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REMINDER
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Unstable MA processes, I.

Consider now an MA process s.t. C(z−1) not necessarily stable.

y = C ′(q−1)e′ (1)

where C ′(q−1) is a polynomial of q−1 and (e′n) is a w.s.st. orthogonal

process.

Assuming σ2(e′) = 1 the spectral density of (yn) is given by

f (ω) = |C ′(e−iω)|2.

This can be obtained by restricting the complex-function

g(z) = C ′(z−1)C ′(z)

to z = e−iω.
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Unstable MA processes, II.

Proposition
Let C ′(z−1) be a polynomial of z−1 such that C ′(z−1) 6= 0 for |z | = 1.

Then ∃ a stable polynomial C(z−1) with degC = degC ′ such that

C ′(z−1)C ′(z) = C(z−1)C(z). (2)

The stable factor is unique if the leading coefficient is fixed to 1. .
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Spectral factorization, I.
The spectral density of a MA process can be written as

f (ω) = C(e−iω)C(e iω) = |C(e−iω)|2.

where C(z−1) is a stable polynomial. This is called spectral factorization,

and C(e−iω) is called a stable spectral factor.

Define a new process e by its spectral representation process as

dζe(ω) = 1
C(e−iω)dζ

y (ω). (3)

Write the spectral representation process of e as

dζe(ω) = 1
C(e−iω) dζ

y (ω) = C ′(e−iω)
C(e−iω) dζe′(ω). (4)

The definition of e, given in (4), implies

y = C(q−1)e,

and since C(z−1) stable, e is the innovation process of y .c© L. Gerencsér, Zs. Vágó and B. Gerencsér 5 / 31



Spectral factorization, II.

Proposition
Let y = (yn) be an MA process given by y = C ′(q−1)e′ (1). Assume that

C ′(z−1) 6= 0 for |z | = 1. Let C(e−iω) be the stable spectral factor of

f y (ω), and define e = (en) by (3). Then e is a w.s.st. orthogonal process,

y = C(q−1)e,

and e is the innovation process of y .
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ARMA processes, I.

The combination of AR and MA processes is called an ARMA process.

Definition
A w.s.st. process y = (yn) is called an ARMA process if it satisfies the

dynamics

A(q−1) y = C(q−1) e, (5)

where (en) is a w.s.st. orthogonal process, and A(q−1) and C(q−1) are

polynomials of the backward shift operator q−1.

We use the following notations in defining an ARMA(p, r) process:

A(q−1) =
p∑

k=0
akq−k , C(q−1) =

r∑
k=0

ckq−k ,

assuming that a0 = c0 = 1, and ap 6= 0 and cr 6= 0.c© L. Gerencsér, Zs. Vágó and B. Gerencsér 7 / 31



ARMA processes, II.

Proposition
Consider the ARMA dynamics (5). Assume that A(z−1) 6= 0 for |z | = 1.

Then there is a unique w.s.st. process y = (yn) satisfying (5). The

process (yn) has a spectral density equal to

f y (ω) = σ2(e) |C(e−iω)|2
|A(e−iω)|2 .

Remark. We assume that A(z−1) and C(z−1) have no common factor.
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Stability and inverse stability, I.

Let us consider an ARMA(p, r) process y = (yn) defined by

A(q−1) y = C(q−1) e with degA = p, degC = r . (6)

Here e = (en) is a w.s.st. orthogonal process. We can ask ourselves:

under what conditions e is the innovation process of y .

Proposition
Assume that both A(z−1) and C(z−1) are stable, i.e. A(z−1) 6= 0 and
C(z−1) 6= 0 for |z | ≥ 1. Then e = (en) is the innovation process of
y = (yn).

The idea of the proof: expand both C(e−iω)
A(e−iω) and A(e−iω)

C(e−iω)

into a power series of e−iω, to infer both Hy
n ⊂ He

n and He
n ⊂ Hy

n ∀n.
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Stability and inverse stability, II.

A simple extension of the lemma on the expansion of 1/A(e−iω):

Lemma
If both A(z−1) and C(z−1) are stable, a0 = c0 = 1, then

C(e−iω)
A(e−iω) =

∞∑
k=0

hke−ikω, and A(e−iω)
C(e−iω) =

∞∑
k=0

gke−ikω,

with h0 = g0 = 1, where convergence on the r.h.s. is uniform in ω.

