
Efficient Computation of All Distinct Realization
Structures of Kinetic Systems

Zoltan A. Tuza ∗ Bernadett Ács ∗∗ Gábor Szederkényi ∗∗
Frank Allgöwer ∗

∗ Institute for Systems Theory and Automatic Control, University of Stuttgart,
Pfaffenwaldring 9, 70550 Stuttgart, Germany, Email: {zoltan.tuza,

frank.allgower}@ist.uni-stuttgart.de
∗∗ Pázmány Péter Catholic University Faculty of Information Technology and

Bionics, Práter u. 50/a, 1083 Budapest, Hungary, Email: {acs.bernadett,
szederkenyi}@itk.ppke.hu

Abstract: Structural non-uniqueness of (bio)chemical reaction networks realizing a given kinetic dynam-
ics has been known for a long time, but it is often overlooked in practice. However, without appropri-
ate prior information, this phenomenon seriously hinders the successful identification of biochemical
models. Recently an algorithm with guaranteed polynomial time complexity between iterations has
been developed to compute all distinct reaction graph structures corresponding to a given dynamics.
This paper presents an improved version of this algorithm that is suitable to take the advantage of a
multiprocessor environment. The computed structures are collected in a task queue, and two server
processes coordinate the operation of the set of workers. The implementation is briefly described and the
performance of the approach is illustrated on computational examples taken from the literature.

Keywords: Chemical reaction networks, Optimization, Parallel computation, Polynomial models

1. INTRODUCTION

Kinetic systems and their realizing reaction networks are pop-
ular tools for modeling (bio)chemical reactions in chemical
and process engineering as well as in systems biology. This
is mainly due to the useful relations between the structure of
reaction networks and the properties of the differential equa-
tions describing the dynamics of the chemical reaction network.
It is known, however, that the correspondence between the
network structure and the dynamics is generally not one-to-
one. This means that there might exist many different network
structures (called realizations) translating to exactly the same
set of differential equations, even if the set of complexes is
fixed; see in Horn and Jackson (1972). It is also well-known
that the inference of biochemical reaction networks is a chal-
lenging task due to the frequent lack of structural or practi-
cal identifiability, see more in Chis et al. (2011). Naturally,
the possible structural non-uniqueness has a substantial impact
on the identifiability of kinetic systems (see e.g. Craciun and
Pantea (2008); Szederkényi et al. (2011)). Clearly, the different
realizations share the same dynamical properties: e.g. a sta-
bility condition obtained using a certain reaction graph proves
this property for the corresponding dynamical system itself. To
exploit such properties several optimization based algorithms
have been developed to determine realizations with preferred
properties (cf. Szederkényi (2010b,a)).

In this paper we use two main notions to relate the kinetic
dynamical system and the corresponding graph structures. The
reaction networks yielding exactly the same kinetic differen-
tial equations are called dynamically equivalent. Johnston and
Siegel (2011) introduced a positive linear diagonal transfor-
mation between the solutions (trajectories) of kinetic systems,

in this case kinetic systems are called linearly conjugate. It
is easy to see that dynamical equivalence is a special case of
linear conjugacy (cf. Craciun and Pantea (2008), Johnston et al.
(2012b)).

The computation of all structurally different graph structures is
generally a combinatorial problem, but there are special prop-
erties we can exploit to significantly reduce the search space.
First, there exist an upper and a lower bound for the possible
number of reactions in a reaction network realizing a kinetic
system. Szederkényi (2010a) reported a way to compute these
bounds which are the so-called dense and sparse realizations,
respectively. Second, it was proved that the dense realization
is a unique super-structure for a given dynamics and contains
all other possible realizations as proper sub-graphs (see e.g.
Johnston et al. (2012a)).

Beyond the possibility of an exhaustive search, knowing all
different realizations of a kinetic system enables us to study
such properties of the whole solution set that we are not yet
able to compute directly. An example for that is the enumer-
ation of all structures with a given deficiency. Deficiency is a
realization property but it may have immediate consequences
on the stability and uniqueness of equilibria for kinetic systems
as it was introduced in Feinberg (1987) and Feinberg (1988).

