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Abstract— Recent advances in measurement technology pro-
vide us with rich source of data for estimating parameters in
biomolecular circuit models, particularly in simplified in vitro
transcription-translation systems, so-called molecular ‘“bread-
boards”. In this paper, we elaborate on a mass action type
dynamic model for such an in vitro system and detail a
parameter estimation procedure that may be used with time
series data containing information about both transcriptional
and translational stages of gene expression. The identification
process is supported by structural identifiability analysis to
ensure proper model structure. Statistical analysis and vali-
dation of the estimated parameter set help us to understand
the characteristics of point estimation results.

I. INTRODUCTION

While the use of quantitative models in biology has
become commonplace in recent decades, the amount and
types of experimental data available for model parameter
estimation are often severely limited. In many cases, tem-
poral resolution and/or the sensitivity of the measurement
technique present significant obstacles for effective parame-
ter estimation. Additionally, structural non-identifiability of
the model is also a possibility [4], [5], [24]. However,
recent developments in real-time mRNA reporter technology
have provided new, powerful tools, which together with
fluorescent proteins allow for the concurrent tracking of
the concentrations of mRNA and protein species of inter-
est. As a result, we can now measure transcription and
translation simultaneously with sufficiently high frequency
and specificity to directly use the obtained time series data
for parameter estimation [15]. This is particularly useful in
the rapidly expanding field of synthetic biology, wherein
biological ‘parts’ (e.g., promoters, terminators, genes) can
be rapidly combined into ‘biocircuits’ [23] that may not
otherwise exist.

Several examples for modeling of the transcription and
translation processes can be found in the literature, ranging
from coarse grain [11], [21] to very detailed [9], [1] focusing
on different aspects of gene expression. Our aim here is
to analyze and improve a previously proposed ODE-based
model describing transcription and translation in a cell-free
experimental environment using real measurement data. The
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desired purpose of the model is not only to fit the existing
data and showing the dynamics of unmeasured states, but
also making predictions that can be validated experimentally.

Previously, we developed a mass action-based model that
included a number of experimentally-validated parameters
[25], then tested the in vitro system under a variety of experi-
mental conditions with improved measurement methodology
[20]. However, neither identification related model analysis
and nor detailed evaluation of the estimates were provided in
these previous papers. Therefore, in this paper we perform
further model analysis—such as time-scale separation and
structural identifiability—to improve our model. Also, uti-
lizing the comprehensive measurements from [20], we will
estimate and validate some of the parameters of the process
model.

II. EXPERIMENTAL BACKGROUND
A. In vitro transcription and translation system

Cell-free gene expression systems are popular platforms
for biocircuit design. Biocircuits are proprietary DNA seg-
ments assembled into one or several circular DNA and
added to either living cell or some kind of cell extract.
These externally supplied genes are expressed in the host
environment where they may interact with each other and/or
the host environment via protein-protein, protein-DNA, etc.
interactions. With this interaction network, various tasks can
be performed such as computation, sensing, and actuation.

All experimental data described in this paper were ob-
tained in a cell-free environment derived from Escherichia
coli crude extract. This extract contains all the endogenous
system components necessary for transcription and transla-
tion (e.g., ribosomes, RNA polymerase, translation initiation
and elongation factors, etc.) but is free of structural com-
ponents (e.g, cell wall) and genomic DNA. The processed
extract is supplemented with molecular energy sources: nu-
cleotides, amino acids, and tRNAs. In this simple form the
crude extract with energy source mixture is fully capable
of transcription/translation-based biocircuit operation. The
detailed description of the system and the preparation steps
of the crude extract can be found in [22].
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From ‘biocircuits’ prototyping point of view in vitro
experiments have advantages over in vivo ones, e.g. a short
incubation time, repeatability, usage of linear DNA, thus
avoiding time-consuming cloning and in vivo propagation
[23]. Recently, a paper-based solution emerged, further in-
creasing the potential of in vitro prototyping [14].