It follows that the r.h.s. of C(e−iω)
A(e−iω) converges in Lc

2 (dF e), hence the

random measure C(e−iω)
A(e−iω) dζ

e(ω) is well-defined. Similarly, the r.h.s. of

A(e−iω)
C(e−iω) converges in Lc

2 (dF y ), hence the random measure A(e−iω)
C(e−iω) dζ

y (ω)
is well-defined.
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End of REMINDER
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Unstable ARMA processes, I.

The analysis of unstable MA or AR processes can be extended.

Let y = (yn) be a w.s.st. ARMA process defined by

A′(q−1) y = C ′(q−1) e′ (7)

where the polynomials A′(z−1) and C ′(z−1) are not necessarily stable.

The process e′ is a w.s.st. orthogonal process with σ2(e′) = 1.

Assume A′(z−1) 6= 0 and C ′(z−1) 6= 0 for |z | = 1. The spectral density
of y :

f (ω) =
∣∣∣∣C ′(e−iω)
A′(e−iω)

∣∣∣∣2 .
Let A(e−iω) and C(e−iω) be the stable spectral factors of

the denominator and the numerator, resp.

c© L. Gerencsér, Zs. Vágó and B. Gerencsér 12 / 31



Unstable ARMA processes, II.
Then

f y (ω) =
∣∣∣∣C ′(e−iω)
A′(e−iω)

∣∣∣∣2 =
∣∣∣∣C(e−iω)
A(e−iω)

∣∣∣∣2 .
The rational function C(e−iω)

A(e−iω) is called a stable spectral factor of f y .

Now define the w.s.st. process e by

dζe(ω) = A(e−iω)
C(e−iω) dζ

y (ω),

Equivalently, define the process e by the inverse dynamics

C(q−1) e = A(q−1) y (8)

Let us spell out the definition of e:

dζe(ω) = A(e−iω)
C(e−iω) dζ

y (ω) = A(e−iω)
C(e−iω) ·

C ′(e−iω)
A′(e−iω) dζe′(ω).

c© L. Gerencsér, Zs. Vágó and B. Gerencsér 13 / 31



Unstable ARMA processes, III.

dζe(ω) = A(e−iω)
C(e−iω) dζ

y (ω) = A(e−iω)
C(e−iω) ·

C ′(e−iω)
A′(e−iω) dζe′(ω).

Note that the transfer function

G(e−iω) = A(e−iω)
C(e−iω) ·

C ′(e−iω)
A′(e−iω)

is such that

G(e−iω)G(e iω) = |G(e−iω)|2 = 1 ∀ω. (9)

We say that the transfer function G(e−iω) is all-pass: all frequencies

are passed through the filter G with unchanged energy.

It is readily seen that the process e = (en) is a w.s.st. orthogonal process:

c© L. Gerencsér, Zs. Vágó and B. Gerencsér 14 / 31



Unstable ARMA processes. Summary.

Proposition
Let y = (yn) be a w.s.st. ARMA process defined by

A′(q−1) y = C ′(q−1) e′ (10)

where e′ is a w.s.st. orthogonal process with σ2(e′) = 1.

Assume A′(z−1) 6= 0 and C ′(z−1) 6= 0 for |z | = 1. Let C(e−iω)/A(e−iω)

denote the stable spectral factor of the spectral density of y :

f (ω) =
∣∣∣∣C ′(e−iω)
A′(e−iω)

∣∣∣∣2 =
∣∣∣∣C(e−iω)
A(e−iω)

∣∣∣∣2 .
Then the innovation process of y is obtained from the equation below:

C(q−1) e = A(q−1) y , (11)
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VECTOR VALUED PROCESSES
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Vector valued w.s.st. processes, I.
Motivation: simultaneous price movements of several commodities.

Interaction between individual prices: get better predictions.

Definition
The Rs -valued stochastic process y = (yn), −∞ < n < +∞ is called

wide sense stationary if E|yn|2 <∞ for all n, Eyn = 0 for all n, and the

covariance matrix
R(τ) = Ry (τ) = E(yn+τy>n )

is independent of n.

