Lecture 8.
Unstable AR and MA processes

27 November 2020
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REMINDER
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MA processes, |.

Let e = (e,) be a w.s.st. orthogonal process, and define with some ¢ - s

Yn = chen_k. (1)
k=0

Definition The w.s.st. process y = (y,) is called a moving average
or MA process, or more precisely a MA(m) process.

A compact notation: define C(q~1) = > /", ckqg~*, then we can write

y=C(qg e (2)

Briefly: y is obtained by passing e through a finite impulse response

(FIR) filter.

@© L. Gerencsér, Zs. Vagé and B. Gerencsér 4 /34



A basic exercise

Exercise. Show that the w.s.st. processes:

Yn = Co€n+t Ci€n-1

Z, = C1€p+ Coen—1-

have the same auto-covariance functions.

Hint: Show that the two processes have the same spectral density.
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MA processes, Il.

Proposition
Assume that C(z~!) is a stable polynomial. Then e = (e,) is the

innovation process of y = (yn).

Proof (Outline). Obviously, y, € HE. To prove the converse consider

the equality

1 > .
d(*(w) = == A (@) = [ Y ke ™ | d¢¥ ().
C(e~w) prd
Since C(z71) is a stable polynomial we can write

§ h eflkw
e IUJ

ith uniform convergence on {z: |z| = 1}.
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MA processes, lll.

But: since the spectral density of y = (y,) is bounded (why ?) we have

also convergence in L§(dF”) ! Thus

2 27 o0
en :/0 e — C(e =) d¢¥(w) = /0 e (kz_(:) hke”“"> d¢¥ (w).

implies

0 2
e, = Z hk/o emw —ikw dcy Z hk Yn—k-
k=0
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Unstable MA processes, |.
Consider now an MA process s.t. C(z!) not necessarily stable.
An innocent looking example is to take |¢’| > 1 and consider
Yn=€,—ce,

Challenge: find representation of (y,) in terms of its innovation process.

More generally: consider an MA process (y,) given by

y=Clg)e (3)
where C’'(q™!) is a polynomial of g~1 and (e!) is a w.s.st. orthogonal

process.
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Unstable MA processes, Il.

Assuming o2(e’) = 1 the spectral density of (y,) is given by
fw) =[C'(e™™).

This can be obtained by restricting the complex-function
g(z)=C'(z71)C'(2)

toz=ev

Let us now assume that C’(z7!) has an unstable root, say /.

Then factorizing C’(z71) we will have a factor of the form

d(zY)=1-+'zY  with 17| > 1.
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Unstable MA processes, lll.

Repeat: factorizing C’'(z~1) we will have a factor of the form:

d(zH)=1-+'zY  with Iv'| > 1.

The effect of this factor in g(z) = C'(z71)C'(z2) is
(2N (2) =121 —2) = (z— )z =)

Let us now swap the role of 4" and 1/4'.

Write the second term on the r.h.s. as

_ 1 _ 1 B
z 1—7':(?2 1_1)'7'=_(1_?Z Dy =e(z ™)

1
Then it is readily seen that c(z7) is stable, having a single root —.
Y

(4)

(5)
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Unstable MA processes, V.

)
|[@Repeat: it is readily seen that
-1 —1
c(z7)=-(1-527")7
. . . 1
is stable, having a single root —. Moreover

(271 (2) = (2 =)z =) = c(2)c(z7) = c(z7)e(2).

Replacing all factors of C’(z7!) by stable ones we come to the following
conclusion.

Proposition
Let C'(z71) be a polynomial of z=1 such that C'(z71) # 0 for |z| = 1.
Then 3 a stable polynomial C(z~!) with deg C = deg C’ such that

C'(z7HC'(2) = C(z7HC(2). (6)

The stable factor is unique if the leading coefficient is fixed to 1. .
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Spectral factorization, I.

