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REMINDER
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MA processes, I.

Let e = (en) be a w.s.st. orthogonal process, and define with some ck - s

.yn =
m∑

k=0
cken−k . (1)

Definition The w.s.st. process y = (yn) is called a moving average

or MA process, or more precisely a MA(m) process.

A compact notation: define C(q−1) =
∑m

k=0 ckq−k , then we can write

.y = C(q−1)e. (2)

Briefly: y is obtained by passing e through a finite impulse response

(FIR) filter.
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A basic exercise

Exercise. Show that the w.s.st. processes:

yn = c0en + c1en−1

zn = c1en + c0en−1.

have the same auto-covariance functions.

Hint: Show that the two processes have the same spectral density.
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MA processes, II.

Proposition
Assume that C(z−1) is a stable polynomial. Then e = (en) is the

innovation process of y = (yn).

Proof (Outline). Obviously, yn ∈ He
n . To prove the converse consider

the equality

dζe(ω) = 1
C(e−iω) dζ

y (ω) =
( ∞∑

k=0
hke−ikω

)
dζy (ω).

Since C(z−1) is a stable polynomial we can write

1
C(e−iω) =

∞∑
k=0

hke−ikω

ith uniform convergence on {z : |z | = 1}.
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MA processes, III.

But: since the spectral density of y = (yn) is bounded (why ?) we have

also convergence in Lc
2(dF y ) ! Thus

en =
∫ 2π

0
e inω 1

C(e−iω) dζ
y (ω) =

∫ 2π

0
e inω

( ∞∑
k=0

hke−ikω

)
dζy (ω).

implies

en =
∞∑

k=0
hk

∫ 2π

0
e inωe−ikω dζy (ω) =

∞∑
k=0

hk yn−k .
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Unstable MA processes, I.

Consider now an MA process s.t. C(z−1) not necessarily stable.

An innocent looking example is to take |c ′| > 1 and consider

yn = e′n − c ′e′n−1

Challenge: find representation of (yn) in terms of its innovation process.

More generally: consider an MA process (yn) given by

y = C ′(q−1)e′ (3)

where C ′(q−1) is a polynomial of q−1 and (e′n) is a w.s.st. orthogonal

process.
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Unstable MA processes, II.

Assuming σ2(e′) = 1 the spectral density of (yn) is given by

f (ω) = |C ′(e−iω)|2.

This can be obtained by restricting the complex-function

g(z) = C ′(z−1)C ′(z)

to z = e−iω.

Let us now assume that C ′(z−1) has an unstable root, say γ′.

Then factorizing C ′(z−1) we will have a factor of the form

c ′(z−1) = 1− γ′z−1 with |γ′| > 1.
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Unstable MA processes, III.

Repeat: factorizing C ′(z−1) we will have a factor of the form:

c ′(z−1) = 1− γ′z−1 with |γ′| > 1.

The effect of this factor in g(z) = C ′(z−1)C ′(z) is

c ′(z−1)c ′(z) = (1− γ′z−1)(1− γ′z) = (z − γ′)(z−1 − γ′). (4)

Let us now swap the role of γ′ and 1/γ′.

Write the second term on the r.h.s. as

z−1 − γ′ = ( 1
γ′

z−1 − 1) · γ′ = −(1− 1
γ′

z−1) · γ′ =: c(z−1) (5)

Then it is readily seen that c(z−1) is stable, having a single root 1
γ′
.
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Unstable MA processes, IV.
Repeat: it is readily seen that

c(z−1) = −(1− 1
γ′

z−1) · γ′

is stable, having a single root 1
γ′
. Moreover

c ′(z−1)c ′(z) = (z − γ′)(z−1 − γ′) = c(z)c(z−1) = c(z−1)c(z).

Replacing all factors of C ′(z−1) by stable ones we come to the following
conclusion.

Proposition
Let C ′(z−1) be a polynomial of z−1 such that C ′(z−1) 6= 0 for |z | = 1.

Then ∃ a stable polynomial C(z−1) with degC = degC ′ such that

C ′(z−1)C ′(z) = C(z−1)C(z). (6)

The stable factor is unique if the leading coefficient is fixed to 1. .
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Spectral factorization, I.
The above proposition implies: the spectral density of a MA process can

be written as

f (ω) = C(e−iω)C(e iω) = |C(e−iω)|2.
where C(z−1) is a stable polynomial. This is called spectral factorization,

and C(e−iω) is called a stable spectral factor.