Tuza et al. (2013) reported the first solution to enumerate all
sparse realizations of a kinetic system. Recently, Ács et al.
(2016) developed the first provably correct algorithm with ad-
vantageous time complexity properties for computing all dis-
tinct reaction graph structures. Basically, this algorithm builds
a hierarchical tree structure which contains all realizations as
vertices of a tree. In the root we have the dense realization
(the upper bound) and below that in each horizontal level we



can find all the realizations with a smaller number of reactions,
than one level above. Finally, at the bottom level we can find
all realizations with the minimum number of reactions (i.e. the
sparse realizations).

Based on the above, the aim of this paper is to present and
evaluate an improved, computationally more efficient imple-
mentation of the method presented in Ács et al. (2016), and to
illustrate the possible degree of structural non-uniqueness (and
consequently, that of non-identifiability) using examples taken
from the literature including models related to systems biology.

The paper is organized as follows: the next section briefly in-
troduces the necessary mathematical background for the imple-
mentation. The third section presents the improved algorithm
for computing all different graph structures and outlines the
proof of correctness. Section 4 details the implementation. The
computational results are presented in Section 5, while Sec-
tion 6 concludes the paper.

2. REPRESENTATIONS OF KINETIC SYSTEMS

We consider reaction networks as a general system class repre-
senting a wide class of nonlinear dynamical systems with non-
negative states (see e.g. in Chellaboina et al. (2009)). Through-
out the paper we follow the notations of Ács et al. (2016).

2.1 Algebraic characterization

A reaction network can be characterized by three sets:

(1) a set of species: S = {Xi | i ∈ {1, . . . , n}}
(2) a set of complexes: C = {Cj | j ∈ {1, . . . ,m}}, where

Cj =
n∑

i=1

αjiXi j ∈ {1, . . . ,m}

αji ∈ N0 j ∈ {1, . . . ,m}, i ∈ {1, . . . , n},
(3) and a set of reactions: R ⊆ {(Ci, Cj) | Ci, Cj ∈ C}

Each ordered pair (Ci, Cj) has a reaction rate coefficient
kij ∈ Rn

+ so that the corresponding reaction Ci → Cj

takes place if and only if kij > 0.

The structure of the reaction network can be characterized by
special matrices: the complex composition matrix Y ∈ Nn×m

0
describes the complexes as follows

[Y ]ij = αji i ∈ {1, . . . , n}, j ∈ {1, . . . ,m},
and the set of reactions is encoded by the Kirchhoff matrix
Ak ∈ Rm×m as

[Ak]ij =


kji if i 6= j

−
m∑

l=1,l 6=i

kil if i = j.

2.2 Dynamical description

If mass action kinetics is assumed and the concentrations of the
species depending on time are represented by the function x :
R→ Rn

+, the time evolution of the model can be characterized
by a polynomial dynamical system:

ẋ = Y ·Ak · ψ(x) (1)
where ψ : Rn

+ → Rm
+ is a monomial-type vector-mapping

defined by

ψj(x) =

n∏
i=1

x
Yij

i , j = 1, . . . ,m. (2)

It is visible from (1) and (2) that the ODEs of a reaction network
can be characterized by the matrix pair Y and Ak.

Obviously, (1) can be written as a polynomial system of the
form

ẋ = M · ϕ(x) (3)
where x : R→ Rn

+ is a function, M ∈ Rn×p a coefficient ma-
trix and ϕ : Rn

+ → Rp
+ a monomial function. The polynomial

system (3) is called a kinetic system if there exists a reaction
network governed by the same dynamics, i.e. the following
equation is fulfilled:

M · ϕ(x) = Y ·Ak · ψ(x), ∀x. (4)
In this case the reaction network represented by the matrices Y
and Ak is called a dynamically equivalent realization of the
kinetic system (3). We remark that the monomial functions ϕ
and ψ are generally not identical, since the set of complexes
determining the monomials is not fixed. However, the set of
complexes can be suitably complemented; we can assume with-
out the loss of generality that ϕ = ψ holds (see e.g. Ács et al.
(2016) for details).

