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Wide sense stationary processes |.

A discrete time stochastic process is a sequence of r.v.-s y = (y,).
Random variables (r..v) are defined over a probability space (2, F, P).

The subscript n indicates time, with typical range —oco < n < +o0.

Random variables are real-valued, unless stated otherwise. But: complex
valued r.v.-s such as the Fourier transform

E eiwy”
n

will also play major role.

Terminologies: time series in economics and finance

random signals in telecommunication and control.



ﬁ A basic example

The graph of a simulated AR(1) process defined by y, = ay,_1 + e,.

Here a is called the pole, and (e,) is i.i.d. It may model a price process.
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An AR(1) process with an almost unstable positive pole a = 0.8.



Wide sense stationary processes II.

Key features: dependence structure among the r.v.-s y,.

statistical homogeneity in time.

Our first feature of statistical homogeneity: E y, = m is constant.

We will in fact assume that E y, = 0 for all n.
Our standing assumption: E (y2) < +occ or y, € Ly(Q,F,P) for all n.

The simplest measure of dependence is the auto-covariance:

Cov(yn+77}/n) =E ()/n+*r}/n)7 TE Z.



Wide sense stationary processes, Ill.

Our second feature of statistical homogeneity: for any fixed lag 7 € Z

the auto-covariances are independent of n. Thus we can write

f(T) = Cov(yn+7—ayn) = E(Yn+7—}/n)a T € Z.

The function r(.) is called the auto-covariance function.

Definition. A real-valued stochastic process y = (y,) given on (R, F, P)

is a wide sense stationary process, (w.s.st. for short), if
Ey,=0 and E(y?) < +oo forall n,

and for any fixed lag 7 € Z the auto-covariances Cov(y,+r,yn) are

independent of n.



Complex-valued processes

For complex-valued processes (y,) our standing assumption is:
Ely,* <40 or y, € L5(Q,F,P) forall n.
Assuming E y, = 0 for all n, the auto-covariances are defined as:

Cov(Ynir)Yn) = E(Yni-Y,), foranylag 7€

Definition. A complex-valued stochastic process y = (y,) given on

(2, F, P) is a wide sense stationary process, (w.s.st. for short), if

Ey,=0 and E|y,?> < +occ forall n,
and for any fixed lag 7 € Z the auto-covariances Cov(y,+r,yn) are

independent of n.



The auto-covariance function

Thus we can define

r(T) = COV(}/n+7-7}/n) =K (yn+‘rYn)'

The function r(.) is called the auto-covariance function.

For real-valued processes the auto-covariance function is symmetric:

Note also that E (y?2) = r(0).

For complex-valued processes the auto-covariance function r(.) satisfies

r(1) = r(—71).

In this case E |y,|> = r(0).



Modelling a damped oscillator, |.

(!ﬂ,’w
The differential equation for a damped oscillator with external input f is:

y" 4 2Cwoy’ —ngy =f.

Assume for the damping ratio 0 < ¢ < 1 (underdamping) and f = 0.
Then we get an oscillation gradually decreasing to 0.

For f # 0 we may get oscillation around 0.

Discretization over time yields as a so-called AR(2) process defined by
Yn+ ai1yn—1+ a2¥n—2 =é€n:

Let us associate with the above dynamics the following polynomial:

Az =14 a1zt + apz 2.

For 0 < ¢ < 1 we have complex roots: A(z71) = (1 —az 1)(1 —az1t).



Assuming that (e,) is i.i.d., the auto-covariance function looks like this:

Modelling a damped oscillator, Il.
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Auto-covariance of an AR(2) process with complex poles a = 0.8e+i0-37

Az N =1+az ' +az?=01-az )1 -az?).



LINEAR OPERATIONS



Linear operations, I.

Let (y,) be a real-valude w.s.st. process and let us define
Up = a1Ypn—1+ -+ apYn—p, with aj real.

The process (u,) is called a moving average of (y,).
Exercise 1.1. Show that (u,) is a w.s.st. process. Try first p = 1.

Let us compute E 2. Squaring and taking expectation we get:

PP
EuﬁzZZakajr(_/—k

k=1 j=1

Exercise 1.2. Verify the above equality.



Linear operations, Il.

Let R:=(Rix)=r(k—j) and a=(ay,...a,)"
denote a p X p matrix and a p-vector, resp. Then we can write
Eu? = a’Ra.

The matrix R is symmetric and positive semi-definite, and has the form:

) 1) @) . rp-1)
r(—1) r(0) r(ly ... r(p—2)
rR=| r(= 2) r(= 1) r(0 ... rp=13)
- ¢
r(—p—|—1) r(—p+2) oooor(-1) r(0)

Note that the elements of R are constant along any sub-diagonal ! Such
a matrix is called a Toeplitz matrix.

Homework. Set Y = (yo_1,..-,¥n—p) . Show that R=E(YYT) > 0.



Orthogonal processes

How do we get a wide sense stationary process?

The simplest example is the w.s.st. orthogonal process, say, e = (e,):
Ee,e,= 025,,,,,, forall n, m. (1)

In the geometry of the Hilbert space L>(Q2, F, P) we can say:
en and e, are orthogonal for n # m.

An alternative terminology is that e = (e,) is a white noise process.
Example. An i.i.d. process (e,) with 0-mean and finite second moment.

In terms of the auto-covariance function we may say that

r(r)=ré(t)=0 for 7#0.



A simulated orthogonal process
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The rough path of an orthogonal process



Example: financial time series

Let S, denote the price of a stock at time n. Its return is given by
Yo = Sn - 5nfl
" 5,,71 .

A standard approximation to this is its log-return defined by

yl =log —— =:e
" Sn—l -

A basic assumption in finance, based on empirical evidence, is that the
log-returns are i.i.d. Gaussian.