[he above proposition implies: the spectral density of a MA process can

be written as
f(w) = Cle™™)C(e™) = [C(e™™)|*.
where C(z71) is a stable polynomial. This is called spectral factorization,

and C(e~'“) is called a stable spectral factor.

Define a new process e by its spectral representation process as

1

A () = iy 4 ) 7)

Exercise. Show that the r.h.s. is well defined.

Eq. (7) can be written in the time domain as

C(g Me=y.
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Spectral factorization, Il.

Write the spectral representation process of e as

der(w) = S e (), (8)

o1
dCW) = ¢ Cle—)

(e)
Exercise. Show that e is a w.s.st. orthogonal process by showing that

for the spectral density of e we have

C/(e—lw) 2
fe(w) = =1.
W=|g
The definition of e, given in (8), implies
y=C(g7 e,

and since C(z7!) stable, e is the innovation process of y. To summarize:
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Spectral factorization, Ill.

Proposition

Let y = (y,) be an MA process given in (3). Assume that C'(z=1) # 0
for |z| = 1. Let C(e~'?) be the stable spectral factor of f¥(w), and
define e = (e,) by (7). Then e is a w.s.st. orthogonal process,

y =C(g Ve,

and e is the innovation process of y.
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AR(p) processes re-visited, I.

Let us now consider a possibly unstable AR(p) process y = (y,) defined

by
A(gy=¢€ with degA=p>1, (9)

/

/) is a w.s.st. orthogonal process, o%(e') = 1.

where (e
Question: what is the innovation process of y 7
A simple (but less innocent looking) example is to take |a’| > 1 and

consider
/ /
Ynt+ ae,—1=¢€p,

We can not iterate and express y, in terms of the past of values of &' !
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AR(p) processes re-visited, Il.

Assuming A’(e~™) # 0 for all w the spectral density of (y,) is given by

- 1
T A(e )R

Proceed with spectral factorization: by Proposition 2, there 3 a stable

7 (w)

polynomial A(z~!) with deg A = deg A’ such that

A(z7HYA(2) = A(z 1) A(z). (10)

It follows that for all w

A/(efiw)A/(eiw) — A(efiw)A(eiw)

and thus
1 1

T A )2 T Al )

7 (w)
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AR(p) processes re-visited, Ill.

“Define a new process e by its spectral representation process as

de(w) = Ale™) d¢? (). (11)
Exercise. Show that, assuming A’(e~/“) # 0 for all w, the r.h.s. is
well-defined, i.e. A(e™'“) is in LS (dF”).
Elaborating the definition of d{¢(w) we get:

Ale )

d¢e(w) = A(e™™) d¢¥ (w) = YIeSD] d¢e (w). (12)

Exercise. Show that e is a w.s.st. orthogonal process by showing that

for the spectral density of e we have
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AR(p) processes re-visited, IV.

low in view of (12) we have
Alg )y =e, (13)

and since A(z1) stable, e is the innovation process of y. To summarize:

Proposition
Let y = (y,) be an AR(p)-process given in (9). Assume that A'(z71) # 0
for |z| = 1. Let A(e™™) be the stable spectral factor of f¥(w), and

define e = (e,) by (13). Then e is the innovation process of y.

Exercise. Let y be an AR(1) process defined by y, = a’y,_1 + €/, with
a’ > 1, and (e],) being a w.s.st. orthogonal process. Find an expression

for the innovation process of y !
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ARMA processes, |.

The combination of AR and MA processes is called an ARMA process.
Definition
A w.s.st. process y = (yn) is called an ARMA process if it satisfies the

dynamics

Alg Ny =Clg")e, (14)

where (e,) is a w.s.st. orthogonal process, and A(q~!) and C(q~!) are

L. The degrees

polynomials of the backward shift operator g~
p=degA(g~!) and r = deg C(q~1) are called the orders of the ARMA
process. In emphasizing the orders we call y = (y,) an ARMA(p, r)

process.
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ARMA processes, Il.

