e_n) being its innovation process, is called an autoregressive or AR process.

If $a_p \neq 0$ then p is the **order** of the process, and y is an AR(p) process.

Q: Under what conditions on the coefficients a_k does such a y exist ?

WOLD DECOMPOSITION

Wold decomposition, I.

Let us consider a process $y = (y_n)$ and write

 $y_n = e_n + (y_n | H_{n-1}^y).$

Obviously, e_n and H_{n-1}^y span H_n^y , and $e_n \perp H_{n-1}^y$. Thus we have

 $H_n^y = H(e_n) \oplus H_{n-1}^y$

 $\forall n$, where $H(e_n)$ denotes the 1-dimensional linear space spanned by e_n , assuming $e_n \neq 0$, and \oplus denotes orthogonal direct sum of sub-spaces.

Consider now $(y_n|H_{n-1}^y)$. It is an element of H_{n-1}^y . Hence we can decompose it as a sum of orthogonal elements using

 $H_{n-1}^{y}=H(e_{n-1})\oplus H_{n-2}^{y}.$

Wold decomposition, II.

Repeat: decompose $(y_n|H_{n-1}^y)$ a sum of orthogonal elements using

 $H_{n-1}^{y}=H(e_{n-1})\oplus H_{n-2}^{y}.$

Note shift 1 time unit back. Now, $H(e_{n-1})$ is 1-dimensional, hence for any $v \in H(e_{n-1})$ we have $v = c e_{n-1}$ with some $c \in \mathbb{R}$.

Recall the identity on projecting on inclusive sub-spaces $H_{n-1}^{y} \supset H_{n-2}^{y}$:

 $((y_n|H_{n-1}^y)|H_{n-2}^y) = (y_n|H_{n-2}^y).$

Combining the two remarks above we get the decomposition

$$(y_n|H_{n-1}^y) = c_1e_{n-1} + (y_n|H_{n-2}^y).$$

Wold decomposition, III.

Repeat: we obtain the following decomposition for $(y_n|H_{n-1}^y)$:

$$(y_n|H_{n-1}^y) = c_1e_{n-1} + (y_n|H_{n-2}^y).$$

Combining this with the definition of the innovation e_n we get

$$y_n = e_n + c_1 e_{n-1} + (y_n | H_{n-2}^y).$$

Iterating this decomposition we get, with $c_0 = 1$,

$$y_n = \sum_{k=0}^{p} c_k e_{n-k} + (y_n | H_{n-p-1}^y).$$

Wold decomposition, IV.

Repeat: iterating the one-step decomposition we get, with $c_0 = 1$,

$$y_n = \sum_{k=0}^{p} c_k e_{n-k} + (y_n | H_{n-p-1}^y).$$

To deal with the residual term define the prehistory of y as:

$$H_{-\infty}^{y} = \bigcap_{m \ge 0} H_{-m}^{y}$$

Recall that by Lemma 1 we have, with convergence in $= L_2(\Omega, \mathcal{F}, P)$,

$$\lim_{m\to\infty}(y_n|H_{-m}^y)=(y_n|H_{-\infty}^y).$$

It follows that $\sum_{k=0}^{p} c_k e_{n-k}$ also converges when $p \to \infty$.

Wold decomposition, V.

Letting $p \to \infty$ we arrive at the following decomposition:

$$y_n = \sum_{k=0}^{\infty} c_k e_{n-k} + (y_n | H_{-\infty}^y).$$
 (5)

Exercise. Show that $\sum_{k=0}^{\infty} c_k^2 < \infty$.

Consider the r.h.s. of (5) and define the processes

$$y_n^r = \sum_{k=0}^{\infty} c_k e_{n-k}$$
 and $y_n^s = (y_n | H_{-\infty}^y).$

Exercise. Show that both (y_n^r) and (y_n^s) are w.s.st. processes. (*Hint*: recall that $y_n^s = \lim_{p \to \infty} (y_n | H_{n-p})$).