The condition Eyn = 0 can be replaced by the condition that Eyn = m

with some fixed vector m ∈ Rs for all n.

The matrix-valued function R(.) is called the auto-covariance function of

(yn). Obviously, we have
R(−τ) = R(τ)>.
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Vector valued w.s.st. processes, II.
The definition extends to Cs -valued (complex-valued) processes requiring

R(τ) = E(yn+τyn
>)

to be independent of n. Obviously, R(−τ) = R(τ)>.

An eminent role is played by vector-valued w.s.st. orthogonal processes.

Definition
A Rs -valued w.s.st. stochastic process (en) is called a w.s.st orthogonal

process if

Een+τe>n = 0 for τ 6= 0 and Eene>n = Σ for all n,

where Σ is a fixed, s × s symmetric positive semi-definite matrix.

Note that Σ is not assumed to be the identity I, it may be even singular.
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Results for vector-valued w.s.st. processes

Let (yn) be a Rs -valued w.s.st. process. Define a new process:

zn =
p∑

k=1
aT

k yn−k , with a1, . . . ap ∈ Rs .

Exercise. (HW) Show that (zn) is an R-valued w.s.st. process, and

Ez2
n =

p∑
k=1

p∑
j=1

aT
k R(k − j)aj ≥ 0.

Corollary. The block matrix R, which is defined by the blocks

Rk,j = R(k − j) ∈ Rs×s , k, j = 1, . . . , p (12)

is positive semi-definite. The size of R is (ps)× (ps).
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Prediction and innovation, I.

Let (yn) be a Rs -valued w.s.st. process.

Any component of yn or a linear combination of components of yn

will be predicted by taking a set of vectors a1, . . . ap in Rs , and defining

zn =
p∑

k=1
a>k yn−k .

Exercise. Show that (zn) is an R-valued w.s.st. process and we have

Ez2
n =

p∑
k=1

p∑
l=1

a>k R(k − l)al . (13)

Thus the block matrix R = (Rk,l ) defined by the blocks

Rk,l = R(k − l), k, l = 1, . . . , p (14)

is positive semi-definite. The size of R is ps × ps.c© L. Gerencsér, Zs. Vágó and B. Gerencsér 20 / 31



Block Toeplitz matrices

Recall: Rk,j = R(k − j) = E
(
y(n − j)yT (n − k)

)
, k, j = 1, . . . , p, and

R =


R(0) R(1) . . . . . . R(p − 1)
R(−1) R(0) R(1) . . . R(p − 2)
R(−2) R(−1) R(0) . . . R(p − 3)

...
...

. . . . . .
R(1− p) R(2− p) . . . . . . R(0)


Definition
A ps × ps matrix R consisting of m ×m blocks is called a

block-Toeplitz matrix.

Note. A block-Toeplitz matrix is typically not Toeplitz in the usual sense.
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The history of (yn)

Let (yn) be an Rs -valued w.s.st. process.

Consider first the linear space of R-valued (!) random variables:

Ly
n−1 =

{ p∑
k=1

aT
k yn−k , for some p, and ak ∈ Rs

}
⊂ L2(Ω,F ,P).

We define Hy
n−1 as the closure of Ly

n−1 in L2(Ω,F ,P).

Remark. Hy
n−1 is a Hilbert space of real-valued r.v.-s.
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Projection in Ls
2(Ω,F , P)

We define Ls
2(Ω,F ,P) =

{
x ∈ Rs is a r.v. : E|x |2 <∞

}
.

The projection of x ∈ Ls
2(Ω,F ,P) onto Hy

n−1 is defined componentwise:

x̂ = (x |Hy
n−1) =

(
(x1|Hy

n−1), . . . , (xs |Hy
n−1)

)T
.

For the error vector x̃ = x − x̂ we have

x̃ ⊥ Hy
n−1 i.e. x̃k ⊥ Hy

n−1 ∀ k.
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The innovation process

Define innovation process of y = (yn), denoted by e = (en), via

en = yn − (yn|Hy
n−1).

