Computing Core Reactions of Uncertain Polynomial Kinetic Systems

Zoltian A. Tuza' and Géabor Szederkényil:?
'Pazmany Péter Catholic University, Faculty of Information Technology and Bionics,
Prater u. 50/a, H-1083 Budapest, Hungary
’Institute for Computer Science and Control, Hungarian Academy of Sciences,
Kende u. 13-17, H-1111 Budapest, Hungary
e-mail: {tuza.zoltan, szederkenyi}@itk.ppke.hu

Abstract— Kinetic systems form a wide nonlinear system
class with good descriptive power that can efficiently be used
for the dynamical modeling of non-negative models emerging
not only in (bio)chemistry but in other important scientific
and engineering fields as well. The directed graph structure
assigned to Kkinetic models give us important information about
the qualitative dynamical properties of the system. In this
paper we extend the previous results for computing structurally
invariant directed edges (called core reactions) for uncertain
kinetic polynomial models, where the uncertainty is represented
as a multi-dimensional interval in the space of monomial
coefficients. We show that the computation can be put into the
framework of linear programming. Using illustrative examples
we demonstrate the properties of the computed structures
and the potential application of the method in the support of
structural identification of biochemical networks.

Keywords: Biologically inspired systems, Nonlinear sys-
tems, Optimisation

I. INTRODUCTION

Kinetic dynamical models come from chemistry, but their
range of applicability reaches far beyond (bio)chemical mod-
els as they are suitable to describe all important dynamical
phenomena such as stability/instability and multiplicity of
equilibria, limit cycles or even chaos [18]. Kinetic models
can effectively be used in the description of numerous natural
and technological processes with nonnegative state variables
such as population and disease dynamics, compartmental
models, or certain transportation phenomena. Transformation
of general nonlinear systems into polynomial kinetic form
is also possible under mild conditions [14]. Biochemical
systems obeying the mass action law can be described by
nonlinear polynomial ODEs where there are strict relations
between the monomial exponents and coefficients guaran-
teeing nonnegativity of the solutions (in case of nonnegative
initial conditions), and giving rise to a weighted directed
graph structure called reaction graph [3], [18]. In this graph,
the participating chemical complexes are the nodes in the
network and the reactions which transform complexes into
each other are represented by weighted directed edges. The
reaction rates are directly proportional to the edge weights.

The reconstruction of reaction network structure from
measurement data and prior information is an important and
intensively studied area [15], [17]. In certain chemical and
biological problem statements it is generally assumed that
the participating chemical species and the possible chemical

complexes of the participating species are known, i.e. the
node set is fixed in a graph representation [1]. Hence, an
important remaining task is to determine the existence and
the rate coefficients of the reactions between the participating
complexes. This task unfortunately turns out to be compu-
tationally intractable as the number of complexes increase.
The problem is well studied in the field of model and
parameter estimation, often called as network reconstruction
or inference.

It is known that different reaction network structures
(weighted directed graphs) may belong to exactly the same
dynamics, therefore, the structural and parametric identifi-
cation problem is generally not uniquely solvable without
additional prior knowledge on the network structure, even
if we have full and perfect measurements [2], [11]. In
certain applications, the assumption of network sparsity may
improve the solvability of the inference problem [1], [17].
However, in general, sparse structures corresponding to a
given kinetic dynamics are not unique [10]. Therefore, we
would like to further analyze the most “certain” structural
elements of the network. These are called core-reactions
[11], and have the property that they are present in any
reaction graph structure (realization) that is compatible with
a given kinetic dynamics. The aim of this paper is to extend
the previous results in [11] on computing core reactions of
kinetic systems to the case when there are uncertainties in
the model. These uncertainties will be modeled as intervals
for the coefficients of the monomials in the ODEs, similarly
to the approach that was used for the estimation of fluxes of
metabolic networks in e.g. [8].

