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Multivariate AR(1), I.

From spectral representation to state space representation

Recall the simplest non-trivial example: a stable AR(1) process.

Extension: consider a multivariate AR(1) process given by

xn+1 = Axn + Bvn,

with xn ∈ Rs . Here (vn) is an Rt -valued w.s.st. orthogonal process.

Let EvnvT
n = Σvv . The matrices A and B are s × s and s × t, resp.

Quest.: under what condition is there a unique stationary solution (xn) ?



Multivariate AR(1), II.

Extending the condition |a| < 1. Recall the definition os spectral radius:

ρ(A) = max
i=1,...s

|λi (A)|,

where λi (A), i = 1, . . . s denote the eigenvalues of A.

Definition
A square matrix A matrix is stable (in discrete sense) if ρ(A) < 1.
Equivalently, A is stable if all the roots of the polynomial equation

|zI − A| = 0

are in D = {z : |z | < 1}.

In other words: the matrix A is stable (in discrete sense) if ρ(A) < 1. if

its spectral radius is less than 1.



Multivariate AR(1), III.

Recall the following result of linear algebra:

ρ(A) = lim
n→∞

‖An‖1/n.

Hence letting r := ρ(A) we have for any ε > 0, with some C = C(ε) > 0,

‖An‖ ≤ C(r + ε)n.

Thus if r = ρ(A) < 1 then ‖An‖ is exponentially decaying.



Multivariate AR(1), IV.

Proposition
If A is a stable, then there is a unique w.s.st. solution (xn), given by

xn+1 =
∞∑

k=0
AkBvn−k .

Exercise. Existence: prove that the r.h.s. converges in L2(Ω,F ,P),

and it satisfies the AR(1) dynamics.



Multivariate AR(1), V.

Proving uniqueness: iterate xn+1 = Axn + Bvn forward in time:

xn+τ = Aτxn +
τ−1∑
k=0

AkBvn+τ−1−k , τ ≥ 1.

Letting τ →∞ we get the xn must be as given above.

The proposition implies that x is a causal linear function of v , thus:

Hx
n+1 ⊂ Hv

n ∀n.

Remark. Note the shift in the time index, due to the fact that

vn effects xn+1. Not aligned with notation for ARMA processes.



Multivariate AR(1), VI.

An operator form: letting q−1 denote the backward shift operator

equation (1) can be written as

(qI − A)x = Bv . (1)

Question: under what condition does a w.s.st. solution exist,

which is not necessarily causal ? Using spectral methods we ‘easily get:

Proposition
Assume, that e iωI − A is not singular for all ω ∈ [0, 2π]. Then (1) has a
unique w.s.st. solution.



Partial observation
State space equations with partial observation:

xn+1 = Axn + Bvn

yn = Cxn + Dwn,

where y is called observation.

The dimension of is y typically much smaller than the dimension of x .

dim x � dim y .

The observation noise is Dwn, the matrix D is square.

dim w = dim y .



Partial observation, I.
Extension to state-space systems with partial observation.

Mathematically speaking we consider the dynamics given by the set of
equations

xn+1 = Axn + Bvn

yn = Cxn + Dwn,

The dimension of the observed process y (simply called observation) is
typically much smaller than the dimension of the state process x .

Condition
The joint noise process (vn,wn),−∞ < n <∞ is a w.s.st. orthogonal
process with covariance matrix(

Σvv Σvw
Σwv Σww

)
. (2)



Partial observation, II.

The above set of equation for modelling a multivariate time series is
called a state-space model or linear stochastic system.

Foundations has been laid down by the Kyoto prize laureate Hungarian
scientist R. Kalman.

This theory revolutionized the area of w.s.st. processes, in particular
especially by allowing a very effective solution of the so-called filtering
problem.



Partial observation, III.

Question: what is the innovation process of the observed process (yn) ?

An amazingly simple and elegant answer: the innovation process (νn)
satisfies:

xn+1 = Axn + Kνn

yn = Cxn + νn,

with some matrix K , called the Kalman-gain. Note that dim y = dim ν,
as expected.
In operator form:

(qI − A)x = Kν
y = C + ν,



Partial observation, IV.
Solving the above we can write formally:

y = (C(qI − A)−1K + I)ν,

Getting ν: invert the above. We may use linear algebra, or simply (3),
(3):

Write ν = y − Cx , and substitute to get

(qI − A)x = K (y − Cx)

from which
(qI − A + KC)x = Ky

and hence

x = (qI − A + KC)−1Ky



Partial observation, V.

Finally:

ν = y − Cx = (I − C(qI − A + KC)−1K )y

The yet open issue: how doe we get K ?



State space model, partial observation

The joint noise process (vn,wn) is a w.s.st. orthogonal process.