The notion of dynamical equivalence can be generalized to the
case when the state vector is subject to a positive linear diagonal
state transformation, performed by a positive definite diagonal
matrix T ∈ Rn×n as follows: x̄ = T−1 · x. According to the
definition in Johnston et al. (2012a): a reaction network defined
by matrices Y andA′k is called a linearly conjugate realization
of the kinetic system (3) if the following equations hold:

Y ·Ak = T−1 ·M (5)
A′k = Ak · ΦT , (6)

where ΦT ∈ Rm×m is a positive definite diagonal matrix so
that [ΦT ]ii = ψi(T · 1) for i ∈ {1, . . . , n}, and 1 ∈ Rn is a
vector with all coordinates equal to 1.

2.3 Graph representation

The above notions give reaction networks a natural represen-
tation as weighted directed graphs G(V,E) called Feinberg-
Horn-Jackson graphs, or simply reaction graphs as follows:

• vertices: V (G) = C
• edges: E(G) = R
• edge weights: w(Ci, Cj) = kij

It can be seen that the reaction graph is encoded by the matrix
Ak, but since we want to determine only the structures of
the realizations from now on we consider reaction graphs as
unweighted directed graphs.

2.4 Distinguished reaction graph structures

The dense realization of a kinetic system—where the maxi-
mum number of reactions take place—has a special property
that guarantees the applicability of the algorithm presented in
this paper. Ács et al. (2015) proves that among linearly conju-
gate realizations fulfilling a finite set of linear constraints on the
parameters there is a realization determining a super-structure.
This super-structure is the unweighted reaction graph of the
dense realization which contains the reaction graph structures
of all possible linearly conjugate realizations of the model with
linear constraints as subgraphs.

The sparse realizations of a kinetic system are such realiza-
tions where the minimum number of reactions take place. In



general there may exist several sparse realizations of a kinetic
system.

2.5 Computing graph structures based on optimization

Johnston et al. (2012a) introduced a method to compute linearly
conjugate realizations by linear programming. For this method
we assume that matrices Y and M are given and the matrices
Ak and T−1 are the decision variables. The linear constraints
characterizing feasible linearly conjugate realizations are the
following:

T−1 ·M = Y ·Ak

[Ak]ij ≥ 0 i, j ∈ {1, . . . ,m}, i 6= j (7)

[Ak]ii = −
m∑
j=1
j 6=i

[Ak]ji i ∈ {1, . . . ,m}

[T−1]ii > 0 i ∈ {1, . . . , n}.
A usual restriction in the computation steps is that a setH ⊂ R
of reactions has to be excluded from the network, which can
also be written as a linear constraint:

[Ak]ji = 0 (Ci, Cj) ∈ H. (8)
To execute the algorithm presented in the next section it is
necessary to compute constrained dense linearly conjugate re-
alizations. These can be determined efficiently in polynomial
time using linear programming as it was presented in Ács
et al. (2015). For the computations described in this paper we
transformed the constraints (7)-(8) into a constant size linear
program in pure inequality form. This is the most suitable form
for the applied solver, and with the repeatedly modified edge-
exclusions in (8) the optimization problem can be solved in
minimal time.

2.6 Example

In this section we introduce a reaction network originally pre-
sented in Császár et al. (1981), and throughout the paper this
example will be referred to as A1. The main purpose of us-
ing this example is to compare the operation of the improved
method with that of Ács et al. (2016). The reaction network is
characterized by the following sets:

S = {X1, X2}
C = {C1 = 0, C2 = X1, C3 = X2, C4 = 2X1

C5 = 2X1 +X2, C6 = 3X1}
R= {(C1, C3), (C3, C2), (C2, C1), (C4, C3), (C5, C6)}

reaction rate coefficients: k13 = k1, k32 = k3, k21 = k2, k43 =
k4, k56 = k5.

The following matrices encode the network structure:

Y =

[
0 1 0 2 2 3
0 0 1 0 1 0

]

Ak =


−k1 k2 0 0 0 0

0 −k2 k3 0 0 0
k1 0 −k3 k4 0 0
0 0 0 −k4 0 0
0 0 0 0 −k5 0
0 0 0 0 k5 0

 .
Assuming mass action kinetics the dynamical equations gov-
erning the model are the following:

ẋ1 =−k2x1 + k3x22k4x
2
1 + k5x

2
1x2

ẋ2 = k1 − k3x2 + k4x
2
1 − k5x21x2. (9)

C

C

C C

k

k

k

k

k

C

C

5

5

4

4

3

3

2

2

1

1

6

Figure 1. The reaction graph representing the reaction network
A1 with 6 vertices and and 5 edges.