II. KINETIC SYSTEM MODELING
A. ODE description

The kinetic models studied in this paper are given in the
following polynomial form:

i=M-(x), (D

where x € R, R, denotes the non-negative real numbers,
M € R™ P and v (x) is a monomial-type vector mapping
which is defined as

j=1ip @)



with a;; € N. In order to define a kinetic system, the
following relation has to be fulfilled between M and « [18]:

ayj > 1 for any 4, j for which M;; < 0. 3)

From a parameter estimation point of view, it is worth to
mention that the model (1) is linear in the coefficients con-
tained in M, hence many parameter estimation techniques
(e.g. the ones based on least squares) can be used in network
reconstruction. However, inference often remains a challeng-
ing task because of poor excitation of the dynamics, bad
measurement quality or the lack of structural identifiability.
[15].

For computation purposes, we will use an appropriate
factorization of (1) as follows. Let us define Y € N**™ ag
the complex composition matrix of the system. Additionally,
Ay, € R™*™ ig a special compartmental matrix, the so-called
Kirchhoff matrix belonging to the system. Ay is defined as:

kji if i
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where k;; > 0 Vi, j. With the help of these two matrices, we
can write (1) as

=Y Ap-p(), &)

where
pi(x) = [[ =" (©6)

Note that the monomial sets contained in ¥ and ¢ are not
necessarily identical, although the right hand sides of eqs.
(1) and (5) are equal. This reflects the fact that monomials
corresponding to product complexes in the chemical reaction
network do not appear in the kinetic differential equations.

B. Directed graph structure

We can associate a graph representation to (5). A Kkinetic
system equipped with this graph structure will be called a
Chemical Reaction Network (CRN) as it is described in e.g.
[3]. In this representation, a CRN is characterized by three
sets:

1) § = {Xy,...,X,} is the set of species or chemical
substances.
2) C ={C,...,Cp} is the set of complexes. Formally,

the complexes are represented as linear combinations
of the species, i.e.

Ci=) BiX;, i=1...m, (D
j=1

where (3;; are nonnegative integers and are called the
stoichiometric coefficients.

DR = {(C.C) | C.C € C i #
J,  and Cj is transformed to C; in the CRN} s
the set of reactions.

The reaction (C;,C;) € R will be denoted as C; —
C;. Moreover, a positive weight, the reaction rate

coefficient denoted by k;; is assigned to each reaction

Ci — 07
From the above description, a directed graph structure (called
the reaction graph) can be directly constructed, where the
nodes and weighted directed edges represent complexes and
reactions, respectively. It is important to remark that loop
edges are not allowed in the reaction graph, i.e. i # j for all
directed edges C; — Cj.

The relation between the ODE model (5) and the reaction
graph is the following. The state vector x contains the
species concentrations. Y;; = f;; for ¢ = 1,...,n and
j=1,...,m,and [Ag];; = kj; is the reaction rate coefficient
corresponding to the reaction C; — C;. [Ax);; = 0 means
that the reaction C; — C; does not occur in the CRN. It
is clear that matrices Y and Aj encode the stoichiometric
composition and the weighted directed graph of a CRN,
respectively, and they are sufficient to write the kinetic
dynamics (1) belonging to a reaction graph.

C. Dynamical equivalence of kinetic systems

It has been known since at least the 1970’s that multiple
different structures/parametrizations of a CRN can generate
exactly the same dynamics of the concentrations [4], [18].
This phenomenon is called macro-equivalence or dynamical
equivalence. However, the exact geometric conditions of
macro-equivalence were not studied until relatively recently
in [2]. Naturally, the phenomenon of dynamical equiva-
lence may hamper the parameter identification process, since
multiple structures can explain equally well the modeled
dynamics [11].