One drawback of current implementations of in vitro
breadboards is the lack of a “continuous mode” in which
gene expression could be sustained for an extended period
of time. Furthermore, necessary biomolecular resources are
supplied externally in fixed amounts only at the outset of
the experiment, and no internal source is available for the
resource replenishment. Since resources are limited in this
environment, resource competition can arise [27]. A model
that explicitly accounts for resources can reveal dynamics of
resource allocation that are difficult or impossible to measure.

B. Measurements

Transcription was monitored using the Malachite Green
aptamer (MGApt), a short RNA segment that binds the
Malachite Green (MG) dye (triphenylmethane) [8] and en-
hances the dye’s fluorescence. The MGApt was placed in
the 3’ untranslated region (UTR) of a gene encoding Green
Fluorescent Protein (GFP), which serves as the translational
reporter. Production of the combined MGApt-GFP construct
is driven by a strong constitutive promoter.

Experiments took place in a 10 pl reaction volume at
29 °C over 14 hours, with each experiment repeated three
times. DNA concentration was varied between 0.01 nM and
20 nM (see Figure 1 in [20]). Fluorescence was measured ev-
ery 3 minutes for both MGApt (excitation: 610 nm; emission:
650 nm) and GFP (excitation: 485 nm; emission: 525 nm)
in a Biotek plate reader. All measurements were background
corrected to account for fluorescence of the MG dye. Further
details of the measurements and sample preparation can be
found in [20].

III. PROCESS MODEL

We chose a mass action kinetics (MAK) framework for
modeling transcription and translation in the in vitro system.
Unlike many of the common models used in synthetic biol-
ogy, our model explicitly accounts for resource consumption
in order to cover resource limits and resource sharing effects.
Mass action—based modeling has a number of advantages, in-
cluding the ease with which stochastic solvers can be applied
(e.g., to investigate the dynamics in the non-deterministic
regime [12]), as well as certain strong statements that may
be made about mass action systems using Chemical Reaction
Network Theory, even without knowledge of the model
parameters [7], [6], [19].

The model of transcription-translation is written in the
following general non-linear form:

f(z, P), 2(0) = xq,

where x : R — R is the state vector, P € R™ denotes the
vector of model parameters, in our case n = 14 and m = 18.
Table I lists the non-zero initial values used in this paper.

jj =

Fig. 1. Overview of the process model. The model is built around the
central dogma of molecular biology with additional steps accounting for
resource consumptions and degradations. Forward and reverse reaction rate
coefficients are denoted with green and orange colors, respectively. The
z1,...,x14 are the species concentrations. The parameters p11 and p1s
are not shown, see Appendix for details.

The dynamics of the transcription and translation is given
by the following system of ODE:s:

T =—F To = —F} (D
i3 = —F3+ Fip T4 =F, — Fy+ Fy

T5 = —F5 — Fi Te = —Fg — Fi3

Tr = —Fy + Fig g = Fy
T9=—F3+ F7+ Fio— F11 #10=F3— Fg+ Fy
T11 = —Fy+ Fy T12 = Fy — F5 + Fp
T13 = F5 — Fg — I7 14 = Fg — Fg — Fig.

The F;,7 = 1,...,13 appearing in the above ODEs are the
following:

Fy = pyar,

Fy = prriixy — psrio,
Fs = p11713,

Fg = p13710T6 — P14T14,

Fip = p16714,

Fy = poz1w2 — p314,
F3 = psz9r3 — peTi0,
Fs5 = por1275 — p10T13,
F7 = p1om13,

Fy = p15714,

Fi1 = pirxo, Fio = p1sws, (2)
Fi3 = p1ws,
where p; € Ry,7 = 1,...,18 are the positive model

parameters (reaction rate coefficients). The elements of the
state vector x are the species concentrations. The operation of
the modeled process with the roles of the individual species
is briefly described below.

