

Stochastic Signals and Systems

Lecture 9 . Unstable AR and MA processes Multivariate systems

3 December 2020

© L. Gerencsér, Zs. Vágó and B. Gerencsér

REMINDER

Unstable MA processes, I.

Consider now an MA process s.t. $C(z^{-1})$ not necessarily stable.

$$y = C'(q^{-1})e'$$
 (1)

where $C'(q^{-1})$ is a polynomial of q^{-1} and (e'_n) is a w.s.st. orthogonal process.

Assuming $\sigma^2(e') = 1$ the spectral density of (y_n) is given by

$$f(\omega) = |C'(e^{-i\omega})|^2.$$

This can be obtained by restricting the complex-function

$$g(z) = C'(z^{-1})C'(z)$$

to $z = e^{-i\omega}$.

Unstable MA processes, II.

Proposition

Let $C'(z^{-1})$ be a polynomial of z^{-1} such that $C'(z^{-1}) \neq 0$ for |z| = 1. Then \exists a stable polynomial $C(z^{-1})$ with deg $C = \deg C'$ such that $C'(z^{-1})C'(z) = C(z^{-1})C(z).$ (2)

The stable factor is unique if the leading coefficient is fixed to 1. .

Spectral factorization, I.

he spectral density of a MA process can be written as

$$f(\omega) = C(e^{-i\omega})C(e^{i\omega}) = |C(e^{-i\omega})|^2.$$

where $C(z^{-1})$ is a stable polynomial. This is called spectral factorization, and $C(e^{-i\omega})$ is called <u>a stable spectral factor</u>.

Define a new process e by its spectral representation process as

$$d\zeta^{e}(\omega) = \frac{1}{C(e^{-i\omega})} d\zeta^{y}(\omega).$$
(3)

Write the spectral representation process of e as

$$d\zeta^{e}(\omega) = \frac{1}{C(e^{-i\omega})} \, d\zeta^{y}(\omega) = \frac{C'(e^{-i\omega})}{C(e^{-i\omega})} \, d\zeta^{e'}(\omega). \tag{4}$$

The definition of e, given in (4), implies

$$y=C(q^{-1})e$$

and since (x, y) with stable end of the innovation process of y. 5/31

Spectral factorization, II.

Proposition

Let $y = (y_n)$ be an MA process given by $y = C'(q^{-1})e'(1)$. Assume that $C'(z^{-1}) \neq 0$ for |z| = 1. Let $C(e^{-i\omega})$ be the stable spectral factor of $f^y(\omega)$, and define $e = (e_n)$ by (3). Then e is a w.s.st. orthogonal process, $y = C(q^{-1})e$,

and e is the innovation process of y.

ARMA processes, I.

he combination of AR and MA processes is called an ARMA process.

Definition

A w.s.st. process $y = (y_n)$ is called an <u>ARMA</u> process if it satisfies the dynamics

$$A(q^{-1}) y = C(q^{-1}) e, (5)$$

where (e_n) is a w.s.st. orthogonal process, and $A(q^{-1})$ and $C(q^{-1})$ are polynomials of the backward shift operator q^{-1} .

We use the following notations in defining an ARMA(p, r) process:

$$A(q^{-1}) = \sum_{k=0}^{p} a_k q^{-k}, \qquad C(q^{-1}) = \sum_{k=0}^{r} c_k q^{-k},$$

assuming that $a_{0} = 1$ and $a_{p} \neq 0$ and $c_{r} \neq 0$. 7 / 31

ARMA processes, II.

Proposition

Consider the ARMA dynamics (5). Assume that $A(z^{-1}) \neq 0$ for |z| = 1. Then there is a unique w.s.st. process $y = (y_n)$ satisfying (5). The process (y_n) has a spectral density equal to

$$f^{y}(\omega) = \sigma^{2}(e) \frac{|\mathcal{C}(e^{-i\omega})|^{2}}{|\mathcal{A}(e^{-i\omega})|^{2}}.$$

Remark. We assume that $A(z^{-1})$ and $C(z^{-1})$ have <u>no common factor</u>.

Stability and inverse stability, I.

Let us consider an ARMA(p, r) process $y = (y_n)$ defined by

$$A(q^{-1}) y = C(q^{-1}) e$$
 with $\deg A = p$, $\deg C = r$. (6)

Here $e = (e_n)$ is a w.s.st. orthogonal process. We can ask ourselves: under what conditions e is the innovation process of y.

