Lecture 5.
Spectral theory, IlI.

6. November 2020.
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REMINDER:

Introducing spectral representation

@© L. Gerencsér, Zs. Vagé and B. Gerencsér 2/35



Interpreting > _ y,e”™, |,

QL us return to the interpretation of the FT of a w.s.st. process (y,):

(o]
y efinw
E n .

n—=——0oo

Consider a special case: y, = £e“0 with E£ = 0, and interpret

i gein (wo—w).

n=—0oo

Recall the formal Fourier series of the Dirac-delta function ¢(w — wp):

2w
§(w — wp) €M% dw = e
0
formally implies
1 = inwy ,—inw 1 = in (wo—w)
ZZe e :EZe = d(w — wo).

n=—00 n=—o00
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Interpreting >°° _ y,e”™, I,

“Summarizing we get:

1
5 Z geim (@) — € 65(w — wp).

Consider now another special case: y, = > |, {(wk) €% where
Eé(wk) =0 and E&(wk)&(w)=0 for k#I.

Extending the above formal argument we get (formally):

27r Z Yne 7'"‘”_250% W — W)

n=—o0

Note: the Dirac delta function §(w — wy) is a generalized function,

but its integral is an ordinary function: the unit step function H(w — wy).
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The integral of >° _ y,e”™, .

We are motivated to consider the integrated (and truncated) process

W' N
Cn(w) :/0 Z yne "™ dw.

n=—N

Rewrite the r.h.s. as

Here

w’ ) 27 .
Ch = / e "™ dw = / X[ow)(w) e dw,
0 0

where x[0..)(.) is the characteristic function of the interval [0, w").
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The integral of > _ y,e”™, Il

Repeat: we have
w’ ) 27 )
Cn :/ e "™ dw :/ X[0w)(w) €™ dw.
0 0

1
Thus —— ¢, is the Fourier coefficients of x[o.)(.). Hence setting

V2T
N eInUJ

N
wy —
)= Z Cne"™ = 2m Z 277 1/2 (277)1/2’

n=—N

and letting N — oo we get, with convergence in L]0, 27),

lim Cy(e) =2r X[0.w1) (W)

N—oo
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/nw’ I.

The variance of [ >°° _ y,e

Cv(wh) / Z ype ™ dw = Z YnCn

n=—N n=—N

CN( = Z cph€ mw —)271’)([07&,/)( )
n=—N

Let us now compute E |(y(w’)|?. We have by Herglotz's theorem

:f” () () d.

But f(w) € L>[0,27), (why?), and the scalar product in L]0, 27)

E [¢n(w)|

Z YnCn

n=—N

continuous in its variables, hence we conclude:

27
¢&MMWW:%A;memmw:%Hm. (1)
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The variance of [ Y% _ y,e ™, Il

By similar arguments we get for any pair of integers 0 < M, N :

1

2T
Elow(e) ~ @) = 5 [ 1Cu(e") = Cu(e)P ) do

Recall that Cy(e™) converges in L5[0,27) (to X[o)(w)), hence it is a
Cauchy sequence in L,[0,27). Assuming that f(.) is bounded infer that

Cn(e™) is a Cauchy sequence also in L,[0, 27, dF) !
But then (y(w’) itself is a Cauchy sequence in Ly(Q, F,P), and thus

lim (n(w') =:¢u(w') in L(Q,F,P). (2)

N—oo
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Orthogonality of [ > _ y,e”™, L.

-/ similar arguments, we get for 0 < a < b < 2m:

Cn( / Z Yne ™ dw = Z Yn &n.

n=—N n=—N

GN(EM = Z g,,e’”‘” — 277X[a,b)( )
n=—N

Taking another interval [c, d), we can write

Culd) - /Czye'"ww—zy”

n=—N n=—N
. N .
Hy(e'?) = Z hpe™ — 27 x[c,q)(w)-
n=—N
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Orthogonality of [ % y,e”™, I

Take now 2 non-overlapping intervals [a, b) and [c, d).

