Lecture 9 .
Unstable AR and MA processes
Multivariate systems

3 December 2020
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REMINDER
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Unstable MA processes, |.

Consider now an MA process s.t. C(z~!) not necessarily stable.

y=Cl(g e (1)
where C’'(q~1) is a polynomial of g=1 and (e},) is a w.s.st. orthogonal
process.

Assuming o2(e’) = 1 the spectral density of (y,) is given by
f(w) =[C'(e™™).
This can be obtained by restricting the complex-function

g(z)=C'(z71)C(2)

—iw

toz=e
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Unstable MA processes, Il.

Proposition
Let C'(z71) be a polynomial of z=1 such that C'(z71) # 0 for |z| = 1.
Then 3 a stable polynomial C(z~!) with deg C = deg C’ such that

C'(z7HC'(2) = C(z71)C(2). (2)

The stable factor is unique if the leading coefficient is fixed to 1. .
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Spectral factorization, I.

e spectral density of a MA process can be written as
f(w) = Ce™™)C(e™) = [C(e™™) 2.
where C(z71) is a stable polynomial. This is called spectral factorization,

and C(e™™) is called a stable spectral factor.

Define a new process e by its spectral representation process as

1

dge(w) - C(e—"‘“)

d¢¥(w). (3)

Write the spectral representation process of e as

e _ _ C/(eiiw) e’
d(w) = Ty 1) = G A @ (@)
The definition of e, given in (4), implies
y=C(g e,

and singe.Chz vik siable.g.s, the innovation process of y. 5/31



Spectral factorization, Il.

Proposition

Let y = (y,) be an MA process given by y = C'(q~1)e’ (1). Assume that
C'(z71) #0 for |z| = 1. Let C(e™ ') be the stable spectral factor of
fY(w), and define e = (e,) by (3). Then e is a w.s.st. orthogonal process,

y =C(g Ve,

and e is the innovation process of y.
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ARMA processes, |.

iWPhe combination of AR and MA processes is called an ARMA process.

Definition
A w.s.st. process y = (yn) is called an ARMA process if it satisfies the

dynamics
Algh)y =C(g Ve, (5)

where (e,) is a w.s.st. orthogonal process, and A(q~*) and C(q~!) are

polynomials of the backward shift operator g—1.

We use the following notations in defining an ARMA(p, r) process:
p r
Al => aq*  Clah)=> aq™
k=0 k=0

BUMInELhat 3= fa Tdiednd ap # 0 and ¢, # 0. 7/3



ARMA processes, Il.

Proposition

Consider the ARMA dynamics (5). Assume that A(z=1) # 0 for |z| = 1.
Then there is a unique w.s.st. process y = (y,) satisfying (5). The
process (y,) has a spectral density equal to

|C(e=™)I?

¥ (w) = o(e) W.

Remark. We assume that A(z7') and C(z!) have no common factor.
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Stability and inverse stability, .

Let us consider an ARMA(p, r) process y = (y,) defined by
AlgHy=C(qg ) e with degA=p, degC =r. (6)

Here e = (e,) is a w.s.st. orthogonal process. We can ask ourselves:

under what conditions e is the innovation process of y.

Proposition

Assume that both A(z7') and C(z71) are stable, i.e. A(z™!) # 0 and
C(z71) #0 for |z| > 1. Then e = (e,) is the innovation process of

y = (¥n)-

C(e™@) and Ale™ )
A(e ) Cle ™)

into a power series of e~'“| to infer both HY C H¢ and HS C H) Vn.

The idea of the proof: expand both
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Stability and inverse stability, II.

A simple extension of the lemma on the expansion of 1/A(e™/):

Lemma
If both A(z~1) and C(z7') are stable, ay = co = 1, then

) o0
)= > ake
k=0

with hg = go = 1, where convergence on the r.h.s. is uniform in w.

7(:(6 - ) :the_ik“’, and

It follows that the r.h.s. of % converges in LS (dF¢), hence the
random measure % d(®(w) is well-defined. Similarly, the r.h.s. of

’2227::% converges in L§ (dFY), hence the random measure e ) d(y( )

is well-defined.
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End of REMINDER
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Unstable ARMA processes, |.

The analysis of unstable MA or AR processes can be extended.

Let y = (yn) be a w.s.st. ARMA process defined by

Alg )y =C(gh)e (7)
where the polynomials A’'(z71) and C’(z71) are not necessarily stable.
The process € is a w.s.st. orthogonal process with o%(e’) = 1.