Proposition

Assume that both $A(z^{-1})$ and $C(z^{-1})$ are stable, i.e. $A(z^{-1}) \neq 0$ and $C(z^{-1}) \neq 0$ for $|z| \ge 1$. Then $e = (e_n)$ is the innovation process of $y = (y_n)$.

The idea of the proof: expand both
$$\frac{C(e^{-i\omega})}{A(e^{-i\omega})}$$
 and $\frac{A(e^{-i\omega})}{C(e^{-i\omega})}$

into a power series of $e^{-i\omega}$, to infer both $H_n^y \subset H_n^e$ and $H_n^e \subset H_n^y \quad \forall n$.

© L. Gerencsér, Zs. Vágó and B. Gerencsér

Stability and inverse stability, II.

A simple extension of the lemma on the expansion of $1/A(e^{-i\omega})$:

Lemma

If both $A(z^{-1})$ and $C(z^{-1})$ are stable, $a_0 = c_0 = 1$, then

$$\frac{C(e^{-i\omega})}{A(e^{-i\omega})} = \sum_{k=0}^{\infty} h_k e^{-ik\omega}, \qquad \text{and} \qquad \frac{A(e^{-i\omega})}{C(e^{-i\omega})} = \sum_{k=0}^{\infty} g_k e^{-ik\omega},$$

with $h_0 = g_0 = 1$, where convergence on the r.h.s. is uniform in ω .

It follows that the r.h.s. of $\frac{C(e^{-i\omega})}{A(e^{-i\omega})}$ converges in $L_2^c(dF^e)$, hence the random measure $\frac{C(e^{-i\omega})}{A(e^{-i\omega})} d\zeta^e(\omega)$ is well-defined. Similarly, the r.h.s. of

 $\frac{A(e^{-i\omega})}{C(e^{-i\omega})}$ converges in $L_2^c(dF^y)$, hence the random measure $\frac{A(e^{-i\omega})}{C(e^{-i\omega})} d\zeta^y(\omega)$ is well-defined.

© L. Gerencsér, Zs. Vágó and B. Gerencsér

End of REMINDER

Unstable ARMA processes, I.

The analysis of unstable MA or AR processes can be extended. Let $y = (y_n)$ be a w.s.st. ARMA process defined by

$$A'(q^{-1}) y = C'(q^{-1}) e'$$
(7)

where the polynomials $A'(z^{-1})$ and $C'(z^{-1})$ are not necessarily stable. The process e' is a w.s.st. orthogonal process with $\sigma^2(e') = 1$. Assume $A'(z^{-1}) \neq 0$ and $C'(z^{-1}) \neq 0$ for |z| = 1. The spectral density of y:

$$f(\omega) = \left|rac{C'(e^{-i\omega})}{A'(e^{-i\omega})}
ight|^2.$$

Let $A(e^{-i\omega})$ and $C(e^{-i\omega})$ be the stable spectral factors of the denominator and the numerator, resp.

Unstable ARMA processes, II.

$$f^{y}(\omega) = \left|rac{C'(e^{-i\omega})}{A'(e^{-i\omega})}
ight|^{2} = \left|rac{C(e^{-i\omega})}{A(e^{-i\omega})}
ight|^{2}$$

The rational function $\frac{C(e^{-i\omega})}{A(e^{-i\omega})}$ is called a <u>stable spectral factor</u> of f^{γ} . Now define the w.s.st. process *e* by

$$d\zeta^{e}(\omega) = rac{A(e^{-i\omega})}{C(e^{-i\omega})} d\zeta^{y}(\omega),$$

Equivalently, define the process e by the inverse dynamics

$$C(q^{-1}) e = A(q^{-1}) y$$
 (8)

Let us spell out the definition of *e*:

$$d\zeta^{e}(\omega) = \frac{A(e^{-i\omega})}{C(e^{-i\omega})} d\zeta^{y}(\omega) = \frac{A(e^{-i\omega})}{C(e^{-i\omega})} \cdot \frac{C'(e^{-i\omega})}{A'(e^{-i\omega})} d\zeta^{e'}(\omega).$$

© L. Gerencsér, Zs. Vágó and B. Gerencsér

13 / 31

Unstable ARMA processes, III.

$$d\zeta^{e}(\omega) = \frac{A(e^{-i\omega})}{C(e^{-i\omega})} d\zeta^{y}(\omega) = \frac{A(e^{-i\omega})}{C(e^{-i\omega})} \cdot \frac{C'(e^{-i\omega})}{A'(e^{-i\omega})} d\zeta^{e'}(\omega).$$

Note that the transfer function

$$G(e^{-i\omega}) = \frac{A(e^{-i\omega})}{C(e^{-i\omega})} \cdot \frac{C'(e^{-i\omega})}{A'(e^{-i\omega})}$$

is such that

$$G(e^{-i\omega})G(e^{i\omega}) = |G(e^{-i\omega})|^2 = 1 \qquad \forall \omega.$$
(9)

We say that the transfer function $G(e^{-i\omega})$ is <u>all-pass</u>: all frequencies are passed through the filter G with unchanged energy.