Define a new process e by its spectral representation process as

dζe(ω) = 1
C(e−iω)dζ

y (ω). (7)

Exercise. Show that the r.h.s. is well defined.

Eq. (7) can be written in the time domain as

C(q−1)e = y .
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Spectral factorization, II.

Write the spectral representation process of e as

dζe(ω) = 1
C(e−iω) dζ

y (ω) = C ′(e−iω)
C(e−iω) dζe′(ω). (8)

Exercise. Show that e is a w.s.st. orthogonal process by showing that

for the spectral density of e we have

f e(ω) =
∣∣∣∣C ′(e−iω)
C(e−iω)

∣∣∣∣2 = 1.

The definition of e, given in (8), implies

y = C(q−1)e,

and since C(z−1) stable, e is the innovation process of y . To summarize:
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Spectral factorization, III.

Proposition
Let y = (yn) be an MA process given in (3). Assume that C ′(z−1) 6= 0

for |z | = 1. Let C(e−iω) be the stable spectral factor of f y (ω), and

define e = (en) by (7). Then e is a w.s.st. orthogonal process,

y = C(q−1)e,

and e is the innovation process of y .
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AR(p) processes re-visited, I.

Let us now consider a possibly unstable AR(p) process y = (yn) defined

by
A′(q−1) y = e′ with degA = p > 1, (9)

where (e′n) is a w.s.st. orthogonal process, σ2(e′) = 1.

Question: what is the innovation process of y ?

A simple (but less innocent looking) example is to take |a′| > 1 and

consider
yn + a′en−1 = e′n.

We can not iterate and express yn in terms of the past of values of e′ !
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AR(p) processes re-visited, II.

Assuming A′(e−iω) 6= 0 for all ω the spectral density of (yn) is given by

f y (ω) = 1
|A′(e−iω)|2 .

Proceed with spectral factorization: by Proposition 2, there ∃ a stable

polynomial A(z−1) with degA = degA′ such that

A′(z−1)A′(z) = A(z−1)A(z). (10)

It follows that for all ω

A′(e−iω)A′(e iω) = A(e−iω)A(e iω)

and thus
f y (ω) = 1

|A′(e−iω)|2 = 1
|A(e−iω)|2 .
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AR(p) processes re-visited, III.

Define a new process e by its spectral representation process as

dζe(ω) = A(e−iω) dζy (ω). (11)

Exercise. Show that, assuming A′(e−iω) 6= 0 for all ω, the r.h.s. is

well-defined, i.e. A(e−iω) is in Lc
2 (dF y ).

Elaborating the definition of dζe(ω) we get:

dζe(ω) = A(e−iω) dζy (ω) = A(e−iω)
A′(e−iω) dζ

e′(ω). (12)

Exercise. Show that e is a w.s.st. orthogonal process by showing that

for the spectral density of e we have

f e(ω) =
∣∣∣∣ A(e−iω)
A′(e−iω)

∣∣∣∣2 = 1.
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AR(p) processes re-visited, IV.
Now in view of (12) we have

A(q−1) y = e, (13)

and since A(z−1) stable, e is the innovation process of y . To summarize:

Proposition
Let y = (yn) be an AR(p)-process given in (9). Assume that A′(z−1) 6= 0

for |z | = 1. Let A(e−iω) be the stable spectral factor of f y (ω), and

define e = (en) by (13). Then e is the innovation process of y .

Exercise. Let y be an AR(1) process defined by yn = a′yn−1 + e′n with

a′ > 1, and (e′n) being a w.s.st. orthogonal process. Find an expression

for the innovation process of y !
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ARMA processes, I.

The combination of AR and MA processes is called an ARMA process.

Definition
A w.s.st. process y = (yn) is called an ARMA process if it satisfies the

dynamics

A(q−1) y = C(q−1) e, (14)

where (en) is a w.s.st. orthogonal process, and A(q−1) and C(q−1) are

polynomials of the backward shift operator q−1. The degrees

p = degA(q−1) and r = degC(q−1) are called the orders of the ARMA

process. In emphasizing the orders we call y = (yn) an ARMA(p, r )

process.
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ARMA processes, II.

We use the following notations in defining an ARMA(p, r) process:

A(q−1) =
p∑

k=0
akq−k , C(q−1) =

r∑
k=0

ckq−k ,

assuming that a0 = c0 = 1, and ap 6= 0 and cr 6= 0.
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ARMA processes, III.
Straightforward extensions of Propositions on the existence of an AR
process is the following:

Proposition
Consider the ARMA dynamics (14). Assume that A(z−1) 6= 0 for
|z | = 1. Then there is a unique w.s.st. process y = (yn) satisfying (14).
The process (yn) has a spectral density equal to

f y (ω) = σ2(e) |C(e−iω)|2
|A(e−iω)|2 .