a) Transcription dynamics: Transcription of DNA
(x11) in E. coli begins when the sigma factor (x2) and
the core RNA polymerase (x1) forms a complex (z4) and
thus facilitates the binding of the RNAP holoenzyme to
the promoter region on the DNA (z;2). The RNAP then
builds the mRNA (zg9) through a process of transcription
initiation and elongation, taking from the pool of available
RNA nucleotides (ATP, GTP, CTP, UTP), denoted as 5. This
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process is depicted in Figure 1. It should be noted that, as
a modeling assumption we do not distinguish between the
functional segments of the DNA (e.g, promoter, terminator,
etc.) and instead model it as just a single species.

The crude extract contains the whole spectrum of mRNA
degradation enzymes, thus they attack the mRNA in each
complexes (g, 19, x14) and render functional mRNAs non-
functional, but we can only measure the aggregated effect
of these degradation pathways. Thus, a model with multiple
degradation pathways for mRNA can lead to structural
identifiability issues, since many parameter combinations of
the pathways can produce the same rate of overall mRNA
degradation. Our recent investigation of the saturation of
degradation enzyme capability suggest that we can describe
the mRNA degradation by the a first order reaction, see
Figure S2 in [20].

b) Translation dynamics: As in the previous step, trans-
lation initiation and elongation are modeled as a one-step
process. The ribosome (z3) binds the free mRNA (zg) and
incorporates amino acids (xg) carried by tRNAs into the
growing polypeptide chain. Since the tRNA and the AAs are
supplemented externally to the crude extract in high quantity,
charged tRNA is always abundant in the system and we can
neglect the tRNA charging dynamics. When translation is
terminated, x14 dissociates and the translated protein (z7)
is released as shown in Figure 1. The variant of GFP (z7)
that we used in the experiments requires 5-7 mins (p4) to
develop the fluorophore and become visible (zg) [17]. The
maturation is modeled as a first order reaction (Flux: F5).

The protein level does not achieve a steady state via
balance of production and degradation; the final protein
concentration—due to lack of protein degradation—is fixed
when the system runs out of resources.

c) Resource degradation: The dynamics of in vitro
systems are largely influenced by the finite amount of
resources and the change of conditions (e.g., waste accu-
mulation, pH change, etc.) during biocircuit operation. This
has been known for some time; an early paper on cell-
free expression highlighted how ATP degradation leads to
a decrease in protein production [13]. Recent experimental
and computational studies on resource effects have shown
that the operational lifetime of a system can be extended by
maintaining optimal pH and replenishing resources in such a
way that enzymes in the system remain functional over long
periods of time [21], [17], [18]. These earlier findings led us
to incorporate degradation of transcriptional and translational
resources as necessary components of our process model.

Because of these findings, we model the degradation of
transcriptional resource (z5) as a first order reaction (Flux:
F19) and it is sufficient to capture the decay of transcriptional
activity observed in the measurements.

Similar modeling assumption can be made for the transla-
tional resources. In our previous work we showed that with
additional nucleotides, transcription produces significantly
more mRNA, but translation output is roughly the same
(Figure 3 in [20]). To accommodate this observation in our
model, we include a same type of degradation (Flux: Fi3)

TABLE I
SPECIES IN THE MODEL WITH NON-ZERO INITIAL CONCENTRATIONS.
RESOURCE (R) TYPE SPECIES ARE ESTABLISHED BY THE CRUDE-CELL
EXTRACT PROTOCOL [22]. THE VALUES IN CASE OF ENZYME (E) TYPE
SPECIES ARE TAKEN FROM THE LITERATURE. WE TOOK THE AVERAGE
CONCENTRATION OF THE NUCLEOTIDES (ATP, CTP, GTP, UTP) AND
DENOTED THE AVERAGE AS NTP. (THE SAME GOES FOR AMINO ACIDS)

Species | State | Initial value Source

NTP] 5 1.2 mM R  Protocol in [22]
AA] Te 1.5 mM R Protocol in [22]
RNAP] T 100 nM E  Table S5 in [18]
Ribo] T3 1000 nM E  Table S5 in [18]
o70] T2 35 nM E  Table S5 in [18]

for translational resources (xg).