It is readily seen that the process $e = (e_n)$ is a w.s.st. orthogonal process:

Unstable ARMA processes. Summary.

Proposition

Let $y = (y_n)$ be a w.s.st. ARMA process defined by

$$A'(q^{-1}) y = C'(q^{-1}) e'$$
(10)

where e' is a w.s.st. orthogonal process with $\sigma^2(e') = 1$. Assume $A'(z^{-1}) \neq 0$ and $C'(z^{-1}) \neq 0$ for |z| = 1. Let $C(e^{-i\omega})/A(e^{-i\omega})$ denote the stable spectral factor of the spectral density of y:

$$f(\omega) = \left|\frac{C'(e^{-i\omega})}{A'(e^{-i\omega})}\right|^2 = \left|\frac{C(e^{-i\omega})}{A(e^{-i\omega})}\right|^2$$

Then the innovation process of y is obtained from the equation below:

$$C(q^{-1}) e = A(q^{-1}) y,$$
 (11)

VECTOR VALUED PROCESSES

Vector valued w.s.st. processes, I.

Motivation: simultaneous price movements of several commodities.

Interaction between individual prices: get better predictions.

Definition

The \mathbb{R}^s -valued stochastic process $y = (y_n), -\infty < n < +\infty$ is called wide sense stationary if $\mathbb{E}|y_n|^2 < \infty$ for all n, $\mathbb{E}y_n = 0$ for all n, and the covariance matrix

$$R(\tau) = R^{y}(\tau) = \mathrm{E}(y_{n+\tau}y_{n}^{\top})$$

is independent of n.

The condition $Ey_n = 0$ can be replaced by the condition that $Ey_n = m$ with some fixed vector $m \in \mathbb{R}^s$ for all n.

The matrix-valued function R(.) is called the *auto-covariance function* of (y_n) . Obviously, we have

$$R(-\tau) = R(\tau)^{\top}.$$

Vector valued w.s.st. processes, II.

The definition extends to \mathbb{C}^s -valued (complex-valued) processes requiring

$$R(\tau) = \mathrm{E}(y_{n+\tau}\overline{y_n}^{\top})$$

to be independent of *n*. Obviously, $R(-\tau) = \overline{R}(\tau)^{\top}$.

An eminent role is played by vector-valued w.s.st. orthogonal processes.

Definition

A \mathbb{R}^{s} -valued w.s.st. stochastic process (e_n) is called a w.s.st orthogonal process if

$$\mathbf{E} \mathbf{e}_{n+\tau} \mathbf{e}_n^\top = \mathbf{0} \quad \text{for} \quad \tau \neq \mathbf{0} \quad \text{and} \quad \mathbf{E} \mathbf{e}_n \mathbf{e}_n^\top = \mathbf{\Sigma} \quad \text{for all} \quad n,$$

where Σ is a fixed, $s \times s$ symmetric positive semi-definite matrix.

Note that Σ is not assumed to be the identity *I*, it may be even singular.

Results for vector-valued w.s.st. processes

Let (y_n) be a \mathbb{R}^s -valued w.s.st. process. Define a new process:

$$z_n = \sum_{k=1}^p a_k^T y_{n-k}, \quad \text{with} \quad a_1, \dots a_p \in \mathbb{R}^s.$$

Exercise. (HW) Show that (z_n) is an \mathbb{R} -valued w.s.st. process, and

$$\operatorname{E} z_n^2 = \sum_{k=1}^p \sum_{j=1}^p a_k^T R(k-j) a_j \ge 0.$$

Corollary. The *block matrix R*, which is defined by the *blocks*

$$R_{k,j} = R(k-j) \in \mathbb{R}^{s \times s}, \qquad k, j = 1, \dots, p$$
 (12)

is positive semi-definite. The size of *R* is $(ps) \times (ps)$.

© L. Gerencsér, Zs. Vágó and B. Gerencsér

Prediction and innovation, I.

Wet (y_n) be a \mathbb{R}^s -valued w.s.st. process.