Applying Herglotz's theorem to FIR filtered processes, we get

1

27
B (Gu(b) ~ Cu() (Cul ) = Cue)) = 5 [ Gule™) Hu(e™™) dF ).

Taking limit for N, and noting that x| )(w) - X[c,q)(w) = 0, we get
E¢(a)(¢(a) — ¢(b))(C(d) — ¢(c)) =

l.e. the process ((.) has orthogonal increments.
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A spectral representation measure

Theorem
Let y = (yn) be a w.s.st. process with auto-covariance function such that

o0 oo

Zrz(T) <oo and f(w):= Z r(r)e”™ < K

7=0 T=—00
for all w € [0,27). Then, with convergence meant in L5(Q2, F, P) :
W' N
lim ne ™ dw =: ((w'),
dm [ 30y (@)

where ((w') is a process with orthogonal increments. Moreover, denoting

the spectral distribution function of y = (y,) by F(.) we have

E[¢(w)]? = 27 F(w').
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Random measures

with orthogonal increments

@© L. Gerencsér, Zs. Vagé and B. Gerencsér 12 /35



In search of spectral representation

The challenge: try to extend the def. of singular processes of the form
m
Yo =D Ge )
k=1

by letting all freq. in [0,27) to appear. l.e. find a cont. extension of (3).

A formal extension is sought in the form:

W:Aem«w, (4)

where d((w) is a random weight or random measure, a substitute for &.

Recalling the conditions imposed on £, we define random measures with

orthogonal increments, d((w). The definition is obvious:
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Random measures with orth. increments, |.

Definition
A complex valued stochastic process ((.) defined in [0,27) is called a
process with orthogonal increments, if
E¢(w) =0 and E|[{(w)]®=: F(w) <oo Vw € [0,27),
and for non-overlapping intervals [a, b) and [c,d) in [0,27) we have
¢(d) = ¢(c) L ¢(b) —((a):
We will also assume that ((0) = 0 and ((.) is left-cont. in L°(Q2, F,P).

It follows that F(0) =0 and F(.) is left-continuous. F(.) is called the

structure function of {(.). The increments of ((.) define a measure

d¢(w), see below, called a random measure with orthogonal increments.
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Example

Consider the special case: y, = > |, &(wk) e™“*  where
Ef(wk) =0 and E&(wk)&(w)) =0 for k#I.

Then the process ((w) below has orthogonal increments:

(W)= &

w<w
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~ Random measures with orth. increments, Il.

Exercise. HW

Prove, that for any 0 < a < b < 27 we have
2
F(b) — F(a) = E [¢(b) — ((a)]" -
It follows that F(.) is monotone non-decreasing.

(Hint: Write [0, b) as the union of [0, a) and [a, b) and apply

Pythagoras theorem.)
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Integration
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Integration, .

The problem: how do we define the integral jgﬂ h(w) d¢(w) ?
This looks difficult, but it is actually very simple.

First, let h(w) be a (possibly complex-valued) step-function of the form

p
h(w) = Z Ak X[ax,be) (W)-
k=1

Here the intervals [ak, bk) are non-overlapping. Then define:

p

= [ " h(w) de(w) = 3" A(C(bi) — C(ar)).

k=1

Thus /(h) is a random variable. Obviously it is an element of L5(Q2, F, P).
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Integration, Il.

Exercise. Let g and h be left-cont. (?) step functions on [0,27). Then

E1(g) T(h) = / " g(w)A(@) dF (). (5)

(Hint: Take a common subdivision for g and h.)

Let HS be the set of C-valued left-continuous step-functions on [0, 27).
Then (5) can be restated as saying that stochastic integration

as a linear operator | : HS — LS(Q2, F, P) is an isometry.

@© L. Gerencsér, Zs. Vagé and B. Gerencsér 19 /35



Integration, Ill.

Let us define the Hilbert-space
2w
L5([0, 2], dF) = {h:/ |h(w)[? dF (w) < oo}
0

Obviously Hf is a linear space, and HS C L5([0, 2n], dF).

Now recall from functional analysis that HS is dense in L5([0, 2], dF).

Hence the isometry / can be extended from HS to L5([0, 27, dF) !
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Integration, V.

Repeat: the isometry / can be extended from HS to L§([0,27], dF) :

Reminder: for any h € L5([0,27), dF) take an approximating sequence
(hn) C HE st limh, = h, and set  [(h) = lim I(h,).

The extended isometry [ from LS([0, 27), dF) to L5(Q2, F, P) is

called the stochastic integral, and we write

2T
I(h) =: /o h(w) d{(w).
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Isomporphy restated

Let g and h be (possibly C-valued) functions in L§([0,27), dF). Then
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Just an exercise

Exercise. Let ((w) be a random measure with orthogonal increments.

Define

Yo = /h e d((w)

0

Prove that (y,) is a wide sense stationary process.
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The spectral representation theorem
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The spectral representation theorem

The most powerful tool in the theory of w.s.st. processes:

Theorem

Let (y,) be a w.s.st. process. Then 3! random measure with orthogonal

increments d((w), such that

27
= /0 ™ d¢(w).