1) Measured outputs: The measured MGApt signal is
the experimental measure of mRNA concentration and thus
the total concentration of mRNA within the system can be
calculated via

[mRNA]tOt =29 +T10 + T14.- 3)

The matured GFP protein is a final product in the system that
exists only in one single-specie complex (zg). Thus observed
outputs can be written as

hl(I) =
hg(l‘) =

Sy [mRN A]*t, “4)
521‘8. (5)

Each output was converted to nM via scaling factors S; =
7.75 a.u./nM and S, = 1.723 a.u./nM. These conversion
factors were calculated from the calibration curves using
purified MGApt and deGFP as described in [20].

IV. ANALYSIS OF THE PROCESS MODEL

The goal of this section is twofold. First, we briefly
examine the dynamics of the process model. Then, we check
the model structure itself whether it is theoretically possible
to uniquely determine the parameters of the process model.

A. mRNA dynamics

During the experiments we observed that a peak in mRNA
production occurs around 150 min (see Figure 2., left panel).
By doing simple calculations, we can find a relation between
reaction rates that is valid in that time instant. The total
mRNA concentration is given by Equation (3). From this,
we can calculate that an extremum in mRNA concentration
may occur when &g + Z19 + 14 = 0. Then, we obtain

p12713 — p17xg = 0. (6)

In Equation (6) the first term is the transcription rate and the
second part is the degradation rate of mRNA. On the other
hand, the value of x5 depends on the concentration of NTP
(x5), which decreases over time. Therefore, the maximum of
mRNA level occurs when the two terms in Equation (6) are
equal.
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B. Steady state assumption

We can somewhat simplify the model by considering the
fact that the sigma factor (x2) binds with the RNAP (x1) on a
time-scale that is much faster than those of other reactions.
Thus, we assume that £; = 0 and 2 = 0, and then the
differential equation for state x4 becomes

4 = —Fy + Fr. @)

This way, we do not have to consider the dynamics of z;
and zo and estimate or find values from literature for their
parameters (p2, p3). However, we need to estimate the initial
value of x4 denoted by Z4;n¢-

C. Structural Identifiability

At this point we can check whether it is theoretically
possible to determine the model parameters based on the
model structure and the observables (hq(z),h2(x)). The
parameterized model in (1) is structurally identifiable if

h(%(t), i,d) :h(l’(t), 1/(/1) i/d: 1/1117 (8)

where h(z, P;q) is the output function with parameter vec-
tor P;4y. According to this definition, a structurally non-
identifiable system may produce exactly the same output for
different parameterizations.

There are many approaches to check structural identifia-
bility of a nonlinear system [4]. We choose the generating
series approach for structural identifiability analysis of the
process model.

A generating series can be created when the output func-
tions are expanded in a series w.r.t inputs and time. The
coefficients of the series are h(x, P;y) and Lie derivatives
the output functions along vector field f evaluated at the
initial time point. Then, a vector, denoted by s(P,4), can
be formulated with the coefficients of the generating series.
A system of nonlinear equations is defined as s(P;4) = c,
where c is an arbitrary constant. Finally, we try to solve
this system of nonlinear equations for P;;. The existence
and uniqueness of the solution defines the structurally iden-
tifiability of the model, see [4] for details. We used this
approach and checked the model structure and its output with
the GenSSI toolbox [4].

Calculating the generating series is computationally inten-
sive, and the computation time rapidly grows by increasing
of the number of parameters checked by the algorithm. Thus,
we had to limit the number of parameters in the identifiability
analysis by assuming that p;7 (mRNA degradation) and the
initial value of x3 (Ribosome concentration) are known. Af-
ter that, we checked a model with 12 reaction rate coefficients
and one initial value denoted by vector P,y € Rf’. According
to the report generated by the GenSSI toolbox the set of
nonlinear equations had more than one solution, we can thus
conclude that our model is at least locally identifiable.