With parameters from Császár et al. (1981): k1 = 1, k2 =
1, k3 = 0.05, k4 = 0.1, k5 = 0.1, the system shows
oscillatory behavior. The structure of the dense realization is
portrayed in Fig. 2 and it can be seen that the reaction graph of
the original kinetic system in Fig. 1 is a subgraph of it.

C6 C2

C3C5

C1

C4

Figure 2. The reaction graph of the dense linearly conjugate
realization of A1 with 6 vertices and 19 edges.

3. SUMMARY OF THE ALGORITHM

In order to find all graph structures we need to assign a unique
identifier—a binary sequence—to each graph. Due to the super-
structure property only those reactions need to be considered
that take place in the dense realization. Thus, the number of
digits is equal to the number of reactions (N ) taking place in
the dense realization, represented by an all-1 sequence.

The progress of Algorithm 1 is recorded in two different data
structures: a set called FoundSet contains the graph identifiers
that the algorithm has found so far; a first-in first-out queue
called Queue contains all the graph identifiers that the algorithm
still needs to process.

To start the algorithm the dense realization of the kinetic
system—characterized by the matricesM and Y—is computed
and the identifier of the dense realization is stored in the
FoundSet. Then this identifier is pushed into the queue for
further processing.

Within the algorithm the following procedure is applied repeat-
edly:
FindLinConjExcludeEdge(M,Y,R, i) computes a constrained



dense linearly conjugate realization of the kinetic system ex-
cluding an edge (corresponding to index i) from the realization
R according to constraints (7)-(8). If such a realization (denoted
by the sequenceU ) exists, then reaction graphGU is a subgraph
of GR and U [i] is zero. If the problem is infeasible, then −1 is
returned.

Algorithm 1
1: procedure LIN. CONJ. GRAPH STRUCTURES(M,Y )
2: while Size(Queue)> 0 do
3: R:= pop Queue
4: for i = 1 to N do
5: if R[i] = 1 then
6: U :=FindLinConjExcludeEdge(M,Y,R, i)
7: if U ≥ 0 and U /∈ FoundSet then
8: FoundSet:= FoundSet ∪ {U}
9: push U into Queue

10: end if
11: end if
12: print R
13: end for
14: end while
15: end procedure

The correctness of this algorithm can be proved similarly to
the proof given in Ács et al. (2016). The basic idea is that we
assume by contradiction that there is a sequenceW which is not
returned by the algorithm and examine the computation done
on a sequence R with the following properties: R character-
izes a linearly conjugate realization of the kinetic system, it is
returned by the algorithm,GW is a subgraph ofGR and consid-
ering these properties the number of edges in GR is minimal.
Among the children of R we can get either a sequence equal to
W or an other sequence U with the same prescribed properties
as R but with less edges. Both cases result a contradiction.

4. IMPLEMENTATION

To efficiently compute all different realizations, the software
implementation has three independent components:

(1) The Queue Server process handles the FIFO Queue and it
has O(1) time complexity for pushing in or popping out
items.

(2) The Found Server process stores all the structure IDs
we have found so far—in the set called FoundSet in the
pseudocode. The internal data structure requires O(n)
time for insertion, where n is the number of elements in
the data structure, and O(1) time for searching elements.
Since the algorithm may find the same graph structure
several times, we need such a data structure inside the
Found Server. The time complexity for insertion can be
further amortized, because during insertion between 1
and N number of graph identifiers are sent to the Found
Server.

(3) The Worker applies the procedure FindLinConjExcludeEdge
repeatedly to the given realization. After that it sends the
IDs of the sub-graphs to the Found Server and sends the
graph identifiers of the new ones to the Queue Server
for further processing. After all sub-graphs of the current
realization have been determined, they are written to the
hard disk.

Queue Server Found Server

WorkerWorker Worker

pop 
realization

push 
new children 
realizations

has 
been 

found?

True/False

Figure 3. The main components of the implementation, a
Worker requests a graph identifier of a realizations from
the Queue Server, computes all of its children and checks
novelty of children’s graph identifiers with the Found
server, then sends the new one to the Queue Server.