A vector valued process (yn) is singular, if its innovation process

identically 0, or equivalently if

Hy
n = Hy

n−1 for all n. (15)

A novel phenomenon is that Λ = EeneT
n may be singular, although Λ 6= 0.
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Spectral theory, I.
Question: can we extend Herglotz’s theorem on the representation of

the auto-covariance sequence to vector valued w.s.st. processes ?

Assume first that the auto-covariance function of (yn) satisfies

∞∑
τ=−∞

‖R(τ)‖2 <∞, (16)

where ‖R‖ denotes the operator norm of the matrix R, i.e.

‖R‖ = max
x 6=0
|Rx |/|x |.
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Spectral theory, II.

Theorem
Let y = (yn) be an Rs -valued w.s.st. process, and let R(.) be its
auto-covariance function. Assume that R(.) satisfies (16). Then we have

R(τ) = 1
2π

∫ 2π

0
e iτωf (ω)dω, (17)

where f (.) is a symmetric, positive semi-definite function in Ls×s
2 (dω).

The function f (.) is called the spectral density of y = (yn).

Exercise. HW Show that for an Rs -valued orthogonal wide sense
stationary process (en) with covariance matrix Λ = Eene>n we have

f (ω) = Λ ∀ω.
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Spectral theory, III.
Proof (Outline.) Let α ∈ Rs and consider the scalar process

zα,n = α>yn.

The auto-covariance function of zα,n is

rα(τ) = α>R(τ)α.

It is obvious by (16) that
∞∑

τ=−∞
(rα(τ))2

< +∞. By the special case of

the scalar Herglotz’s theorem we have

rα(τ) = 1
2π

∫ 2π

0
e iωτ f α(ω)dω,

where f α(ω) ≥ 0 is the spectral density corresponding to rα(τ).
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Spectral theory, IV.

We know how to get f α(.) from rα(.) explicitly:

f α(ω) =
∞∑

τ=−∞
rα(τ) e−iτω.

Here convergence on the r.h.s. is meant in Lc
2(dω) = Lc

2([0, 2π], dω) !

Substituting rα(τ) = α>R(τ)α we get

f α(ω) =
∞∑

τ=−∞
α>R(τ)α e−iτω . (18)

Taking finite truncations of the r.h.s. we get that

N∑
τ=−N

α>R(τ)αe−iτω = α>(
N∑

τ=−N
R(τ)e−iτω)α (19)

converges in L2(dω) for any α.
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Spectral theory, V.
From here we would like to conclude that

fN(ω) =
N∑

τ=−N
R(τ)e−iτω

itself converges in Ls×s
2 (dω). To see this we need what follows:

Exercise. Prove that a quadratic form α>Fα, with F symmetric,

determines the bilinear form corresponding to F uniquely as

β>Fγ = 1
4
(
(β + γ)>F (β + γ)− (β − γ)>F (β − γ)

)
. (20)
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Spectral theory, VI.

Take F = fN , and any pair of unit vectors in Rs , say, β = ek , γ = el .

We conclude that infinite series below converges in L2(dω) ∀k, l :

e>k
∞∑

τ=−∞
R(τ)e−iτωel =

∞∑
τ=−∞

Rk,l (τ) e−iτω =: fk,l (ω).

Thus the infinite series below converges in Ls×s
2 (dω):

∞∑
τ=−∞

R(τ)e−iτω =: f (ω)

It is readily seen that

f α(ω) = α>f (ω)α ∀α ∈ Rs .

Obviously f (ω) is symmetric, and f α(ω) ≥ 0

that f (ω) is positive semi-definite. This concludes the proof.
c© L. Gerencsér, Zs. Vágó and B. Gerencsér 30 / 31



Spectral theory: the general case

Theorem
Let y = (yn) be an Rs -valued w.s.st. process, and let R(.) be its
auto-covariance function. Then we have

R(τ) = 1
2π

∫ 2π

0
e iτωdF (ω),

where F (.) is a matrix-valued function such that F (0) = 0 and F (2π) is
finite, and its increments of F (·) are symmetric positive semi-definite
matrices.

The matrix-valued F (ω) is the spectral distribution function of (yn)

c© L. Gerencsér, Zs. Vágó and B. Gerencsér 31 / 31