Vi —

V. PARAMETER ESTIMATION

Our parameter estimation procedure is based on the
commonly applied minimization of the distance between
the measured and model computed output. The statistical

evaluation and validation of the parameters is also carried
out to investigate the quality of the parameter estimation and
to identify parameters where further experiments may need
to decrease uncertainty.

A. Prediction error minimization

Figure 2 shows the mRNA and GFP measurements with
four different initial DNA concentrations, each measurements
was repeated three times.

After model reduction and taking the parameter values
from the literature into account we can formulate the P.; €
Rf parameter vector, which consists of 13 reaction rate co-
efficients [p1,ps, . .., P10, P12, - - - , D14, P16, - - - , P18 and two
initial values (zs,,,, and x4, ). Since a kinetic system
requires positive parameter values, we restrict the range of
possible parameters onto the positive orthant with appropriate
lower limits. Different starting points for the parameter
estimation were generated with hypercube sampling from a
uniform distribution.

The model has two measured outputs hq(t) and ho(t)
for the mRNA and GFP concentrations, respectively. To
incorporate the multiple outputs into the cost function we
normalize each term with the maximum of the corresponding
time series data g () = y:(t)® /max(y (k)( t)), where k is
the index of consecutive experiments with different initial
DNA concentrations and ¢ denotes the measured outputs.
We did the same normalization with the model output
}_zgk)(t) = hgk)(t)/max(ygk) (t)). This leads to the following
cost function

N

T
est Z |: (k)

k=1t=1

~

WP (), Pesr)]

_ 2
+[@é’”(t)—hé“(x(t),Pest)] RO

where M = 4 is the number of different experiments we
consider and T=280 is the number of samples and samples
are taken in every 3 min.

argmln C( est) (10)

Pest€P
0 S Pest S UB;

where P is the set of feasible parameters and UB is
the vector of upper bounds. The optimization stated in
Equation (10) was performed with a gradient-free global
optimizer implemented as a pattern-search [3]. Mainly, to
avoid interference between the accuracy of the ODE solver
and the finite differentiation for gradient calculation which
commonly occur when gradient based optimization is applied
in this setup.

During the parameter estimation we found numerous local
minima, where the mRNA degradation varied over several
orders of magnitude. In our previous study [20], we con-
ducted independent measurement of mRNA degradation in
the in vitro system (see Section II for the details). From that
study, the measurement puts the mRNA half-life in a range
of 12-16 min [18]. Thus, we used that information to restrict
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DNA: 2nM
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MGApt ["M]

100 200 300 400 500 600 700 800
Time [min]

100 200 300 400 500 600 700 800
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Fig. 2. Simulations with the estimated parameter set is shown in red. The Figure contains time series measurement for both channels with different initial
concentration of plasmid DNA (1 nM, 2 nM, 5 nM and 10 nM plasmid DNA concentration, shown in green, red, cyan and black respectively). The left
panel shows the dynamics of MGApt, which is proportional to the mRNA concentration. The GFP dynamics is shown on the right panel. The fluorescent
counts for each channel have been converted with Equations (4) and (5) to nM and uM, respectively.

TABLE II
NUMERICAL RESULT OF THE PARAMETER ESTIMATION. THE TABLE HAS
13 REACTION RATE COEFFICIENTS AND TWO INITIAL CONCENTRATIONS.