The communication between the three major components can
be implemented in multiple ways, for example shared memory
objects or Message Passing Interface (MPI) would be good
solutions. On the other hand, as we will see in Section 5, the
performance of the algorithm mainly depends on the number
of initialized workers. Therefore, we chose a message queue
solution that sends the necessary data over the TCP network and
gives us the opportunity of distributed computing over multiple
computers.

4.1 Possible levels of parallelization

In order to increase the efficiency of the implementation pre-
sented so far, we can introduce the following parallelization
levels.

Independent workers As the layout of the implementation
suggests in Fig. 3 we can utilize more then one worker, because
they work completely independently of each other. In addition,
this setup allows us to dynamically scale the number of workers
during the execution, since a worker does not store any shared
data between iterations. As we will see in the next section,
the number of workers is basically limited by the number of
available processors in the system.

On the other hand, we hit another limit when a single thread
is not enough for a server process. In this case multiple server
threads can be initialized to accommodate the large number of
requests from the workers. Although this scenario is beyond the
scope of this paper.

Parallel edge exclusion Parallel computation of the edge
exclusion in Algorithm 1 is also possible—as it was shown
in Ács et al. (2016)—because no information is shared during
the computation of the edge exclusions. However, this approach
has two potential drawbacks. First, it may yield more frequent
communication between the two servers and a worker, but it
can be compensated by buffering queue items in the worker.
Second, there is a cost to initialize a pool of threads and it is
often the case some of the threads may encounter an infeasible
linear program. As a result of that the resources for these
threads will not be utilized. This scenario can be avoided by
performing the feasibility check before the thread initialization.
Hence, we can initialize as many threads as feasible linear
programs.

Parallel computation of the columns of matrix Ak This
solution can be applied in the case of dynamical equivalence,



because in this case the reaction rate coefficients in different
columns of Ak are independent of each other.

We remark that the latter two levels of parallelization can be
really advantageous in the following two cases: 1, the size of the
linear program is large enough to outweigh the cost of allocat-
ing resources for parallel computation; 2, efficient vectorization
of the computation of edge exclusion and/or computation of the
LP tasks on Graphical Processing Units can be used (see, e.g.
Spampinato and Elstery (2009)).

5. COMPUTATIONAL RESULTS

In this section we analyze the performance of our software
implementation on three illustrative examples. The first one is a
computational example from Section 2.6. Examples 2 and 3 are
selected form the systems biology literature. The general case
of linear conjugacy is investigated in the first example, in the
rest only dynamical equivalence is practically relevant.

5.1 Measurement setup

All the computational experiments were carried out on a
Lenovo D60 workstation with two 2.60GHz Xeon (E5-2650 v2)
processors and with 32 Gb RAM (DDR3 1600 MHz, 0.6ns).
The software was written in Python (ver. 2.7.6). Additionally,
Python packages such as pyzmq (ver. 14.7.0), cyLP (0.7.2),
Cython (ver. 0.23.4) and CBC (ver. 2.8.5) were used. The linear
programs were solved with the CLP solver, which is part of
CBC.

To give room to the server processes and the operating system’s
own maintenance we limited the number of workers to 31.
Each worker was implemented as one Python process mainly
to escape Global Interpreter Look (GIL) in Python. During the
computation only the first level of parallelization demonstrated
in Section 4.1 was implemented.

5.2 Examples

Example – A1 The first example is taken from Section 2.6.
The dense realization is shown in Fig. 2 and it contains 19
reactions.

After computing all linearly conjugate realizations of A1 by
applying the implementation in Section 4 we end up with
17160 structurally different graphs realizing the same dynamics
(determined by (9)). It was checked and confirmed that these
structures are exactly the same that were published in the
electronic supplement of Ács et al. (2016).

To test the scalability of our implementation we repeated the
computation of A1 with different number of workers, the cor-
responding computation time are shown in Fig. 4. In each case
the total computation time was calculated by averaging the
execution time of the workers. The small standard deviation in
the brackets indicates that the work load is evenly distributed
among the workers.

