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Wide sense stationary processes I.

A discrete time stochastic process is a sequence of r.v.-s y = (yn).

Random variables (r..v) are defined over a probability space (Ω,F ,P).

The subscript n indicates time, with typical range −∞ < n < +∞.

Random variables are real-valued, unless stated otherwise. But: complex
valued r.v.-s such as the Fourier transform∑

n
e iωyn

will also play major role.

Terminologies: time series in economics and finance

random signals in telecommunication and control.



A basic example
The graph of a simulated AR(1) process defined by yn = ayn−1 + en.

Here a is called the pole, and (en) is i.i.d. It may model a price process.

An AR(1) process with an almost unstable positive pole a = 0.8.



Wide sense stationary processes II.

Key features: dependence structure among the r.v.-s yn.

statistical homogeneity in time.

Our first feature of statistical homogeneity: E yn = m is constant.

We will in fact assume that E yn = 0 for all n.

Our standing assumption: E (y2
n ) < +∞ or yn ∈ L2(Ω,F ,P) for all n.

The simplest measure of dependence is the auto-covariance:

Cov(yn+τ , yn) = E (yn+τyn), τ ∈ Z.



Wide sense stationary processes, III.

Our second feature of statistical homogeneity: for any fixed lag τ ∈ Z

the auto-covariances are independent of n. Thus we can write

r(τ) := Cov(yn+τ , yn) = E (yn+τyn), τ ∈ Z.

The function r(.) is called the auto-covariance function.

Definition. A real-valued stochastic process y = (yn) given on (Ω,F ,P)

is a wide sense stationary process, (w.s.st. for short), if

E yn = 0 and E (y2
n ) < +∞ for all n,

and for any fixed lag τ ∈ Z the auto-covariances Cov(yn+τ , yn) are

independent of n.



Complex-valued processes

For complex-valued processes (yn) our standing assumption is:

E |yn|2 < +∞ or yn ∈ Lc
2(Ω,F ,P) for all n.

Assuming E yn = 0 for all n, the auto-covariances are defined as:

Cov(yn+τ , yn) = E (yn+τyn), for any lag τ ∈ Z.

Definition. A complex-valued stochastic process y = (yn) given on

(Ω,F ,P) is a wide sense stationary process, (w.s.st. for short), if

E yn = 0 and E |yn|2 < +∞ for all n,

and for any fixed lag τ ∈ Z the auto-covariances Cov(yn+τ , yn) are

independent of n.



The auto-covariance function

Thus we can define

r(τ) := Cov(yn+τ , yn) = E (yn+τyn).

The function r(.) is called the auto-covariance function.

For real-valued processes the auto-covariance function is symmetric:

r(τ) = r(−τ).

Note also that E (y2
n ) = r(0).

For complex-valued processes the auto-covariance function r(.) satisfies

r(τ) = r(−τ).

In this case E |yn|2 = r(0).



Modelling a damped oscillator, I.
The differential equation for a damped oscillator with external input f is:

y ′′ + 2ζω0y ′ + ω2
0y = f .

Assume for the damping ratio 0 < ζ < 1 (underdamping) and f = 0.

Then we get an oscillation gradually decreasing to 0.

For f 6= 0 we may get oscillation around 0.

Discretization over time yields as a so-called AR(2) process defined by

yn + a1yn−1 + a2yn−2 = en :

Let us associate with the above dynamics the following polynomial:

A(z−1) := 1 + a1z−1 + a2z−2.

For 0 < ζ < 1 we have complex roots: A(z−1) = (1− αz−1)(1− αz−1).



Modelling a damped oscillator, II.
Assuming that (en) is i.i.d., the auto-covariance function looks like this:

Auto-covariance of an AR(2) process with complex poles α = 0.8e±i0.3π

A(z−1) = 1 + a1z−1 + a2z−2 = (1− αz−1)(1− αz−1).



LINEAR OPERATIONS



Linear operations, I.

Let (yn) be a real-valude w.s.st. process and let us define

un = a1yn−1 + · · ·+ apyn−p, with ak real.