Name  Value Confidence Interval Unit
1 p1 1.90 x 107 [1.53 x 10~%2.27 x 10~ %] 1/s
2 Ps 6.94x 1072  [2.87x 1072 1.10 x 10711 1/(s-nM)
3 D6 8.43 x 107! [3.42 x 10~ 1.34 x 10°] 1/s
4 7 7.00 x 1073 [2.89 x 1073 1.11 x 10 2] 1/(s - nM)
5 P8 1.38 x 102 [—7.72 x 10! 3.54 x 10?] 1/s
6 D9 6.20 x 10—2 [1.31 x 1072 1.11 x 10~ 1] 1/(s - nM)
7| pio  355x1071 [—4.02x 107! 1.11 x 1091 /s
8 | pi2  890x1073  [7.79x 1073 1.00 x 1072] /s
91 pi13 5.95 x 102 [2.63 x 1072 9.26 x 10~ 2] 1/(s - nM)
10 | pia 233 x10° [—1.10 x 10® 5.76 x 10°] 1/s
11 Di6 3.02x 1071 [-7.24x10726.76 x 10711 /s
12 | pi7 1.07 x 10—3 [9.32 x 104 1.21 x 103] 1/s
13| pis 298 x107% [2.48 x 1074347 x107% /s
14 | z3, 375.58 [253.22 497.95] nM
15 | x4, 276.13 [242.70 309.55] nM

the mRNA degradation rate (p;7) in the parameter estimation
process.

The result of the parameter estimation is summarized in
Table IT and simulations of the estimated parameter set (solid
red lines) overlapped with the measurements is shown in
Figure 2. Then, we validated the estimated parameter set over
a different range of data (0.1 nM, 0.2 nM, 0.5 nM of plasmid
DNA), on average we have 20% error in the final GFP
production, but the qualitative features of the simulations are
still acceptable in comparison with the measurements.

a) Numerical Implementation: The simulated ODE
model is stiff — most likely as a result of the NTP (x5) and
AA (zg) consumption — thus we used the efficient CVODES
solver [16] to solve the model ODEs, also ODEmex software
was applied for further speed gain [26].

B. Statistical Analysis of the Point Estimation

To evaluate the quality of the parameter estimation we
used a Markov-Chain Monte Carlo (MCMC) implementation
to generate the joint posterior distribution of the parameters.
The MCMC procedure was initiated at the result of the point
estimation with uniform prior and with the same lower and
upper bounds that was used in Equation (10). The detailed
version of the algorithm can be found in [10]. From the
results of the MCMC algorithm, either through counting
statistics or through the covariance matrix we can establish
the confidence intervals for the parameters [2].

We ranked and listed the cross-correlations larger than
0.5 in Table III. It shows three groups of cross-correlations.
In the first one, the translation rate (pig), the translational
resource binding (p14) and the ribosome bindings (ps, ps)
are highly correlated. This may suggest that there is not
enough information in the measurement data to determine
the correct parameters for all stages of translation. In the
second group, there is a cross-correlation between the pro-
moter strength (pg) and translational reactions (pi14, p1g). In
the third group, the same translation reaction coefficients
(p14,p16) are grouped with the initial concentration of the
sigma factor activated RNA polymerase (z4,,,,,).

The result of the cross-correlation analysis will certainly
help in design future experiments to improve parameter
estimations. Most of the parameters in Table III are related to
translation. In order to get a better estimate of these parame-
ters, we have to manipulate ribosome binding strength and/or
ribosome concentration in the in vitro system. Considering
the confidence intervals of the parameters we can see that
some of the parameters are accurately estimated, e.g. p1, p1s
(resource degradation), p1o (transcription rate). This suggests
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Fig. 3. Validation of the estimated parameter set over another set of data
(0.1 nM, 0.2 nM, 0.5 nM of plasmid DNA). The red curves show the
corresponding simulations with the parameters from Table II. On average
there is 20% error in the final value of GFP, the simulation matches the time
series data. The 1 nM data (black curve) was used for estimation, shown
here only for comparison.

TABLE III
THE TABLE CONTAINS PARAMETER PAIRS WITH THE STRONGEST
CROSS-CORRELATION.