The first column of Table 1 shows the internal counters of
the algorithm for this example. From this we can read that
how many LPs were solved during the computation, how many
of them were feasible and how many of them were accepted
as new realizations. We can also conclude that in this small
example (there are 6 complexes in the reaction graph) only

1 2 4 8 16 31

101

102

86.32

44.90 (0.044)

24.76 (0.043)

14.54 (0.03)

9.21 (0.037)
7.66 (0.061)

165.43

80.70 (0.0004)

39.78 (0.0004)

24.51 (0.002)

13.53 (0.003)

10.52 (0.005)

NUMBER OF WORKERS

T
O

TA
L

E
X

E
C

U
T

IO
N

T
IM

E
[S

E
C

] Yeast Switch
A1

Figure 4. Average execution time of the workers on examples
A1 and yeast switch, the axes are in log scale. The standard
deviation for each case is shown in brackets.

8.12% of the executed linear programs lead to new realizations,
the others are either infeasible LPs or the algorithm has already
found those structures.

Counter A1 Yeast Switch 5-node-repressilator

LP Solved 211,264 (8.12%) 18041 (4.00%) 4,008,995 (1.62%)
Valid Solutions 131,960 (13.00%) 4240 (17.01%) 542,919 (11.99%)
Found Again 114,801 (14.50%) 3460 (20.83%) 477,850 (13.62%)
All Realizations 17160 (100% ) 721 (100%) 65071 (100%)

Table 1. These figures show the internal counters
of Algorithm 1 while running different examples.

G1/S transition in Budding Yeast This example is taken from
Conradi et al. (2007), and models a switch-like behavior in
yeast cell cycle regulations. The details of the model can be
found in the original paper. The dynamically equivalent sparse
and dense structures of this model (shown on Fig. 6) were
computed in Szederkényi et al. (2011). Here we use the same
state variables, namely: x1: [Sic1], x2: [Sic1P], x3: [Clb], x4:
[Clb·Sic1], x5: [Clb·Sic1P], x6: [Cdc14], x7: [Sic1P·Cdc14],
x8: [Clb·Sic1P·Cdc14], x9: [Clb·Sic1·Clb]. The graph structure
contains 19 complexes:

C1 = X2, C2 = ∅, C3 = X1, C4 = X3 +X1, C5 = X4,

C6 = X3, C7 = X2 +X3, C8 = X5, C9 = X3 +X4,

C10 = X9, C11 = X3 +X5, C12 = X2 +X6, C13 = X7,

C14 = X1 +X6, C15 = X5 +X6, C16 = X8,

C17 = X4 +X6.

The parameter values applied in the computation are listed in
Szederkényi et al. (2011). The dense realization contains 28
reactions, while the sparse has 18. It should be pointed out that
the original realization of the model reported in Conradi et al.
(2007) contains 18 reactions, i.e. this realization is sparse and it
is the only sparse realization of the given dynamics.

With 31 workers the computation of this model took 7.66
seconds and we found 729 different realization structures of the
kinetic system. To test the scalability of the implementation we



5 7 9 11 13 15 17 19
0

2,000

4,000

←
Sp

ar
se

R
ea

liz
at

io
ns

←
D

en
se

R
ea

liz
at

io
n

1 7 3
0 1
4
9 6

1
8

1
,6
7
9

3
,0
4
2

3
,8
7
0

3
,5
7
6

2
,4
3
1

1
,2
0
9

4
2
9

1
0
3

1
5

1

A1

18 20 22 24 26 28

50

100

150

200

←
Sp

ar
se

R
ea

liz
at

io
ns

←
D

en
se

R
ea

liz
at

io
n

1

8

3
2

8
0

1
3
8

1
7
0

1
5
2

9
6

4
1

1
0

1

NUMBER OF REACTIONS

Yeast Switch

55 57 59 61 63 65 67 69
0

0.5

1

1.5
·104

←
Sp

ar
se

R
ea

liz
at

io
ns

←
D

en
se

R
ea

liz
at

io
n

4
6 2
9
3 1
,1
3
9 3
,0
2
9

5
,9
7
8

9
,2
7
2 1

1
,5
6
5

1
1
,8
0
6

9
,7
6
9

6
,5
4
8

3
,5
2
2

1
,5
0
0

4
7
7

1
1
0

1
5

1

N
U

M
B

E
R

O
F

R
E

A
L

IZ
A

T
IO

N
S

5-node-repressilator

Figure 5. The number of realizations for a given reaction number is shown for each example. The 5-node-repressilator and the
yeast switch example was calculated with dynamical equivalence. On the other handA1 was calculated with linear conjugacy
(check Section 2.5 for details).