Proof: Assume that a w.s.st. solution (yn) does exist. Let the spectral

representation processes of (en) and (yn) be denoted by dζe(ω) and

dζy (ω), respectively. Then

A(e−iω) dζy (ω) = C(e−iω) dζe(ω).
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ARMA processes, IV.

From this we get,

dζy (ω) = 1
A(e−iω) ·C(e−iω) dζe(ω) = C(e−iω) · 1

A(e−iω) dζe(ω). (15)

Now, if A(e−iω) 6= 0 for all ω, then the spectral representation measure

dζv (ω) = 1
A(e−iω) dζ

e(ω) (16)

is well-defined, and obviously so is the far r.h.s. of (15).

Note that the process v = (vn) with spectral representation process

dζv (ω) satisfies the AR dynamics A(q−1) v = e.
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ARMA processes, V.

Claim. Let dζ(ω) be a random measure with orthogonal increments.

Let G(e−iω) and H(e−iω) frequency response functions such that

dζ ′(ω) = G(e−iω) ·
(
H(e−iω) dζ(ω)

)
is well-defined. Prove that in this

case H(e−iω) ·
(
G(e−iω) dζ(ω)

)
is also well-defined and

H(e−iω) ·
(
G(e−iω) dζ(ω)

)
= G(e−iω) ·

(
H(e−iω) dζ(ω)

)
. (17)

Exercise. Prove the above claim.

It follows that dζy (ω), is well-defined via (15). Uniqueness is thus proved.
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ARMA processes, VI.

Exercise. Complete the proof of Proposition 5 by showing that

the process y = (yn) defined by

yn :=
∫ 2π

0
e inω C(e−iω) · 1

A(e−iω) dζ
e(ω) =

∫ 2π

0
e inω C(e−iω) dζv (ω)

does satisfy the ARMA dynamics (14).

Exercise. Derive the expression for the spectral density of y = (yn)

given in the proposition.

Remark. A novel feature of the ARMA dynamics compared to AR or MA

dynamics is that pole-zero cancellation may occur: if A(z−1) and C(z−1)

have a common factor it will be cancelled in C(z−1)/A(z−1) !

A common remedy: assume that A(z−1) and C(z−1) have
no common factor.
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Stability and inverse stability, I.

Let us consider an ARMA(p, r) process y = (yn) defined by

A(q−1) y = C(q−1) e with degA = p, degC = r . (18)

Here e = (en) is a w.s.st. orthogonal process. We can ask ourselves:

under what conditions e is the innovation process of y .

Proposition
Assume that both A(z−1) and C(z−1) are stable, i.e. A(z−1) 6= 0 and
C(z−1) 6= 0 for |z | ≥ 1. Then e = (en) is the innovation process of
y = (yn).

The idea of the proof: expand both C(e−iω)
A(e−iω) and A(e−iω)

C(e−iω)

into a power series of e−iω, to infer both Hy
n ⊂ He

n and He
n ⊂ Hy

n ∀n.
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Stability and inverse stability, II.
A simple extension of the lemma on the expansion of 1/A(e−iω):

Lemma
If both A(z−1) and C(z−1) are stable, a0 = c0 = 1, then

C(e−iω)
A(e−iω) =

∞∑
k=0

hke−ikω, and A(e−iω)
C(e−iω) =

∞∑
k=0

gke−ikω,

with h0 = g0 = 1, where convergence on the r.h.s. is uniform in ω.

Exercise. Derive this Lemma directly from the previous one.

(Hint: Directly: meaning without redoing the proof. )

It follows that the r.h.s. of C(e−iω)
A(e−iω) converges in Lc

2 (dF e), hence the

random measure C(e−iω)
A(e−iω) dζ

e(ω) is well-defined. Similarly, the r.h.s. of

A(e−iω)
C(e−iω) converges in Lc

2 (dF y ), hence the random measure A(e−iω)
C(e−iω) dζ

y (ω)
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Proof of Proposition 6, I.

Let us now return to the ARMA(p, r) process (yn) defined by

A(q−1) y = C(q−1) e (19)
where A(z−1) and C(z−1) are stable polynomials of z−1.