The process (un) is called a moving average of (yn).

Exercise 1.1. Show that (un) is a w.s.st. process. Try first p = 1.

Let us compute E u2
n. Squaring and taking expectation we get:

E u2
n =

p∑
k=1

p∑
j=1

akaj r(j − k).

Exercise 1.2. Verify the above equality.



Linear operations, II.

Let R := (Rj,k) = r(k − j) and a = (a1, ...ap)T

denote a p × p matrix and a p-vector, resp. Then we can write

E u2
n = aTRa.

The matrix R is symmetric and positive semi-definite, and has the form:

R =


r(0) r(1) r(2) . . . r(p − 1)
r(−1) r(0) r(1) . . . r(p − 2)
r(−2) r(−1) r(0) . . . r(p − ‘3)

...
...

. . . . . . r(1)
r(−p + 1) r(−p + 2) . . . r(−1) r(0)



Note that the elements of R are constant along any sub-diagonal ! Such
a matrix is called a Toeplitz matrix.

Homework. Set Y = (yn−1, . . . , yn−p)T . Show that R = E (YY T ) ≥ 0.



Orthogonal processes

How do we get a wide sense stationary process?

The simplest example is the w.s.st. orthogonal process, say, e = (en):

E en em = σ2δn,m for all n, m. (1)

In the geometry of the Hilbert space L2(Ω,F ,P) we can say:

en and em are orthogonal for n 6= m.

An alternative terminology is that e = (en) is a white noise process.

Example. An i.i.d. process (en) with 0-mean and finite second moment.

In terms of the auto-covariance function we may say that

r(τ) = r e(τ) = 0 for τ 6= 0.



A simulated orthogonal process

The rough path of an orthogonal process



Example: financial time series

Let Sn denote the price of a stock at time n. Its return is given by

yn = Sn − Sn−1
Sn−1

.

A standard approximation to this is its log-return defined by

y ′n = log Sn
Sn−1

=: en.

A basic assumption in finance, based on empirical evidence, is that the

log-returns are i.i.d. Gaussian.

We may also assume, that they have 0 mean after discounting. See:

Bachelier, L.: Théorie de la spéculation, 1900.

Samuelson, P. A.: Foundations of Economic Analysis, 1947.



Active suspension

Objective: attenuate the vibration of a car caused by uneven roads.

Modelling: let us take an equidistant spatial mesh, and let (en) denote

the normalized vertical displacement of the road surface at position n.

We thus assume that (en) is a bounded, 0-mean i.i.d. process.

The vertical displacement of a car rolling along this road is (yn).

Elementary physics implies that the past of e may effect the present of y :

yn =
∞∑

k=0
hken−k .

Here the hk -s are the impulse responses of the system.



Linear transformations revisited

Focus on linear transformations of a w.s.st. orthogonal process (en). Let

yn =
∞∑

k=0
hken−k . (2)

To ensure that (yn) is well defined we use Hilbert space theory.

If
∞∑

k=0
h2

k < +∞, then the right hand side of (2) converges in L2(Ω,F ,P).

Exercise 1.4. Show that y = (yn) given in (2) is a w.s.st. process.



Moving Average processes

Consider a finite (!) linear combination of an orthogonal process e = (en):

yn =
r∑

k=0
cken−k . (3)

The w.s.st. process (yn) is called a moving average os MA process.

If cr 6= 0, then r is the order, and (yn) is called an MA(r) process. Let

A(z−1) =
r∑

k=0
ckz−k .

The roots of the equation A(z−1) = 0 are called the zeros of the process.

Note on scaling: we may and will assume that c0 = 1.



Example for a MA(1) process, I.

Consider the process yn = en + c1en−1. Its zero is then γ = −1/c1.

For c1 < 0 we get the weighted difference of the white noise process:

An MA(1) process with a large positive zero γ = 0.9.



Example for a MA(1) process, II.
For c1 > 0, we get the smoothed average of the white noise process:

An MA(1) process with a large negative zero, γ = 0.9.

Exercise 1.5 Compute the auto-covariance functions for both examples.