We use the following notations in defining an ARMA(p, r) process:
P r
Al =Y aq*  Clah)=> aq™
k=0 k=0

assuming that ag = ¢g = 1, and a, # 0 and ¢, # 0.
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ARMA processes, lll.

Wtraightforward extensions of Propositions on the existence of an AR
process is the following:

Proposition

Consider the ARMA dynamics (14). Assume that A(z=1) # 0 for
|z| = 1. Then there is a unique w.s.st. process y = (y,) satisfying (14).
The process (y,) has a spectral density equal to

|Cle=™)I?

¥ (w) = o(e) W.

Proof: Assume that a w.s.st. solution (y,) does exist. Let the spectral
representation processes of (e,) and (y,) be denoted by d(¢(w) and
d¢¥(w), respectively. Then

Ale™™) d¢(w) = C(e7™) d(®(w).
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ARMA processes, IV.

From this we get,

1
A=)

1

A(ef""") ' C(eilw) dge(w) = C(eilw)'

d¢®(w). (15)

d¢¥(w) =
Now, if A(e*"‘”) = 0 for all w, then the spectral representation measure

4" () = iy 9C°() (16)

(e=™)
is well-defined, and obviously so is the far r.h.s. of (15).
Note that the process v = (v,) with spectral representation process

d(¥(w) satisfies the AR dynamics A(g™!)v =e.
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ARMA processes, V.

Claim. Let d{(w) be a random measure with orthogonal increments.
Let G(e='“) and H(e™ ™) frequency response functions such that
d¢'(w) = G(e™™) - ( H(e™™) d((w) ) is well-defined. Prove that in this
case H(e™™) - (G(e™™) d((w) ) is also well-defined and

H(e ™) (G(e ™) d¢(w) ) = G(e™™) - ( H(e™™)d((w) ).  (17)

Exercise. Prove the above claim.

It follows that d¢¥(w), is well-defined via (15). Uniqueness is thus proved.
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ARMA processes, VI.

Complete the proof of Proposition 5 by showing that

the process y = (y,) defined by

2 ) i 1 . B 2 o i Y
Yn ::/0 e™ C(e ).A(e*"w) d¢(w) —/0 e™ C(e™) d(¥(w)

does satisfy the ARMA dynamics (14).

Exercise. Derive the expression for the spectral density of y = (y,)
given in the proposition.

Remark. A novel feature of the ARMA dynamics compared to AR or MA

dynamics is that pole-zero cancellation may occur: if A(z™!) and C(z71)

have a common factor it will be cancelled in C(z7!)/A(z71) !

A common remedy: assume that A(z7!) and C(z 1) have

no common factor.
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Stability and inverse stability, .

Let us consider an ARMA(p, r) process y = (y,) defined by
AlgHy=C(qg ) e with degA=p, degC =r. (18)

Here e = (e,) is a w.s.st. orthogonal process. We can ask ourselves:

under what conditions e is the innovation process of y.

Proposition

Assume that both A(z7') and C(z71) are stable, i.e. A(z™!) # 0 and
C(z71) #0 for |z| > 1. Then e = (e,) is the innovation process of

y = (¥n)-

C(e™@) and Ale™ )
A(e ) Cle ™)

into a power series of e~'“| to infer both HY C H¢ and HS C H) Vn.

The idea of the proof: expand both
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Stability and inverse stability, II.

"’QTTF‘] A simple extension of the lemma on the expansion of 1/A(e™/):
Lemma
If both A(z~') and C(z7') are stable, ag = ¢y = 1, then

Cle™™) < — 1% Ale™™) — — s
—~ = % hge " and —~ =Y gre ",
A(e—lw) go k C(e—lw) ; k

with hg = go = 1, where convergence on the r.h.s. is uniform in w.

Exercise. Derive this Lemma directly from the previous one.