Parameter  Parameter  Correlation
D14 D16 0.942
P5 D6 0.929
P8 P14 0.702
P8 P16 0.645
P14 T, 0.574
P16 Tl 0.551

that we have a good estimate for the resource degradation and
some of the transcription related parameters, e.g. pi2, p7 and
Pg. On the other hand, confidence intervals for pg (promoter
strength), p1g (NTP binding), p14 (AA binding) and pig
(translation rate) are very large. Therefore, we need another
way to increase our confidence in these parameters. One
possibility was highlighted at the cross-correlation analysis,
but these resource binding related parameters can be mea-
sured with tedious experiments (if measurement is possible
at all). Therefore, it may necessary to do some sort of model
reduction to improve the estimation result.

Besides analyzing the confidence intervals and evaluating
the cross-correlation, we can take advantage of the fact
that we calculated the full joint posterior distribution of
the parameters. Hence, we can select regions from the
parameter distribution (via confidence intervals) and take all
the parameters from a selected region and simulate them.
Roughly speaking, we can visualize how the dynamics is
’spreading’ by the variations of the parameters. The results
computed by using the parameters in Table II is shown in
Figure 4. where the general shape of the dynamics is the
same over different confidence intervals (99%, 95%, 90%,
50%). Although higher uncertainty arises around the mRNA
peak time and peak value and around the steady-state level
of GFP.

I I N
0 100 200 300 400 500 600 700 800
Time [min]

GFP

20 T

0 L L L L L L L
0 100 200 300 400 500 600 700 800

Time [min]

Fig. 4. Samples for the joint posterior distribution of parameter sets with
different confidence intervals (99%, 95%, 90%, and 50%).

VI. CONCLUSION

Building upon our previous modeling work [25] and ex-
tensive experimental data collection [20], we further refined
our model describing a transcription/translation process in
a cell-free environment by introducing direct degradation
of transciptional and translational resources and simplifying
the mRNA degradation mechanism. The demostrated simple
model analysis explained the observed mRNA dynamics
and allowed steady state assumption-based model reduction.
To ensure proper model structure, we checked—the often
negleceted—structural identifiability of the improved model.
This model turned out to be at least locally structurally
identifiable, the provides a good foundation for parameter
esetimation. For the parameter estimation, we applied a
derivative-free pattern search method accommodating multi-
channel multi-experiments data. The resulting parameter set
was statistically evaluted and validated on a different data set.
Statistical analysis revealed some uncertain parameters that
we attempted to explain from biochemical and experimental
points of view. Based on these results, we can focus our
future work to comutationally assist the experiment design
and possibly to make further reductions in the dynamical
model.

VII. APPENDIX
A. Dealing with large stoichiometric coefficients

In both transcription and translation, elongation and ter-
mination steps are not modeled as individual reactions. In a
naive implementation of these chemical reactions, problems
arise due to the large stoichiometric coefficients for NTP
(z5) and AA (xg), which depends on the length of transcript
(around 1000 bases for our example), thereby increasing
reaction order and yielding stiff ODEs.

To address this issue, we first lump NTP (z5) and AA
(ze) into units of 100, bringing the order of the reaction
down to ~10. We then introduce an auxiliary reaction (Fg)
with a rate coefficient p;; = (b — 1)pyo, it is b — 1
times higher than the transcription reaction rate coefficient,
where b is one hundredth of the gene length. With this
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TABLE IV
SPECIES - STATE VARIABLE

Species State variables
[RNAP] o1
[o] x2
[Ribo] x3
[RNAP: 0] x4
[NTP] 5
[AA] Z6
[GFP] o7
[GFP*] T8
[mRNA] Z9
[mRNA:Ribo] Z10
[DNA] x11
[DNA:RNAP:0] T12
[NTP:DNA:RNAP:0] 13
[AA:mRNA :Ribo] T14

auxiliary reaction, the reaction order for translation is one.
Analogously, the reaction order for translation becomes one
with a similar auxiliary reaction (Fy) for AA consumption

(P15 = b/3 - p1e).
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