Assume A’(z71) # 0 and C'(z71) # 0 for |z| = 1. The spectral density
of y:

C/(e—iw) 2
f = |—F—
(w) 'A/(elw)

Let A(e=“) and C(e™") be the stable spectral factors of

the denominator and the numerator, resp.
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Unstable ARMA processes, Il.

C/(efiw) 2

Ale )

() - | |G

~ A

The rational function ZE:_zg is called a stable spectral factor of Y.

Now define the w.s.st. process e by

Ale™v)
Cle)

Equivalently, define the process e by the inverse dynamics

d(f(w) =

d¢’(w),

ClaHe=Ala )y

Let us spell out the definition of e:

Ale ™) .,
Cle ) d¢¥(w) =
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A(e—lw) . C/(e—iw) ¢l
C(e lw) A/(efiw) dC ( )

d¢f(w) =

13/31



Unstable ARMA processes, Ill.

068(0) = (i) 90 ) = i) * i 467 )

Note that the transfer function

is such that
G(e7™)G(e™) = |G(eT™) ]2 =1 Yw. (9)
We say that the transfer function G(e~) is all-pass: all frequencies

are passed through the filter G with unchanged energy.

It is readily seen that the process e = (e,) is a w.s.st. orthogonal process:
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Unstable ARMA processes. Summary.

Proposition
Let y = (yn) be a w.s.st. ARMA process defined by

A(g )y =Clgh)e (10)
where €' is a w.s.st. orthogonal process with o*(e') = 1.
Assume A'(z71) #£ 0 and C'(z71) # 0 for |z| = 1. Let C(e=™*)/A(e=™¥)
denote the stable spectral factor of the spectral density of y:
C/(e—iw)
A/(e—iw)

Then the innovation process of y is obtained from the equation below:

2 ‘

) - |

ClgHe=A(g )y, (11)
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VECTOR VALUED PROCESSES
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Vector valued w.s.st. processes, |.

f Motivation: simultaneous price movements of several commodities.
Iteraction between individual prices: get better predictions.
Definition
The R*-valued stochastic process y = (yn), —00 < n < +o0 is called
wide sense stationary if E|y,|?> < oo for all n, Ey, = 0 for all n, and the
covariance matrix
R(m) = RY(7) = E(Vnsrn )
is independent of n.
The condition Ey,, = 0 can be replaced by the condition that Ey, = m
with some fixed vector m € R® for all n.
The matrix-valued function R(.) is called the auto-covariance function of

(vn)- Obviously, we have
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Vector valued w.s.st. processes, Il.

he definition extends to C°-valued (complex-valued) processes requiring
R(T) = E(Ynir¥n ')

to be independent of n. Obviously, R(—7) = R(7)".

An eminent role is played by vector-valued w.s.st. orthogonal processes.

Definition

A R*°-valued w.s.st. stochastic process (e,) is called a w.s.st orthogonal

process if
Ee,ire] =0 for 7#0 and Ee,el =X forall n,
where ¥ is a fixed, s X s symmetric positive semi-definite matrix.

Note that ¥ is not assumed to be the identity /, it may be even singular.
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Results for vector-valued w.s.st. processes

Let (y,) be a R°-valued w.s.st. process. Define a new process:

P
z,,:ZakTyn,k., with ai,...a, € R°.
k=1

Exercise. (HW) Show that (z,) is an R-valued w.s.st. process, and

Corollary. The block matrix R, which is defined by the blocks
Rij = R(k — j) € R®*®, k,j=1,....p (12)
is positive semi-definite. The size of R is (ps) x (ps).
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Prediction and innovation, |I.

Wt (y,) be a R°-valued w.s.st. process.
Any component of y, or a linear combination of components of y,

will be predicted by taking a set of vectors aj, ... a, in R, and defining
P
Zn = Z al—:ynflo
k=1

Exercise. Show that (z,) is an R-valued w.s.st. process and we have
P
Ez2 =) > a/R(k—1)a. (13)
k=1 I=1
Thus the block matrix R = (Rk,) defined by the blocks
Rei=R(k—1), ki=1,...p (14)

i5 Rasikive.semizgdetinitecelhg size of R is ps X ps. 20 /31




Block Toeplitz matrices

Recall: Rej = R(k —j) = (y(n —JyT(n— k)) , k,j=1,... p, and

R(0) R(p—1)

R(-1)  R(0) R(p—2)

R—| RC2 RCY RO R(p—3)
R(L-p) R(2-p) R(0)

Definition
A ps X ps matrix R consisting of m x m blocks is called a

block-Toeplitz matrix.