Wold decomposition, VI.

Claim: the processes (y_n^r) and (y_n^s) are **orthogonal**, $y^s \perp y^r$, meaning:

 $y_n^r \perp y_m^s$ for all n, m.

Proof: For any fixed p we have

$$\sum_{k=0}^{p} c_k e_{n-k} \bot H_{n-m}^{y} \quad \text{for} \quad m > p.$$

But $H_{n-m}^{y} \supset H_{-\infty}^{y}$, hence we get for any *p*:

$$\sum_{k=0}^{p} c_k e_{n-k} \bot H_{-\infty}^{y}.$$

Letting $p \to \infty$ we get the claim.

Wold decomposition, VII.

What can we say about $y_n^s = (y_n | H_{-\infty}^y)$?

Proposition

The history $H_n^{y^s} =: H_n^s$ is independent of n, hence $H_n^s = H_{n-1}^s$ for all n.

Proof: Fix *n*. Note that $e_n \perp H^y_{-\infty}$. (Why ?) But then the known equality $H^y_n = H(e_n) \oplus H^y_{n-1}$, implies, by projecting all three terms onto $H^y_{-\infty}$,

 $(H_n^y|H_{-\infty}^y) = (H_{n-1}^y|H_{-\infty}^y).$

To end the proof it is sufficient to show that for any m

 $(H^y_m|H^y_{-\infty})=H^s_m.$

Wold decomposition, VIII.

Repeat: to end the proof it is sufficient to show that for any m

$$(H_m^y|H_{-\infty}^y)=H_m^s.$$

Recall the definition of H_m^y :

$$H_m^{\boldsymbol{y}} = \operatorname{cl} \, \mathcal{L}_m^{\boldsymbol{y}} = \left\{ \boldsymbol{u} : \sum_{k=0}^p \alpha_k \boldsymbol{y}_{m-k}, \quad \alpha_k \in \mathbb{R} \quad \text{for some } \boldsymbol{p} \right\}.$$

Projecting all the elements of \mathcal{L}_m^y onto $\mathcal{H}_{-\infty}^y$ we get, due to linearity:

$$\left(\mathcal{L}_{m}^{y}|\mathcal{H}_{-\infty}^{y}\right) = \left\{ u: \sum_{k=0}^{p} \alpha_{k} y_{m-k}^{s}, \quad \alpha_{k} \in \mathbb{R} \quad \text{for some } p \right\} = \mathcal{L}_{m}^{s} !$$

Take the closure of both sides. On the r.h.s we get cl $\mathcal{L}_m^s = H_m^s$. On the l.h.s. we get by the continuity of projections:

cl
$$(\mathcal{L}_m^y|\mathcal{H}_{-\infty}^y) = (cl \ \mathcal{L}_m^y|\mathcal{H}_{-\infty}^y) = (\mathcal{H}_m^y|\mathcal{H}_{-\infty}^y), \quad \text{q.e.d.}$$

SINGULAR PROCESSES

Singular processes, I.

Let us have a closer look at $y_n^s = (y_n | H_{-\infty}^y)$. We have seen that for all *n*.

$$H_n^s = H_{n-1}^s$$

Thus we get that the innovation process of y_n^s is identically 0:

$$e_n^s := y_n^s - (y_n^s | H_{n-1}^s) = 0!$$

Exercise. Verify the above equality. (*Hint*: Note that $y_n^s \in H_n^s$). Intuition: a truly random process must have non-trivial innovations.

Definition

A w.s.st. stochastic process (v_n) is called singular, if its innovation process is identically 0: $v_n - (v_n | H_{n-1}^v) = 0$ for all n.

Singular processes, II.

Exercise. Show that if $H_n^y = H_{n-1}^y$ for a single *n* then it is true for all *n*.