Proof: To prove yn ∈ He
n consider the familiar expression

dζy (ω) = C(e−iω)
A(e−iω) dζe(ω) =

( ∞∑
k=0

hke−ikω

)
dζe(ω),

The infinite sum on the r.h.s. converges in Lc
2 (dF e), see the Lemma

above.

Hence, following the with arguments for stable AR(p) processes, we get:

yn =
∞∑

k=0
hken−k ,

where the r.h.s. converges in L2(Ω,F ,P). In particular,
∑∞

k=0 h2
k <∞.c© L. Gerencsér, Zs. Vágó and B. Gerencsér 27 / 34



Proof of Proposition 6, II.

To prove en ∈ Hy
n we proceed symmetrically: write

dζe(ω) = A(e−iω)
C(e−iω) dζ

y (ω) =
( ∞∑

k=0
gke−ikω

)
dζy (ω),

The infinite sum on the r.h.s. converges in Lc
2 (dF y ) (!), see Lemma

above.

Hence, following the arguments for stable AR(p) processes, we get:

en =
∞∑

k=0
gkyn−k ,

where the r.h.s. converges in L2(Ω,F ,P). Q.e.d.
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Unstable ARMA processes, I.

The analysis of unstable MA or AR processes can be extended.
Let y = (yn) be a w.s.st. ARMA process defined by

A′(q−1) y = C ′(q−1) e′ (20)

where the polynomials A′(z−1) and C ′(z−1) are not necessarily stable.

The process e′ is a w.s.st. orthogonal process with σ2(e′) = 1.
Assume A′(z−1) 6= 0 and C ′(z−1) 6= 0 for |z | = 1. The spectral density
of y :

f (ω) =
∣∣∣∣C ′(e−iω)
A′(e−iω)

∣∣∣∣2 .
Let A(e−iω) and C(e−iω) be the stable spectral factors of the
denominator

and the numerator, resp.
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Unstable ARMA processes, II.
Then

f y (ω) =
∣∣∣∣C ′(e−iω)
A′(e−iω)

∣∣∣∣2 =
∣∣∣∣C(e−iω)
A(e−iω)

∣∣∣∣2 .
The rational function C(e−iω)

A(e−iω) is called a stable spectral factor of f y .

Now define the w.s.st. process e by

dζe(ω) = A(e−iω)
C(e−iω) dζ

y (ω),

Equivalently, define the process e by the inverse dynamics

C(q−1) e = A(q−1) y (21)

Let us spell out the definition of e:

dζe(ω) = A(e−iω)
C(e−iω) dζ

y (ω) = A(e−iω)
C(e−iω) ·

C ′(e−iω)
A′(e−iω) dζe′(ω).
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Unstable ARMA processes, III.

dζe(ω) = A(e−iω)
C(e−iω) dζ

y (ω) = A(e−iω)
C(e−iω) ·

C ′(e−iω)
A′(e−iω) dζe′(ω).

Note that the transfer function

G(e−iω) = A(e−iω)
C(e−iω) ·

C ′(e−iω)
A′(e−iω)

is such that

G(e−iω)G(e iω) = |G(e−iω)|2 = 1 ∀ω. (22)

We say that the transfer function G(e−iω) is all-pass: all frequencies

are passed through the filter G with unchanged energy.

It is readily seen that the process e = (en) is a w.s.st. orthogonal process:
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Unstable ARMA processes, IV.

Exercise. Let G(.) be an all-pass transfer function, and let e′ be a

w.s.st. orthogonal process. Then the process e defined by

dζe(ω) = G(e−iω)dζe′(ω)

is also a w.s.st. orthogonal process.

Exercise. HW. Let γ′ ∈ C arbitrary, |γ′| 6= 1.

Show that the transfer function

G(e−iω) = 1− γ′e−iω

γ′ − e−iω

is all-pass.
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Unstable ARMA processes. Summary.

Proposition
Let y = (yn) be a w.s.st. ARMA process defined by

A′(q−1) y = C ′(q−1) e′ (23)

where e′ is a w.s.st. orthogonal process with σ2(e′) = 1. Assume
A′(z−1) 6= 0 and C ′(z−1) 6= 0 for |z | = 1. Let C(e−iω)/A(e−iω) denote
the stable spectral factor of the spectral density of y , denoted by f (.):

f (ω) =
∣∣∣∣C ′(e−iω)
A′(e−iω)

∣∣∣∣2 =
∣∣∣∣C(e−iω)
A(e−iω)

∣∣∣∣2 .
Then the innovation process of y is obtained from the equation below:

C(q−1) e = A(q−1) y , (24)
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END of Lecture 8
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