We may also assume, that they have 0 mean after discounting. See:

Bachelier, L.: Théorie de la spéculation, 1900.

Samuelson, P. A.: Foundations of Economic Analysis, 1947.



Active suspension

Objective: attenuate the vibration of a car caused by uneven roads.
Modelling: let us take an equidistant spatial mesh, and let (e,) denote
the normalized vertical displacement of the road surface at position n.

We thus assume that (e,) is a bounded, 0-mean i.i.d. process.

The vertical displacement of a car rolling along this road is (y,).

Elementary physics implies that the past of e may effect the present of y:

o
Yn = Z hkenfk-
k=0

Here the hy-s are the impulse responses of the system.



Linear transformations revisited

Focus on linear transformations of a w.s.st. orthogonal process (e,). Let
o0
Yn = Z hken_k. (2)
k=0

To ensure that (y,) is well defined we use Hilbert space theory.

If Z h? < 400, then the right hand side of (2) converges in L»(Q, F, P).
k=0

Exercise 1.4. Show that y = (y,) given in (2) is a w.s.st. process.



Moving Average processes

Consider a finite (!) linear combination of an orthogonal process e = (e,):
r
Yn = Z Ck€n—k- (3)
k=0

The w.s.st. process (y,) is called a moving average os MA process.

If ¢, # 0, then r is the order, and (y,) is called an MA(r) process. Let

,
Az = Z ckz k.
k=0

The roots of the equation A(z~!) = 0 are called the zeros of the process.

Note on scaling: we may and will assume that ¢y = 1.



% Example for a MA(1) process, |.

Consider the process y, = e, + c1e,-1. Its zero is then v = —1/¢;.

For c; < 0 we get the weighted difference of the white noise process:
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An MA(1) process with a large positive zero v = 0.9.

100



For ¢; > 0, we get the smoothed average of the white noise process:

Example for a MA(1) process, Il.
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An MA(1) process with a large negative zero, v = 0.9.

Exercise 1.5 Compute the auto-covariance functions for both examples.



PREDICTION



The problem of prediction

A fundamental problem of the theory of time series:

predict future values of a w.s.st. stochastic process (y,).

Example: prediction of temperature, precipitation or wind speed;

1 to 10 days ahead. See:

OMSZ, https://www.met.hu/  or
European Centre for Medium-Range Weather Forecasts (ECMWF)



Prediction based on finite past, I.

In practice we have to work with a finite segment of data. The problem:

Predict y, knowing past values y,_1,¥p—2,...,Yn—p. (One-step ahead).
We restrict ourselves to linear predictions of the form:

P
?n - Zak)/n—k- (4)
k=1

The quality of prediction is measured by its mean square error (MSE):

J(a) =E (T~ ya)*-



Prediction based on finite past,

The mean square error (MSE) in detail:

J(a) =E (yn - Zakynk> :
k=1

Minimize J(a) with respect to o := (a1, ..., ) 7!

Thus we get the least squares or LSQ predictor.

Differentiating J(«) is w.r.t. a; we get the equation

p
E (yn_ Zakynk> Yn—j = 0.

k=1



The equation above repeated:

P
E ()/n_ Zakynk> yn—j = 0

k=1
It can be written in the following form:

p

r(G) =Y r(i— k) ox =0.

k=1

Recall that r(j — k) = r(k — j) =: (Rj ). Let r == (r(1),...

Then we get the following normal equation for o := (v, . ..

Ra=r.

Prediction based on finite past, Ill.



Prediction based on finite past, IV.

Thus we arrive at the following result:

Proposition

Assume that R is non-singular. Then the coefficients of the LSQ linear
predictor y, = > \_, akyn—k are obtained as the unique solution of

Ra=r. (5)



The case of singular R

Remark: R is nonsingular if and only if R is positive definit. (Why?)

Exercise 1.6 Show that if R is singular (for a given p), then y, can be
predicted with 0 error. (Hint. Recall the definition of R.)



A geometric approach, |.

Assume now that the infinite past of (y,) up to time n— 1 is known.
This is a matter of convenience for theoretical arguments.

Surprise: this assumption is not as impractical as it looks !

Consider the linear space spanned by (yp—1,Yn—2-..):

Ln_ 1—{ Zaky,, k, «ax €R for some p}

Obviously (?) L£,—1 is a linear subspace of the Hilbert-space Ly(Q2, F, P).
The latter is equipped with the scalar product ({,7) =E £7. Let

H,,,l = Cl E,,,l
be the closure of £,_1 in the metric of L»(Q, F, P).



Geometric approach, Il.

Thus H,_1 = C1L,_1 is a Hilbert subspace of L,(Q2, F, P).
The prediction problem: find the best approximation of y, in H,_1,

in the in the LSQ sense, i.e solve

in E(y,—u).
i, Bon =)

It is well-known that the solution u =Yy, is given

~

Yn = ()/n|Hn—1)a

the orthogonal projection of y, on the subspace H,_;.



Geometric approach, IlI.

In general let H' be closed subspace of a Hilbert space H.

Let y € H and let y denote its orthogonal projection on H’ :
y = (y|H').

The projection y is uniquely defined by the following two properties:

yeH and (y—y)lu Vue H,
where the symbol L stands for orthogonality.

A challenge: can we compute y, under appropriate conditions ?

We will see: the answer is yes.



The graphs of an AR(2) process and its LSQ predictor, marked yellow:

Example 1.
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LSQ prediction of an AR(2) process with complex poles 0.8e*0-37/



The graphs of an AR(2) process an its LSQ predictor, marked yellow:

Example 2.
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LSQ prediction of an AR(2) process with complex poles 0.8e*0-67/



End of Lecture 1.