Mathematically, dynamical equivalence means that the
factorization in (5) is non-unique. Therefore, the matrix pair
(Y, Ax), where Y is a complex composition matrix and Ay, is
a Kirchhoff matrix, is called a dynamically equivalent real-
ization of the kinetic system (1), if M - ¢(z) =Y - A - o(x)
Vor € R%}. We note that a given kinetic dynamics can
generally be represented using different complex sets. How-
ever, there exists a simple procedure described in [5] that
generates a possible dynamically equivalent realization called
the canonical structure for any kinetic polynomial model.
From now on, we assume that the set of complexes is known
and fixed, therefore, all dynamical equivalent realizations can
be characterized by the equation

Y- A, =M. ®)

Clearly, if AS) and Agf) give dynamically equivalent re-
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alizations with fixed Y, then Ag) = M also gives a
valid dynamically equivalent realization with Y. Therefore, a
kinetic system with different dynamically equivalent realiza-
tions has infinitely many dynamically equivalent realizations.

A reaction C; — C; of a CRN is called a core reaction,
if it is present in any dynamically equivalent realization of
a kinetic system. Core reactions can be determined using

LP-based optimization methods [11].



D. Introductory example

To give an example of a polynomial kinetic system we
use a biomolecular model reported in [9]. In this example
a dynamical model of positive feedback motif is used, the
biomolecular mechanism behind the model and the detailed
explanation for the dynamical behavior can be found in the
original paper [9].

This model tracks the concentrations of a monomer protein
(x1), its dimer form (x2), also its mRNA (x5). The promoter
which regulates the production of the protein is also included
in the model (z3 is the unoccupied promoter and x4 is the
occupied promoter). The protein (1) is made at a basal rate
given by the concentration of x4 then, this protein forms
a dimer (z2) and binds back to the promoter, forming an
occupied promoter (x4). This loop acts as a positive feedback
and accelerates the production of the protein. The kinetic
polynomial system representing this dynamics is given as

T, = —2k1x% + 2koxo + kows — kg

To = k‘lx% — koo — k3xoxs + kaxy

T3 = —kgxoxs+ kaxy

Ty = kszoxs — kaxy

&5 = kswy+ kexs — kras. 9

The parameter values are
ki = lko=1ks=1ks=1ks=1
ke = 0.025 k7 =0.1 ks =0.05 kg =0.5. (10)

Then, the set of ODEs can be encoded in M and ¢ (x):

—2k1 0 —ks 0 2ko 000 0 ko
ki 0 0 —ks —ka 000 kg 0
M = 0 0 0 —ks 0 000 kg O (11
0 0 0 ks O 000 —ks4 O
0 0 O 0 0 000 ks —kr

T
¢($) = [mf T1T5 T1 T2XT3 T2 T3T5 T3 T4T5 T4 xg,}

Figure 1 shows two dynamically equivalent realizations
of (9). The core reactions which are structurally invariant
under dynamical equivalence are shown with dashed blue
edges while non-core reactions are shown with black edges.

III. UNCERTAIN POLYNOMIAL KINETIC SYSTEMS
A. Parametric uncertainty of polynomial kinetic systems

The uncertainty of kinetic models will be modeled by
intervals of the monomial coefficients. Thus, a family of
kinetic systems is obtained that can easily be represented
as

=M -(x) 12)
i =

[Ml]ij < [M] [Mu]

ij
where matrices M; € R"*™, M, € R"*™ and M € R*»*™
are kinetic matrices defined in Equation (3). This formalism
defines a family of kinetic models and just like in the
case of the regular polynomial kinetic systems, an uncertain
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(a) A reaction graph representation of the positive feedback motif
based on (9)
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(b) This reaction graph shows the maximum number of reaction
possible within the boundaries of dynamical equivalence. The graph
was calculated via an optimization algorithm reported in [12].

Fig. 1: Two dynamically equivalent realizations of the pos-
itive feedback motif. The dashed blue edges represent the
core-reactions which are structurally invariant under dynam-
ical equivalence, i.e. the edge exist in all dynamically equiv-
alent realization, but the weight on the might be different.
The black edges are the non-core reactions. The reader can
notice that the graph on panel (a) is a subgraph of the graph
on panel (b), this property was proven in [6].

polynomial kinetic system is completely characterized by the
matrix triplet Y',M;,M,, [13].