Note. A block-Toeplitz matrix is typically not Toeplitz in the usual sense.
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The history of (y,)

Let (y,) be an R°-valued w.s.st. process.

Consider first the linear space of R-valued (!) random variables:

p
L= {Z al v, for some p, and a; € RS} C L(Q,F,P).
k=1

We define HY_; as the closure of £)_; in L5(Q, F, P).

Remark. H”_, is a Hilbert space of real-valued r.v.-s.
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Projection in [5(Q, F, P)

We define L5(Q2, F,P) = {x e R®isar.v. : E|x]? <oo}.

The projection of x € L5(Q, F, P) onto HY_; is defined componentwise:

%= (XIH_1) = ((alHy) o (6 H))

For the error vector X = x — X we have

SLH |, ie % LH_, Vk
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The innovation process

Define innovation process of y = (y,), denoted by e = (e,), via

€n = Yn — (yn‘Hl{fl)'

A vector valued process (y,) is singular, if its innovation process

identically O, or equivalently if
HY = HY_, for all n. (15)

A novel phenomenon is that A = Ee,,enT may be singular, although A #£ 0.
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Spectral theory, .
Question: can we extend Herglotz's theorem on the representation of
the auto-covariance sequence to vector valued w.s.st. processes ?

Assume first that the auto-covariance function of (y,) satisfies

Y IR@I? < oo, (16)

where ||R|| denotes the operator norm of the matrix R, i.e.

IR = max | Rxl /.
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Spectral theory, II.

Theorem

Let y = (yn) be an R°-valued w.s.st. process, and let R(.) be its
auto-covariance function. Assume that R(.) satisfies (16). Then we have

R(r) = % /0 " ™ F (1) dow, (17)

where f(.) is a symmetric, positive semi-definite function in L5**(dw).

The function f(.) is called the spectral density of y = (y,).

Exercise. HW Show that for an R®-valued orthogonal wide sense
stationary process (e,) with covariance matrix A = Ee,e,] we have

flw)=N VYw.
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Spectral theory, I1ll.

Proof (Outline.) Let o € R® and consider the scalar process

T
Za,n = O Yn.

The auto-covariance function of z, , is

ro(r) = a' R(7)a.

oo

It is obvious by (16) that Z (r*(7))* < 400. By the special case of

T=—00

the scalar Herglotz's theorem we have

1

T o

2w
r(r) /0 £ 2 () dw,

where f*(w) > 0 is the spectral density corresponding to r®(7).
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Spectral theory, 1V.

“We know how to get 1(.) from r*(.) explicitly:

oo

Fw)= > ri(r)e ™.

Here convergence on the r.h.s. is meant in L§(dw) = L5([0, 27], dw) !

Substituting r*(7) = a ' R(T)a we get

f(w) = Z a'R(T)ae ™, (18)
T=—00
Taking finite truncations of the r.h.s. we get that
N N
> a'R(r)ae™™ =a'( Y R(r)e™)a (19)
T=—N T=—

converges in Ly(dw) for any a.
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Spectral theory, V.
From here we would like to conclude that

fu(w) = > R(r)e”™

7=—N

itself converges in L3*°(dw). To see this we need what follows:

Exercise. Prove that a quadratic form o' Fa, with F symmetric,

determines the bilinear form corresponding to F uniquely as

1

BTFy=-((B+7)"F(B+7)—(B—7)"F(B—-7)).

B
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Spectral theory, VI.

k F = fy, and any pair of unit vectors in R®, say, 5 = e,y = €.

We conclude that infinite series below converges in Ly(dw) Vk, I:

ekT Z R(T)eii‘rwel = Z Rk7/(7') e iTw —. fk7/(w).

T=—00 T=—00

Thus the infinite series below converges in L3*°(dw):

> R(r)e ™™ =: f(w)

It is readily seen that
fo(w) =a' f(w)a VYacRe.
Obviously f(w) is symmetric, and f*(w) > 0

that f(w) is positive semi-definite. This concludes the proof.
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Spectral theory: the general case

Theorem

Let y = (yn) be an R°-valued w.s.st. process, and let R(.) be its
auto-covariance function. Then we have

1 2 .
R — = iTw JF
(=5 | e
where F(.) is a matrix-valued function such that F(0) = 0 and F(2r) is
finite, and its increments of F(-) are symmetric positive semi-definite

matrices.

The matrix-valued F(w) is the spectral distribution function of (y,)

@© L. Gerencsér, Zs. Vagé and B. Gerencsér 31/31