PREDICTION



The problem of prediction

A fundamental problem of the theory of time series:

predict future values of a w.s.st. stochastic process (yn).

Example: prediction of temperature, precipitation or wind speed;

1 to 10 days ahead. See:

OMSZ, https://www.met.hu/ or

European Centre for Medium-Range Weather Forecasts (ECMWF)



Prediction based on finite past, I.

In practice we have to work with a finite segment of data. The problem:

Predict yn knowing past values yn−1, yn−2, . . . , yn−p. (One-step ahead).

We restrict ourselves to linear predictions of the form:

ŷn =
p∑

k=1
αkyn−k . (4)

The quality of prediction is measured by its mean square error (MSE):

J(α) = E (ŷn − yn)2.



Prediction based on finite past, II.

The mean square error (MSE) in detail:

J(α) = E

(
yn −

p∑
k=1

αkyn−k

)2

.

Minimize J(α) with respect to α := (α1, . . . , αp)T !

Thus we get the least squares or LSQ predictor.

Differentiating J(α) is w.r.t. αj we get the equation

E

(
yn −

p∑
k=1

αkyn−k

)
yn−j = 0.



Prediction based on finite past, III.

The equation above repeated:

E

(
yn −

p∑
k=1

αkyn−k

)
yn−j = 0.

It can be written in the following form:

r(j)−
p∑

k=1
r(j − k)αk = 0.

Recall that r(j − k) = r(k − j) =: (Rj,k). Let r := (r(1), . . . , r(p))T .

Then we get the following normal equation for α := (α1, . . . , αp)T :

R α = r .



Prediction based on finite past, IV.

Thus we arrive at the following result:

Proposition
Assume that R is non-singular. Then the coefficients of the LSQ linear
predictor ŷn =

∑p
k=1 αkyn−k are obtained as the unique solution of

R α = r . (5)



The case of singular R

Remark: R is nonsingular if and only if R is positive definit. (Why?)

Exercise 1.6 Show that if R is singular (for a given p), then yn can be
predicted with 0 error. (Hint. Recall the definition of R.)



A geometric approach, I.

Assume now that the infinite past of (yn) up to time n − 1 is known.

This is a matter of convenience for theoretical arguments.

Surprise: this assumption is not as impractical as it looks !

Consider the linear space spanned by (yn−1, yn−2 . . .) :

Ln−1 =
{
u :

p∑
k=0

αkyn−k , αk ∈ R for some p
}

Obviously (?) Ln−1 is a linear subspace of the Hilbert-space L2(Ω,F ,P).

The latter is equipped with the scalar product 〈ξ, η〉 = E ξ η. Let

Hn−1 := ClLn−1

be the closure of Ln−1 in the metric of L2(Ω,F ,P).



Geometric approach, II.

Thus Hn−1 = ClLn−1 is a Hilbert subspace of L2(Ω,F ,P).

The prediction problem: find the best approximation of yn in Hn−1,

in the in the LSQ sense, i.e solve

min
u∈Hn−1

E (yn − u)2.

It is well-known that the solution u = ŷn is given

ŷn = (yn|Hn−1),

the orthogonal projection of yn on the subspace Hn−1.



Geometric approach, III.

In general let H ′ be closed subspace of a Hilbert space H.

Let y ∈ H and let ŷ denote its orthogonal projection on H ′ :

ŷ = (y |H ′).

The projection ŷ is uniquely defined by the following two properties:

ŷ ∈ H ′ and (y − ŷ)⊥u ∀u ∈ H ′,

where the symbol ⊥ stands for orthogonality.

A challenge: can we compute ŷn under appropriate conditions ?

We will see: the answer is yes.



Example 1.
The graphs of an AR(2) process and its LSQ predictor, marked yellow:

LSQ prediction of an AR(2) process with complex poles 0.8e±0.3πi



Example 2.
The graphs of an AR(2) process an its LSQ predictor, marked yellow:

LSQ prediction of an AR(2) process with complex poles 0.8e±0.6πi



End of Lecture 1.