Figure 6. Left: the originally published model of the G1/S
transition model from Conradi et al. (2007), which is also
a sparse realization, right: the dynamical equivalent dense
realization of the same model. This figure is taken from
Szederkényi et al. (2011).

Example LP variables Avg. sol. Time Std. of sol. Time

A1 76 0.792 msec 0.124 msec
Yeast Switch 578 7.616 msec 0.694 msec
5-node-repressilator 5202 229.4 msec 23.41 msec

Table 2. These figures show the size of the cor-
responding linear program as well as the average

solution time for the examples.

did the same computation with different number of workers as
well (see Fig. 4).

Deficiency Number of Realizations
2 81
5 19
6 629

Table 3. Table lists the deficiencies and their oc-
currence for the Budding Yeast example.

Given all realizations we can easily calculate the deficiency
of every realization (see, Table 3). The complex C6 becomes
isolated in 81 realizations—these are the ones with deficiency
2. The role of C6 is then taken up by combinations of reactions
originating from complexes C5 and C8, the possible combina-

tions are given by the dense realization (shown in the right panel
of Fig. 6).

5-node-repressilator with auto activation This model was
reported in Müller et al. (2006) and it was adapted and in-
vestigated in details in Szederkényi et al. (2011), where it was
concluded—in the dynamically equivalent case—the dense re-
alization has 80 reactions and a sparse one has 55 reactions.
The model contains five genes with auto-activation and each
gene represses another gene. The layout, connection pattern of
genes and the corresponding reactions are shown in Fig. 7.

Auto-activation 1 Gi + Pi � GA
i

Protein production 1 GA
i → GA

i + Pi

Repression 1 Gi + Pj � GR
i

Auto-activation 2 GR
i + Pi � GAR

i

Repression 2 GA
i + Pj � GAR

i

Protein production 2 GAR
i → GAR

i +Pi

Protein degradation Pi → ∅

Figure 7. Left: Layout and connection pattern of the 5-node-
repressilator. Each gene labeled with numbers 1 to 5
consists of 11 reactions responsible for gene expression,
repression, protein degradation as listed on the right panel.
This figure is taken from Szederkényi et al. (2011).

As in the previous example the dense-sparse gap indicates the
possibility of different realizations. After computing all realiza-
tions we ended up with 65071 structurally different realizations.
The computation took 554 minutes, this is due to the size of the
linear program which has 5202 decision variables (shown in the
third row of Table 2).

Finally, we can investigate the distribution of the number of
reactions among the distinct realizations (Fig. 5).

6. CONCLUSION

We have presented an improved algorithm which calculates
all possible reaction graph structures corresponding to linearly
conjugate realizations of kinetic systems. Due to the combina-
torial nature of the problem the efficient organization of the



computations is of significant interest. Therefore, the imple-
mentation procedure has been aimed to maximize the available
processing throughput by defining simple workers working on
the same task queue. Based on previous results the correctness
of the new approach with a task queue instead of a hierarchical
stack-structure has also been outlined, ensuring that the im-
proved implementation finds all possible graph structures. This
was also computationally confirmed on a previously studied
benchmark model having 17160 different graph structures. We
have demonstrated the scalability of the solution on further
computation examples and investigated their performances. It
has been shown that the improved implementation runs sig-
nificantly faster on the same hardware than the solution re-
ported in Ács et al. (2016). Further work will be focused on
implementing the briefly mentioned additional levels of par-
allelization. Potential application fields of the method are the
efficient identifiability-related structural analysis of biochem-
ical network models or the design of an entire set of kinetic
structures based on prescribed nonlinear dynamics.

7. ACKNOWLEDGMENT

The authors would like to thank Dr. István Reguly for his help
on the manuscript and György Lipták for his help with the
implementation. GSz, BÁ and ZAT gratefully acknowledge the
support of the Hungarian National Research, Development and
Innovation Office – NKFIH through grant OTKA NF104706.
Furthermore, the partial support support of PPKE through the
grant KAP 15-052-1.1 is also acknowledged.

REFERENCES

Chellaboina, V., Bhat, S.P., Haddad, W.M., and Bernstein, D.S.
(2009). Modeling and analysis of mass-action kinetics –
nonnegativity, realizability, reducibility, and semistability.
IEEE Control Systems Magazine, 29, 60–78.