The covariance matrix of the noise is:

E(vn, wn)
(

vT
n

wT
n

)
=
(

Σvv Σvw
Σwv Σww

)
.

This set of equation is called a state-space model or

linear stochastic system.

xn+1 = Axn + Bvn

yn = Cxn + Dwn,



Covariance of xn

Take the dyadic product of xn+1 = Axn + Bvn with itself:

xn+1xT
n+1 = AxnxT

n AT + BvnvT
n BT + AxnvT

n BT + BvnxT
n AT .

Now xn+1 =
∞∑

k=0
AkBvn−k ⇒ xn+1 ⊥ vn+1.

Then taking expectation on both sides we get:

Exn+1xT
n+1 = A

(
ExnxT

n
)

AT + B
(
EvnvT

n
)

BT .

Then P = ExnxT
n satisfies the equation

P = APAT + BΣvv BT .

This equation is called a (discrete-time) Lyapunov equation.



Auto-covariance function of xn

Iterate xn+1 = Axn + Bvn forward in time τ ≥ 1 times:

xn+τ = Aτxn +
τ−1∑
k=0

AkBvn+τ−1−k .

Multiply the equation by xT
n from left, and take expectation, we get:

Exn+τxT
n = AτExnxT

n .

The auto-covariance function of x is R(τ) = Exn+τxT
n . If A stable, then

R(τ) = AτP for τ ≥ 0, R(τ) = P(AT )τ for τ ≤ 0.



Auto-covariance function of yn

Let us now consider a general linear stochastic system given by

xn+1 = Axn + Bvn

yn = Cxn + Dwn,

Assume, that A stable. Then the auto-covariance function of (yn) is:

Ry (0) = E(ynyT
n ) = CPCT + DΣww DT and

Ry (τ) = E(yn+τyT
n ) = CAτPCT for τ ≥ 1.



Uniqueness?

xn+1 = Axn + Bvn

yn = Cxn + Dwn.

The state-space description is far from being unique. From (v ,w) to y :

Let T be a non-singular linear transformation, define x ′ = Tx . Then

x ′n+1 = TAT−1x ′n + TBvn

yn = CT−1x ′n + Dwn.

The two systems generate the same input-output mapping :(
A B
C D

)
is equivalent to

(
TAT−1 TB
CT−1 D

)
.



The stochastic realization problem

Now, look for a representation of the process (yn) without specifying the
driving noise process (v ,w).

Problem: realize a given auto-covariance sequence Ry (.) in the form

Ry (0) = CPCT + DΣww DT and
Ry (τ) = CAτPCT for τ ≥ 1.

We have to find appropriate A, C matrices.

This is called the stochastic realization problem.



Initialization at time 0
Assume, the state-space equation is initialized at n = 0 , rather than
−∞ < n < +∞.

Let us assume that Ex0 = 0, and Ex0xT
0 = P0.

Then Pn = ExnxT
n , satisfies

Pn+1 = APnAT + BBT

with initial condition P0.

Exercise. (HW) Show that if A is stable, then Pn converges to the
unique solution of

P = APAT + BΣvv BT .



Non-singular covariance matrix of x

P = ExnxT
n can be written as P =

∞∑
k=0

AkBΣvv BT (AT )k

If Σvv is non-singular, we may assume EvnvT
n = I. Then we can write P:

P = C∞CT
∞, with C∞ = (B, AB, A2B, . . . ).

Now rank(P) = s ⇐⇒ rank(C∞) = s.

Define the controllability matrix by

C = (B, AB, A2B, . . . As−1B).



C = (B, AB, A2B, . . . As−1B).

Since, by the Cayley-Hamilton theorem
s∑

k=0
αkAk = 0, αs = 1,

all the columns of AmB, m ≥ 0, can be expressed via the columns of C.

Thus it follows that
rank C∞ = rank C.

Then we get:

P = ExnxT
n is non-singular ⇐⇒ the controllability matrix C has full rank.



State space representation of AR processes

Let (yn) be a w.s.st. AR(p) process defined by

A(q−1)y = e, a0 = 1, ap 6= 0.

Define the state vector xn = (yn−1, . . . , yn−p). Then

xn+1 = Ãxn + ben

yn = bT xn+1,

with Ã =


−a1 . . . −ap
1 0

. . . . . .
1 0

 , b =


1
0
...
0

 .

Ã is the companion matrix associated with the polynomial A(z−1).



The process A(q−1)y = e can be realized by the state-space system

xn+1 = Ãxn + ben

yn = bT xn+1,

We assumed that A(z−1) is a stable polynomial, hence e is the
innovation process of y .

The the eigenvalues of Ã are identical with the roots of A(z−1).

Thus, if A(z−1) is stable, then Ã is also stable.