Any *component of* y_n or a linear combination of components of y_n will be predicted by taking a set of vectors $a_1, \ldots a_p$ in \mathbb{R}^s , and defining

$$z_n = \sum_{k=1}^p a_k^\top y_{n-k}.$$

Exercise. Show that (z_n) is an \mathbb{R} -valued w.s.st. process and we have

$$Ez_n^2 = \sum_{k=1}^p \sum_{l=1}^p a_k^\top R(k-l) a_l.$$
 (13)

Thus the <u>block matrix</u> $R = (R_{k,l})$ defined by the blocks

$$R_{k,l} = R(k-l), \qquad k, l = 1, \dots, p$$
 (14)

is positive semi-definite cortain size of R is $ps \times ps$.

20 / 31

Block Toeplitz matrices

Recall: $R_{k,j} = R(k - j) = E(y(n - j)y^T(n - k))$, k, j = 1, ..., p, and

$$R = \begin{pmatrix} R(0) & R(1) & \dots & R(p-1) \\ R(-1) & R(0) & R(1) & \dots & R(p-2) \\ R(-2) & R(-1) & R(0) & \dots & R(p-3) \\ \vdots & \vdots & \ddots & \ddots \\ R(1-p) & R(2-p) & \dots & \dots & R(0) \end{pmatrix}$$

Definition

A ps \times ps matrix R consisting of $m \times m$ blocks is called a

block-Toeplitz matrix.

Note. A block-Toeplitz matrix is typically not Toeplitz in the usual sense.

The history of (y_n)

Let (y_n) be an \mathbb{R}^s -valued w.s.st. process.

Consider first the linear space of \mathbb{R} -valued (!) random variables:

$$\mathcal{L}_{n-1}^{y} = \left\{ \sum_{k=1}^{p} a_{k}^{T} y_{n-k}, \, \text{for some } p, \text{ and } a_{k} \in \mathbb{R}^{s} \right\} \subset L_{2}(\Omega, \mathcal{F}, P).$$

We define H_{n-1}^{y} as the closure of \mathcal{L}_{n-1}^{y} in $L_{2}(\Omega, \mathcal{F}, P)$.

Remark. H_{n-1}^{y} is a Hilbert space of *real-valued* r.v.-s.

Projection in $L_2^s(\Omega, \mathcal{F}, P)$

We define $L_2^s(\Omega, \mathcal{F}, P) = \{x \in \mathbb{R}^s \text{ is a r.v. } : E|x|^2 < \infty\}$.

The projection of $x \in L_2^s(\Omega, \mathcal{F}, P)$ onto H_{n-1}^y is defined *componentwise*:

$$\widehat{x} = (x|H_{n-1}^y) = ((x_1|H_{n-1}^y), \dots, (x_s|H_{n-1}^y))^T.$$

For the error vector $\tilde{x} = x - \hat{x}$ we have

 $\tilde{x} \perp H_{n-1}^{y}$ i.e. $\tilde{x}_k \perp H_{n-1}^{y} \quad \forall k$.

The innovation process

Define innovation process of $y = (y_n)$, denoted by $e = (e_n)$, via

 $e_n = y_n - (y_n | H_{n-1}^y).$

A vector valued process (y_n) is singular, if its innovation process identically 0, or equivalently if

$$H_n^y = H_{n-1}^y \text{ for all } n.$$
(15)

A novel phenomenon is that $\Lambda = \mathbf{E} e_n e_n^T$ may be singular, although $\Lambda \neq 0$.

Spectral theory, I.

Question: can we extend Herglotz's theorem on the representation of the auto-covariance sequence to vector valued w.s.st. processes ? Assume first that the auto-covariance function of (y_n) satisfies

$$\sum_{\tau=-\infty}^{\infty} \|R(\tau)\|^2 < \infty, \tag{16}$$

where ||R|| denotes the operator norm of the matrix R, i.e.

$$||R|| = \max_{x \neq 0} |Rx|/|x|.$$

Spectral theory, II.

Theorem

Let $y = (y_n)$ be an \mathbb{R}^s -valued w.s.st. process, and let R(.) be its auto-covariance function. Assume that R(.) satisfies (16). Then we have

$$R(\tau) = \frac{1}{2\pi} \int_0^{2\pi} e^{i\tau\omega} f(\omega) d\omega, \qquad (17)$$

where f(.) is a symmetric, positive semi-definite function in $L_2^{s \times s}(d\omega)$.

The function f(.) is called the spectral density of $y = (y_n)$.

Exercise. HW Show that for an \mathbb{R}^s -valued orthogonal wide sense stationary process (e_n) with covariance matrix $\Lambda = \mathbb{E}e_n e_n^\top$ we have

$$f(\omega) = \Lambda \quad \forall \omega.$$

Spectral theory, III.