With these upper and lower bounds we can represent
the certainty of the system’s parameters individually. These
bounds can represent uncertainty of the parameters due
to temperature change, measurement error, poor excitation
of the dynamics, etc. In case of parameter estimation it
can represent the parameter uncertainty, hence the quality
of parameter estimation can be calculated via confidence
intervals which are directly applicable in Equation (12).

B. Calculating Core reactions of Uncertain Polynomial Ki-
netic systems

We can take advantage of the fact that if core reactions
exist, then they are present in any dynamically equivalent
realization. Therefore, they are essential part of the system’s
structure to produce the dynamics described by matrix pair
Y, M.

Formally, a reaction (C;,C;) € R,i,j € {1,...,m} isa
core reaction if and only if for any dynamically equivalent
realization (Y, Ay), [Ak];j; > 0 holds. This condition can be



translated as a constraint set in a linear program as it was
introduced in [11].

1) Algorithm for computing core reactions: Let us assume
that we have an uncertain kinetic system given by matrices
Y, M; and M, then the following linear program (LP) can
be formulated

min ;B[ A, (13)

s.t.
St Ak =0, j=1,...,m (14)
[Akly; > 0,45 =1,...,m, i #j (15)
Y- A, —M=0 (16)
[Mi];; < [M];; < [Mu];; a7

1y = ij 1j

where entries of matrices A and M are both optimization
variables of the optimization problem. The binary matrix
E € {0,1}*™ selects the elements of A that are part
of the cost function.

The first two constrains (Eqs. 14 and 15) force Ay to be
a Kirchhoff matrix (as defined in Eq. (4)). The constraint in
Equation 16 enforces dynamical equivalence ( see Eq. (8)
for the definition). Finally, the last type of constraints (Eq.
17) set up element-wise the lower and upper bounds for all
entries of the kinetic matrix M.

The LP defined in Equation (13) is called as DynEgLP
in the pseudo code below and this LP needs 4 inputs for
operation, such as Y, M;, M, and E and calculates a
realization characterized by matrices Ay and M.

ALGORITHM 1: The goal of the algorithm is to find core
reactions of an Uncertain Kinetic System characterized by
matrix triplet (Y,M;,M,). The Algorithm returns with the set
of core reactions, Re.

D <+ 0, // empty matrix;

1 E+~ 1, —1I1, // only off-diagonals are

non-zero ;

Ag <0, // empty matrix;

while true do
Ay < DynEqLP(Y ,M;,M,,E);
D+ E;
FE < (PositiveElements(Ax) & D) // & is an
element-wise logical and;

7 if D = E then

8 | break;

9 end

10 end

1 Rc+0;

12 foreach (i,j) € PositiveElements(E) do

13 Z < Opxm;

4 Z(i,j) « 1;

15 Ap < DynEqLP(Y ,M;,M,,Z) ;

16 if Ar(i,7) > 0 then

17 ‘ 'Rc%RcU(Cj*)Ci) ;

18 end

SN B W N

;
20 return R¢

In Algorithm 1, the procedure PositiveElements finds the
nonzero elements of the argument and gives back a binary

matrix containing ones where the original matrix elements
are larger then zero.

Algorithm 1 starts with binary matrix £ where the off-
diagonal elements of Ay, are ones and the rest are zero. In the
first iteration the DynEQLP tries to minimize the sum of off-
diagonal elements of Aj. After that, in each iteration the zero
off-diagonal elements are excluded from the cost function
until no more off-diagonal elements can be excluded, i.e.
matrix F remains the same between two iterations. In the
final stage, for each of the remaining non-zero off-diagonal
elements (encoded in matrix E) the DynEQLP is executed
where only one element from matrix F is minimized. If this
element remains non-zero after the optimization, then this
reaction (edge) is part of the core reaction set.