(Hint: Directly: meaning without redoing the proof. )

It follows that the r.h.s. of $—2) converges in LS (dF€), hence the

A(e w)
random measure A( dCe( ) is well-defined. Similarly, the r.h.s. of
% converges in L§ (dFY), hence the random measure c d(y( )
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Proof of Proposition 6, I.

“Let us now return to the ARMA(p, r) process (y,) defined by

Alg )y =Cla)e (19)
where A(z1) and C(z71) are stable polynomials of z71.

Proof: To prove y, € Hf consider the familiar expression

40" (w) = ] 467w = (kz hkefkw> ace(w),

=0

The infinite sum on the r.h.s. converges in LS (dF¢), see the Lemma
above.

Hence, following the with arguments for stable AR(p) processes, we get:

oo
Yn = Z hken—ka
k=0

where the.rh.s,.onygrees,in, L2(Q, F, P). In particular, 35,7, by <59.4,



Proof of Proposition 6, Il.
To prove e, € H} we proceed symmetrically: write

() = e () = (Zg) 4 (),

The infinite sum on the r.h.s. converges in LS (dFY) (!), see Lemma
above.

Hence, following the arguments for stable AR(p) processes, we get:

)
€n = Z 8kYn—k;,
k=0

where the r.h.s. converges in L,(Q, F,P). Q.ed.
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Unstable ARMA processes, |.

The analysis of unstable MA or AR processes can be extended.
Let y = (yn) be a w.s.st. ARMA process defined by

Al )y =C(gh)e (20)
where the polynomials A’(z71) and C’(z71) are not necessarily stable.

The process € is a w.s.st. orthogonal process with o%(e’) = 1.
Assume A’(z71) # 0 and C'(z71) # 0 for |z| = 1. The spectral density
of y:

1 a—iw) |2
C (e lw)
A/(e—iw)
Let A(e=™) and C(e™™) be the stable spectral factors of the
denominator

f(w) =

and the numerator, resp.
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Unstable ARMA processes, Il.

C/(efiw) 2

Ale )

() - | |G

~ A

The rational function ZE:_zg is called a stable spectral factor of Y.

Now define the w.s.st. process e by

Ale™v)
Cle)

Equivalently, define the process e by the inverse dynamics

d(f(w) =

d¢’(w),

ClaHe=Ala )y

Let us spell out the definition of e:

Ale ™) .,
Cle ) d¢¥(w) =
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Unstable ARMA processes, Ill.

468(0) = (i) 90 ) = o)+ i 467 ()

Note that the transfer function

is such that

G(eT™)G(e“) = |G(e ™) =1 Vw. (22)
We say that the transfer function G(e™) is all-pass: all frequencies
are passed through the filter G with unchanged energy.

It is readily seen that the process e = (e,) is a w.s.st. orthogonal process:
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Unstable ARMA processes, V.

Exercise. Let G(.) be an all-pass transfer function, and let €’ be a

w.s.st. orthogonal process. Then the process e defined by

dC*(w) = G(e™™)d(* (w)

is also a w.s.st. orthogonal process.

Exercise. HW. Let 4/ € C arbitrary, |y/| # 1.
Show that the transfer function
—iw 1-— ’Yleiiw
Gle™)= —F— —
v —e

is all-pass.
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Unstable ARMA processes. Summary.

Proposition
Let y = (yn) be a w.s.st. ARMA process defined by

Alg )y =C(gh)e (23)
where €' is a w.s.st. orthogonal process with o%(e') = 1. Assume
A(z7Y)#0 and C'(z71) #0 for |z| = 1. Let C(e™*)/A(e™ ') denote
the stable spectral factor of the spectral density of y, denoted by f(.):

2

C/(efiw) 2 _ ‘ C(efiw)
A/(e—iw) A(e—iw)

Then the innovation process of y is obtained from the equation below:

()= |

ClgHe=Alg M)y, (24)
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END of Lecture 8
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