How can we construct a singular process? Example: consider the process

 $y_n = \xi e^{in\omega}, \qquad -\infty < n < +\infty,$

where $\omega \in (0, 2\pi)$ is a fixed frequency, ξ is a complex-valued r.v. with

$$\mathbf{E}\xi = \mathbf{0}, \quad \mathbf{E}|\xi|^2 = \sigma^2 < +\infty.$$

Exercise. Show that the complex-valued process $y = (y_n)$ is w.s.st.:

$$r(\tau) := \mathrm{E} y_{n+\tau} \overline{y_n} = \sigma^2 e^{i\tau\omega}.$$

Note that $r(\tau) = \sigma^2 e^{i\tau\omega}$ does not decay in absolute value, as τ increases.

Singular processes III.

Consider now a finite sum of the above complex-valued w.s.st. processes:

$$y_n = \sum_{k=1}^m \xi_k e^{in\omega_k}.$$
 (6)

Here $\omega_k \neq \omega_j$ for $k \neq j$, and

 $\mathbf{E}\xi_k = \mathbf{0}, \qquad \mathbf{E}|\xi_k|^2 = \sigma_k^2 < +\infty.$

Assume in addition that $\xi_j \perp \xi_k$ for $j \neq k$, i.e.

 $\mathbb{E}\xi_j\overline{\xi}_k=0, \text{ for } k\neq j.$

Singular processes, IV.

Repeat: consider the process $y = (y_n)$ given by $y_n = \sum_{k=1}^m \xi_k e^{in\omega_k}$.

Exercise. Show that the above complex-valued process *y* is w.s.st.:

$$r(\tau) := \mathbb{E} y_{n+\tau} \bar{y}_n = \sum_{k=1}^m \sigma_k^2 e^{i\tau\omega_k}.$$

The variance of y_n is obtained by setting $\tau = 0$:

$$\mathbf{E}|y_n|^2 = \sum_{k=1}^n \sigma_k^2.$$

In telecommunication $\mathbb{E}|y_n|^2$ is the energy of the signal.

The values σ_k^2 show how the energy of y_n is spread among frequencies.

Singular processes, V.

Proposition

The complex-valued process
$$y_n = \sum_{k=1}^m \xi_k e^{in\omega_k}$$
, given above, is singular.

We note in passing: all the arguments of the present lecture carry over to complex-valued processes with evident modifications.

An elegant way to establish singularity is given by the following exercise:

Exercise. Show that if $\dim(H_n^y) < \infty$ for some *n*, then *y* is singular. (*Hint:* Prove that if *y* is not singular, then $\dim(H_n^y) = \infty$ for all *n*.)

Exercise. Using the last exercise prove the proposition above.

Singular processes, VI.

How can we construct a real-valued singular process? Let us consider the complex-valued w.s.st. process $y = (y_n)$. Let

 $v_n := \operatorname{Re} y_n.$

Now H_n^{γ} is a subspace of $L_2^c(\Omega, \mathcal{F}, \mathcal{P})$, the set of complex-valued random variables ξ with $\mathbb{E}|\xi|^2 < \infty$. And $H_n^{\nu} \subset L^2(\Omega, \mathcal{F}, \mathcal{P})$.

Exercise. Prove that $\dim(H_n^v) < \infty$ for some *n* implies $\dim(H_n^v) < \infty$.

Singular processes, VII.

Example: Consider the w.s.st. processes as above:

$$y_n = \sum_{k=1}^m \xi_k e^{in\omega_k}. \quad \text{with} \quad \xi_k = \sigma_k e^{i\varphi_k}, \tag{7}$$

where the phases φ_k have uniform distribution on $[0, 2\pi]$, and are i.i.d.

We conclude that the real part of the process is given by

$$v_n = \sum_{k=1}^m \sigma_k \cos(in\omega_k + \varphi_k).$$

is singular. A simple special case for a real-valued singular process is:

$$y_n = \cos(\omega n + \varphi) \qquad \omega \neq 0,$$

where φ is a random phase with uniform distribution on $[0, 2\pi]$.