In the worst case, the Algorithm 1 has to solve the
DynEQLP 2 + (m? — 1) times. Hence, this is a polyno-
mial time algorithm to find core reactions of an uncertain
polynomial kinetic system. In each iteration the number of
(decision) variables of DynEQLP is nm + m?2 — m. Further-
more, this LP has 2m equality constraints and 2nm + m?
inequality constraints.

The proposed algorithm for calculation of core reactions
outperforms the previously applied one in two areas. First,
the previous algorithm, detailed in [11], is based on sys-
tematic exclusion of reactions and testing for the feasibility
of the resulting linear program, which might take palace
for different reasons than exclusion of a reaction. Second,
the previous algorithm has to check systematically each off-
diagonal element of Ay, to establish the core reaction set. By
comparison, this can only happen as the worst case of the
proposed algorithm.

IV. EXAMPLES
A. Example of an Uncertain Kinetic System

In this this example, we revisit the positive feedback
motif from Section II-D and investigate that how increasing
intervals around matrix M affect the core reaction set, R¢.

The positive feedback motif model is encoded with matrix
pair (Y,Ay) as

21100000000
00011000000
00010110000
00000001100
01000101010

and the only non-zero off-diagonal elements of A are

(18)

[Ak:]g,,l kla [Ak}175 = k27 [Ak]974 = ]{33,
[Ak]479 k47 [Ak}&g - k5a [Ak]677 - kGa
[Ak]u,lo = k1, [Ak]11,3 = ks, [Ak]z,lo = ko. (19)

First, the lower and upper bounds are set as M; = M,, = M
(i.e. there is no parametric uncertainty in the system) and
with Algorithm 1 we calculated that this system has |R¢| =
8 core reactions and these are

Cl — C5703 — 011, C4 — Cg, C5 — Cl

07 — 06709 — C4, 09 — 087 ClO — 02 (20)



Entries of matrix M
=

0.1 0.3 0.5 0.7 0.9
Interval Size

N (R =8 |Re| =7 [Rc| =6 [Re|l =5
[Re|=3mms|Re| =208 |Re| = 18| Re| =0

Fig. 2: Figure shows how the increasing intervals around M
is affecting the number of core reactions inside the interval.
The vertical axis lists the elements of A and the horizontal
axis shows the accumulation of the interval size around the
values of M. The calculation start at the top left corner and
goes down along the horizontal axis, then current interval
gets increased and the calculation start at the top in the next
column along the vertical axis. Each color represents the size
of the core reaction set within the interval. In each iteration,
the applied step size was 0.1.

and they are shown as blue dashed edges on Figure 1.

The matrix M is defined by Equations (18) and (19) has
5 x 11 elements. In each step we symmetrically increase the
interval around one element of M, then the invariant reaction
set is calculated with the help of Algorithm 1. Meanwhile
the kinetic property of matrix M is ensured by checking the
sign constraints of M, defined by Equation (3). The result
is summarized on Figure 2, in the top left corner there are 8
core reactions in the system (dark read area) as we increase
the bounding box around M the number of core reactions
gradually decrease. Finally, the core reaction set becomes
empty (dark blue area). It should be noted that in each step
the previous interval is a subset of the current interval, hence
the core reaction set can either remain the same or become
a subset of its previous one.

B. Network reconstruction example

Using a chemical reaction network example, we highlight
a possible field of application of the algorithm presented in
Section III-B. In (bio)chemical modeling and many other
fields, the goal of the network reconstruction is—in most of
the cases—to find the sparsest network describing the mea-
sured dynamics. Therefore, our goal is to find the structurally
invariant elements that are characteristic for the dynamics
while the parameters of the network are uncertain.

Fig. 3: Comparison of the original network from [1] (top)
and the network given by parameter estimation (bottom).
The core reactions in each case are shown with blue dashed
edges.