Proof (Outline.) Let $\alpha \in \mathbb{R}^{s}$ and consider the scalar process

$$\mathbf{z}_{\alpha,\mathbf{n}} = \alpha^{\top} \mathbf{y}_{\mathbf{n}}.$$

The auto-covariance function of $z_{\alpha,n}$ is

$$r^{\alpha}(\tau) = \alpha^{\top} R(\tau) \alpha.$$

It is obvious by (16) that $\sum_{ au=-\infty}^{\infty} \left(r^{lpha}(au)\right)^2 < +\infty$. By the special case of

the scalar Herglotz's theorem we have

$$r^{lpha}(au)=rac{1}{2\pi}\int_{0}^{2\pi}e^{i\omega au}f^{lpha}(\omega)d\omega,$$

where $f^{\alpha}(\omega) \geq 0$ is the spectral density corresponding to $r^{\alpha}(\tau)$.

© L. Gerencsér, Zs. Vágó and B. Gerencsér

27 / 31

Spectral theory, IV.

We know how to get $f^{\alpha}(.)$ from $r^{\alpha}(.)$ explicitly:

$$f^{lpha}(\omega) = \sum_{ au=-\infty}^{\infty} r^{lpha}(au) \, \mathrm{e}^{-i au \omega}.$$

Here convergence on the r.h.s. is meant in $L_2^c(d\omega) = L_2^c([0, 2\pi], d\omega)$! Substituting $r^{\alpha}(\tau) = \alpha^{\top} R(\tau) \alpha$ we get

$$f^{\alpha}(\omega) = \sum_{\tau = -\infty}^{\infty} \alpha^{\top} R(\tau) \alpha \, e^{-i\tau\omega} \,. \tag{18}$$

Taking finite truncations of the r.h.s. we get that

$$\sum_{\tau=-N}^{N} \alpha^{\top} R(\tau) \alpha e^{-i\tau\omega} = \alpha^{\top} (\sum_{\tau=-N}^{N} R(\tau) e^{-i\tau\omega}) \alpha$$
(19)

converges in $L_2(d\omega)$ for any α .

© L. Gerencsér, Zs. Vágó and B. Gerencsér

28 / 31

Spectral theory, V.

From here we would like to conclude that

$$f_N(\omega) = \sum_{\tau=-N}^N R(\tau) e^{-i\tau\omega}$$

itself converges in $L_2^{s \times s}(d\omega)$. To see this we need what follows: **Exercise.** Prove that a quadratic form $\alpha^{\top}F\alpha$, with F symmetric, determines the bilinear form corresponding to F uniquely as

$$\beta^{\top} F \gamma = \frac{1}{4} \left((\beta + \gamma)^{\top} F (\beta + \gamma) - (\beta - \gamma)^{\top} F (\beta - \gamma) \right).$$
(20)

Spectral theory, VI.

Take $F = f_N$, and any pair of unit vectors in \mathbb{R}^s , say, $\beta = e_k$, $\gamma = e_l$. We conclude that infinite series below converges in $L_2(d\omega) \ \forall k, l$:

$$e_k^{\top} \sum_{\tau=-\infty}^{\infty} R(\tau) e^{-i\tau\omega} e_l = \sum_{\tau=-\infty}^{\infty} R_{k,l}(\tau) e^{-i\tau\omega} =: f_{k,l}(\omega).$$

Thus the infinite series below converges in $L_2^{s \times s}(d\omega)$:

$$\sum_{\tau=-\infty}^{\infty} R(\tau) e^{-i\tau\omega} =: f(\omega)$$

It is readily seen that

$$f^{\alpha}(\omega) = \alpha^{\top} f(\omega) \alpha \quad \forall \alpha \in \mathbb{R}^{s}.$$

Obviously $f(\omega)$ is symmetric, and $f^{lpha}(\omega)\geq 0$

that $f(\omega)$ is positive semi-definite. This concludes the proof.

© L. Gerencsér, Zs. Vágó and B. Gerencsér

Spectral theory: the general case

Theorem

Let $y = (y_n)$ be an \mathbb{R}^s -valued w.s.st. process, and let R(.) be its auto-covariance function. Then we have

$$R(\tau) = \frac{1}{2\pi} \int_0^{2\pi} e^{i\tau\omega} dF(\omega),$$

where F(.) is a matrix-valued function such that F(0) = 0 and $F(2\pi)$ is finite, and its increments of $F(\cdot)$ are symmetric positive semi-definite matrices.

The matrix-valued $F(\omega)$ is the spectral distribution function of (y_n)