The process ((.) is called the spectral representation process of (yy).
Surprise: the theorem covers all processes (recall Wold decomposition!).

The concept of d((w) is a simplifying abstraction. A bit like i := /—1.
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Outline of proof, I.

" Let us try to match what is known to what is unknown.

Assume that (y,) can be represented as stated. Then we have
27 ) 27
E (}/n+7—_)7n) — / e:(n+r)we—:nwdF(w) _ / e’T“dF(w),
0 0

where F(.) is the structure function of ¢(.).

On the other hand, by Herglotz's theorem, we can also write

1

27
ideFy
27T/0 € (),

where FY(.) is the spectral distribution of y. It follows that

E (Ynir¥n) =

dF (w) = dF(w) - %
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Outline of proof, II.

Recall: a random measure with orth. incr ¢(.) defines a linear mapping,

an isometry /(.) from LS(dF) to L5(Q2, F, P):

I(h) = /O " h(w) de(w).

Conversely:

the isometry I(.) itself completely determines the random measure ((.):

<(w)=/ow d<(w’)=/0”x[0w< N d() = (x0w)).

@© L. Gerencsér, Zs. Vagé and B. Gerencsér 27 /35



Outline of proof, IlI.

TIn general: for a linear isometry /(.) from L3(dF) to L5(€, F, P) define
C(w) = 1(xto):

Exercise. Prove that the random measure ((.) defined above has indeed

orthogonal increments, morover its structure function is F(.).

Thus finding ¢(.) is equivalent to finding the linear isometry /(.).
What is known of /(.) ? We must have /(e™) =y, !

Let’s take a finite linear combination g = Zn c,e™ with ¢, € C, and set

/(g) = Z CnYn-
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Outline of proof, IV.

epeat: for an arbitrary finite linear combination g = >, c,e™™ we set

I(g) =) cuvn-

Claim: the extension of /(.) is well-defined, i.e. /(g) is independent of

the representation of g. Equivalently:

g=0 in L5(dF) = I(g)=0 in L5(Q,F,P).

Exercise. Prove the above implication.

Thus /(.) is well-defined on a dense subset of LS(dF).

Extend it by continuity to a linear isometry defined on the whole L5(dF).
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Linear filters
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Linear filters, |I.

Question: what is the effect of linear filters on the spectral repr. process?

Let (u,) be a w.s.st. process with spectral representation process d¢"(w).

Define the process (y,) via a FIR filter as

m
Yn = Z hkUn,k.
k=0
Then (y,) is a wide sense stationary process. We can write:

27
0

m o m
Vo = Z hk/ ei(n—k)w dcu(w) _ / (emw Z hke—:kw> dC“(w).
k=0 0 k=0
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Linear filters, Il.

WRepeat and continue:
21 ) m . 27 . .
Yn :A (emw Z hke—’kw> d¢“(w) = A (eme(e_lw)) d¢(w),
k=0

m

where H(e : Z —ikw Question: can we re-bracket and write
k=0

| (e de) = [ e (e et ?
0 0

Does it follow that

d¢”(w) = H(e ™) d¢"(w)?

And Whateis, Fes wed e 6oleid, 7 32/



Change of measure, I.

et ((.) be a random measure with orthogonal increments on [0, 27)

with structure function F. Let g € L5(dF), and define

n(w) = /Ow gw)d¢(Ww) 0<w<2m

Exercise. Show that n(w) is a random measure with orthogonal

increments with structure function

G(w)—/owg(w’)lzdF(W’) or  dG(w) = |g(w)*dF(w).

The random measure with orthogonal increments corresponding to n(w)

will be written as

dn(w) = g(w) d¢(w).

@© L. Gerencsér, Zs. Vagé and B. Gerencsér 33/35



Change of measure, Il.

(w) = g(w) d¢(w) has structure function dG(w) = |g(w)|? dF (w).

Let now h(w) be a function in L§ (dG) (rather than LS (dF) !). Then

2w
[ b dne)
Jo
is well-defined. We have the following, intuitively obvious-looking result:
Proposition
We have

/O - h(w) dn(w) = /0 7 (h(w). g(w)) dC(w).

Exglaise:,vsri\ﬁggthe above when h is a characteristic function X[O’ak@;’ls

rencser, 0 and erencser



THE END of LECTURE 5.
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