First let us investigate a benchmark example from the
literature which is based on Figure 2 in [1] and encoded
as

10100
02001
Y=(00100 21
00010
00001
and
—1.163 0 0 0 0.8492
0.3386 0 0 0 0.4290
A, = 0.8244 0 —0.7364 0.5631 0 (22)
0 O 0 —0.5631 0
0 0 0.7364 0 —1.2782

As a first step we establish the core reaction set for the
dynamics represented by (Y,Ay) and shown on the top panel
of Figure 3. The Algorithm 1 with boundary matrices M,, =
M; =Y - Ay tells us that all six reactions in the original
network are core reactions (blue dashed edges on the top
panel of Figure 3), hence this is the sparsest and also the
only sparse realization of the given dynamics.

The goal of the parameter estimation is to obtain an
interval model in the form of Equation (13) from time
series measurements of the species concentration. During the
parameter estimation procedure, we will exploit the fact that
the type of kinetic systems we use in this paper is linear
in parameters. Finally, the parametric uncertainty will be
characterized by the covariance matrix of the estimator to
calculate the core reaction set of the interval model.

1) Parameter Estimation Procedure: We utilize the dis-
crete Least Squares framework and for that we discretize
Equation (1). Taking sufficiently small intervals between



samples we apply the forward Euler method

wik) = ai(k—1)+hM; i(z(k — 1)) k= 2. Tona,

i=1,...,n (23)

where x; is the ith state variable from Equation (1), 1;(x)
is the ith element of vector mapping v and vector M; . is
the ith row of matrix M. Finally, the h is the sampling time,
which is A = 0.1 sec in our case.

We assume that we can measure all state variables, then
let us define the outputs as

and model, which is used for the the parameter estimation

where 6; . is the ith row of M and

(k) = [1(z(k — 1)) Pa(a(k — 1)) Yk —1)]".

Further, let us define matrix R € R™*™ and vector d; € R™

1 N

R= kZ:Q p(k)p(k)" (24)
1 N

di = kZ:f(’f)yi(k)- (25)

Then, the parameter vector ; can be calculated using a
closed form as

0, = R'd;. (26)
The regression matrix R depends on all of the state

variables, hence each row of M can be calculated in one
step. By defining

C = diag(R,...,R) (27)
where C' € R™"™*™"™ jg block diagonal matrix and
d = [d - ds - dn]T (28)

then, we can calculate all the elements of M in one
optimization step. Let us define parameter vector § =
row(M)T" which is the transpose of the row expansion of
M. The row expansion of M is defined as row(M) =
[My,., My .,...,M, .| where M; . denotes the ith row
of matrix M.
Then, parameter vector 6 can be calculated as
. 1 )
0 = argmin —||C0 — d||5. (29)
bco 2
To ensure that 6 represents a proper kinetic matrix, the set
© denotes the possible parameter vectors where the sign

condition of M is fulfilled (see Equation (§) for details).
Finally, the estimated matrix M is given as 6/h.

Estimation of matrix Ay: It is possible to improve the
parameter estimation by exploiting the fact that with fixed
matrix Y, the matrix M can be written as Y - A;. Hence,
we can estimate Ay directly. For that, we define

[Yi,. 0 - 0]
0 Y. -~ 0
0 0 - Y. (AT
Yo. 0 -+ 0 o
B 0 Y27. o0 ~ :
Y = | o o Yo . | Ax= | Al | (30)
Y. 0 0 [Ar]5
0 Y. 0
0 0 - Y,

where Y; . denotes the ith row of matrix Y and vector
[Ag];,- is the jth row of matrix Ay.

Then, we formulate the following constrained Least
Squares optimization problem

ming, 3||CY Ax — d||3 (€29
S.t.
S Ay =0, j=1,...,m

[Ak:}ij >0,4,j=1,...,m, Z#]

Finally, the optimal value of Ay is denoted as Ay. In this way
we can have an estimate matrix M as Y Aj,/h, but imposing
a set of constraints on the elements of Ay.