Chis, O., Banga, J.R., and Balsa-Canto, E. (2011). Structural
identifiability of systems biology models: A critical compar-
ison of methods. PLoS ONE, 6(11), e27755:1–16.

Conradi, C., Flockerzi, D., Raisch, J., and Stelling, J. (2007).
Subnetwork analysis reveals dynamic features of com-
plex (bio)chemical networks. Proceedings of the Na-
tional Academy of Sciences, 104(49), 19175–19180. doi:
10.1073/pnas.0705731104.

Craciun, G. and Pantea, C. (2008). Identifiability of chemical
reaction networks. Journal of Mathematical Chemistry, 44,
244–259.

Császár, A., Jicsinszky, L., and Turányi, T. (1981). Generation
of model reactions leading to limit cycle behaviour. Reaction
Kinetics and Catalysis Letters, 18, 65–71.

Feinberg, M. (1987). Chemical reaction network structure
and the stability of complex isothermal reactors - I. The
deficiency zero and deficiency one theorems. Chemical
Engineering Science, 42 (10), 2229–2268.

Feinberg, M. (1988). Chemical reaction network structure and
the stability of complex isothermal reactors - II. Multiple
steady states for networks of deficiency one. Chemical
Engineering Science, 43, 1–25.

Horn, F. and Jackson, R. (1972). General mass action kinetics.
Archive for Rational Mechanics and Analysis, 47, 81–116.

Johnston, M.D. and Siegel, D. (2011). Linear conjugacy
of chemical reaction networks. Journal of Mathematical
Chemistry, 49, 1263–1282.

Johnston, M.D., Siegel, D., and Szederkényi, G. (2012a). A
linear programming approach to weak reversibility and linear
conjugacy of chemical reaction networks. Journal of Math-
ematical Chemistry, 50, 274–288. doi:10.1007/s10910-011-
9911-7.

Johnston, M.D., Siegel, D., and Szederkényi, G. (2012b). Dy-
namical equivalence and linear conjugacy of chemical reac-
tion networks: New results and methods. MATCH Commun.
Math. Comput. Chem., 68, 443–468.

Müller, S., Hofbauer, J., Endler, L., Flamm, C., Widder, S., and
Schuster, P. (2006). A generalized model of the repressilator.
Journal of Mathematical Biology, 53(6), 905–937. doi:
10.1007/s00285-006-0035-9.

Spampinato, D.G. and Elstery, A.C. (2009). Linear opti-
mization on modern gpus. In IEEE International Sym-
posium on Parallel Distributed Processing, 1–8. doi:
10.1109/IPDPS.2009.5161106.

Szederkényi, G. (2010a). Computing reaction kinetic real-
izations of positive nonlinear systems using mixed integer
programming. In 8th IFAC Symposium on Nonlinear Control
Systems - NOLCOS 2010, Bologna, Italy, 1-3 September,
ThP04.2.

Szederkényi, G. (2010b). Computing sparse and dense realiza-
tions of reaction kinetic systems. Journal of Mathematical
Chemistry, 47, 551–568. doi:10.1007/s10910-009-9525-5.

Szederkényi, G., Banga, J.R., and Alonso, A.A. (2011). In-
ference of complex biological networks: distinguishability
issues and optimization-based solutions. BMC Systems Bi-
ology, 5, 177. doi:10.1186/1752-0509-5-177.

Tuza, Z.A., Szederkényi, G., Hangos, K.M., and A. A. Alonso,
J.R.B. (2013). Computing all sparse kinetic structures for
a Lorenz system using optimization methods. International
Journal of Bifurcation and Chaos, 23, 1350141(1–17).

Ács, B., Szederkényi, G., Tuza, Z.A., and Tuza, Z. (2015).
Computing linearly conjugate weakly reversible kinetic
structures using optimization and graph theory. MATCH
Commun. Math. Comput. Chem., 74, 481–504.

Ács, B., Szederkényi, G., Tuza, Z., and Tuza, Z.A.
(2016). Computing all possible graph structures de-
scribing linearly conjugate realizations of kinetic systems.
Computer Physics Communications, 204, 11–20. doi:
doi:10.1016/j.cpc.2016.02.020.