2) Results: Now, we attempt to (partially) restore the
entries of matrix Ay which was defined in Equation (22)
by applying the Least Squares framework from Subsection
IV-B.1. For this, we assume that we can measure all state
variables of the kinetic system and to each state variable 5%
additive Gaussian noise is added. A dataset with 25 different
initial vectors is generated with uniform Latin hypercube
sampling. Using the optimization defined in Equation (31),
we calculate the graph structure from the noisy dataset as
follows

—-230 046 1.51 0.07
1.1 0 0.06 0 0.09
092 0 -0.58 O 0
0.26 0 0.065 —1.51 0.047
0 0 O 0 -0.21

Agst = (32)

The graph encoded by Equation (32) can be seen on the
bottom panel of Figure 3.
Thanks to the factorization of M in Equation (31), we
have an estimate of matrix M as
M =Y A /h. (33)
The parametric uncertainty around matrix M is extracted
from the estimator’s covariance matrix. It is calculated as
Cov(f) = C~'- o2 where o is the standard deviation of the
measurement noise. Then, for each element of the estimated
matrix M, we establish the 95% confidence interval and cut



off intervals that contradicts the sign constraints of matrix
M as follows

M, = M —1.961/diag(Cov(0)) (34)

i, = {max([MlL;,()) if frow(Y)s >0
[M)]; otherwsie

(35)

M, = M +1.96\/diag(Cov(0)) (36)

where diag(Cov(f)) selects the diagonal elements of the
covariance matrix Cov(f).

These modified confidence intervals define the interval
model as it was introduced in Equation (13), and we apply
Algorithm 1 on matrices (Y ,M;,M,,) as input. It took only
6 iterations for the algorithm to establish the core reaction
set, compare to the previous algorithm which would require
20 iteration to complete the same task, it is more than three
times speed up.

The result shows that 3 reactions are in the core reaction
set, namely Cy — Cs,Cy — C3 and Cs — C5 (blue dashed
edges on the bottom panel of Figure 3). This information
can be utilized during the further refinement of the network
reconstruction, e.g. in case of a new dataset, these reactions
can be constrained as fixed parts of the graph. Even though
the Least Squares approach performed poorly on the recon-
struction of the original network structure, this performance
was enough to recover a subset of the original core reaction
set. That shows an important feature of this approach, namely
it is capable of recovering the core reaction set, even if the
original network is only partially restored, which is often the
case with other network reconstruction approaches [1], [16].
It should be noted that the covariance matrix of the contained
estimation can be calculated directly using optimization, e.g.
in [7], which might improve the results.

In this example, we used the simplest possible method to
show how our methods can support the network reconstruc-
tion procedure. Any type of network reconstitution can be
used as long as some form of parameter uncertainty is avail-
able from the applied method or from a priori information.

C. Example for an uncertain system with non-unique sparse
realizations

In this example we revisit the positive feedback motif
introduced in Section II-D. Examples of multiple dynami-
cally equivalent sparse realizations of the positive feedback
motif was reported in [11] (see Figure 2 in [11]). In this
model, there are 8 core reactions and a sparse structure has
9 reactions, this difference is a necessary condition to have
more than one sparse structure.

We want to investigate the question of sparse non-
uniqueness in case of uncertain models. Since we do not
have measurement, we add roughly 10% uncertainty to each
parameter. By applying Algorithm 1 on the positive feedback
motif with [Ml]ij = [M]” — 0.1 and [Mu}ij = [M]ij + 0.1
where M was given in Equation (11) yields a core reaction

set with 5 elements (yellow region in Figure 2) and shown
with blue dashed edges in Figure 4.

The algorithm calculated the core reaction set for this
example in 10 iterations, which is only 9% of the number of
iterations would be required by the previous algorithm from
[11].

To calculate the sparse structure of an uncertain kinetic
polynomial system we need to formulate an MILP optimiza-
tion based on a method described in [13] and Equation (13)

minimize Z?j:l,i;ﬁj Sij
S ARl =0, 4=1,...,m
[Aklij >04,j=1,...,mi#j
0<[Aplij —0ij i,j=1,...,m,i#]
0< —[Arlij +1;j6:; <0, 4,5=1,...,m i #j
[Mi];; < [M]; < [M,];

]

(37)

ij i,jg=1,...,m.

We calculate a sparse realization of the uncertain positive
feedback motif by applying optimization problem defined in
Equation (37). The resulting realization can be seen on the
top panel of Figure 4.

The sparse realization on the top panel of Figure 4 has
only one non-core reaction (C79g — Cs), thus we can define
a set denoted by K, for reactions we want to exclude from
the reaction set an uncertain sparse realization. To do that
we are modifying the cost function in Equation (37) as

> Gy
i,j=1;i#j;1,5¢K

Let us exclude reaction C;¢9 — C5 by adding it to set C and
calculate another sparse realization of the uncertain positive
feedback motif (depicted on the bottom panel of Figure 4). In
this realization only reaction C;g — C1 is not part of the core
reaction set. Again, we remove the previous elements from
set K and add [A]1,10 to it and calculate another uncertain
sparse realization. The result is the same as the realization
shown on the top panel of Figure 4, therefore at this level of
uncertainty only two sparse realizations exist for the positive
feedback motif model.

The reader can notice that by comparing Figures 1 and
4, in the later one some complexes became isolated, i.e. a
complex has no incoming or outgoing edges. The explanation
of this lays in the bounds around M. By comparing the
corresponding M matrix of the sparse realization on the top
panel of Figure 4, denoted by A/%°“"? and the current lower
bound M, it can be seen that, the current lower bounds on
matrix M allows only the columns 2,3,6,7,8 and 11 to be
zero (see matrix M; in Eq. (40)). Since we try to minimize
the number of reactions in the realization, the optimization
tries to push the values of matrix M toward the minimum
bound (M;). As a result of that isolated complexes may
emerge.

It should be noted that there exist another case when a
column in M®°¥"d is zero, but the corresponding complex
is not isolated. In both sparse cases on Figure 4, the complex
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Fig. 4: Two sparse realizations of the positive feedback motif
with [Ml]ij = [M]ij — 0.1 and [Mu]ij = [M}ij +0.1.

Cg is not an isolated complex. It is explained by the fact,
complex Cg is a product complex, i.e. it has only ingoing
edges, which causes the associated column in the matrix
MPbovnd in Equation (39) to become zero.

1900 0 1.9 000 0 040
0.95 00 —0.9 —0.95 000 09 0 0
arbound 0 00-09 0 000 09 0 0 39)
0 00 09 0 000 —-09 0 0
0 00 o0 0 000 09 0 0
—2.1 —0.1 —0.15 0 1.9 0 0 0 0 0.4 0
09 0 0 -11 —-1.1 o0 0 0 09 0 o0
M, = o 0 0 -11 0 -01 -01 0 09 0 0[d0)
0 0 o 09 o0 0 0 -01-1.1 0 0
0 —01 o0 0 0 -01 o0 01 09 -020

This example shows that how to calculate multiple sparse
realizations of a kinetic system with parametric uncertainty,
exploiting the core reactions which are the only certain
elements of the (uncertain) kinetic model.

V. CONCLUSION

We have given an effective algorithm to compute the so-
called core reactions of uncertain kinetic polynomial mod-
els assuming a given complex set. The method iteratively
uses linear programming steps, and it is shown that it
runs in polynomial time. Several numerical examples have
been given to illustrate the algorithm: firstly, the effect of
parametric uncertainty on the core reaction set is analyzed,
and through another example, we have highlighted how to
utilize the core reaction calculation in a simple network
reconstruction problem. Finally, we have shown that how to
compute multiple sparse realizations of a kinetic system with
parametric uncertainty exploiting the structural invariance of
the core reactions.
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