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In this paper, all possible sparse chemical reaction network structures of a classical 3-dimensional
Lorenz system are computed assuming a given chemical complex set. The original non-kinetic
equations are transformed into kinetic form using two different approaches: firstly, using a state-
dependent time-rescaling and secondly, by applying the theory of X-factorable systems. Using
the notions of core reactions and core complexes, an effective optimization-based computation
approach is proposed for the calculation of all structurally different sparse reaction graphs. The
resulting structures are briefly analyzed and compared from a structural point of view.

1. Introduction

Kinetic systems (also called chemical reaction networks, or simply CRNs) are known to possess advanta-
geous dynamical descriptive properties being able to produce all the important qualitative features like
stable and unstable equilibria, multiple equilibria, bifurcation phenomena, oscillatory and even chaotic
behaviour [Epstein & Pojman, 1998; Erdi & T6th, 1989]. Many of these phenomena have actually been
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observed in real chemical experiments where the practical constraints are much more severe than in the
case of pure mathematical models [Noszticzius & Bdédiss, 1980; Marlovits et al., 1995]. Thus, we can agree
with the claim that the class of chemical reaction networks (CRNs) can be regarded as a possible “pro-
totype of nonlinear science” [Erdi & Téth, 1989]. This fact may explain why kinetic systems have proved
to be useful tools even in performing complex non-conventional computation tasks [De Lacy Costello &
Adamatzky, 2003; Adamatzky et al., 2008, 2011]. Moreover, the simple algebraic structure of CRNs make
these models attractive both for rigorous mathematical analysis and for efficient computational techniques
[Horn & Jackson, 1972; Feinberg, 1987].

Kinetic systems can be used to describe pure chemical reactions or the complex dynamics of intra-
cellular processes, metabolic or cell signalling pathways [Haag et al., 2005]. Thus, CRNs are suitable for
modeling mechanisms both in industrial processes and in living environments. Based on these properties,
it is clearly understandable why there has been an increasing interest towards chemical reaction networks
among mathematicians and engineers recently [Sontag, 2001; Angeli, 2009; Chellaboina et al., 2009].

Necessary and sufficient conditions for a polynomial system to be kinetic were first given in [Hérs
& Téth, 1981], where a constructive proof was given to build the so-called “canonic mechanism” for
kinetic polynomial models. It has been known since at least the 1970’s that multiple different CRN struc-
tures/parametrizations can generate exactly the same dynamics of the concentrations [Horn & Jackson,
1972; Erdi & Téth, 1989]. This phenomenon is called macro-equivalence or dynamical equivalence. However,
the exact geometric conditions of macro-equivalence were first studied relatively recently in [Craciun &
Pantea, 2008]. The first optimization-based numerical procedures for generating macro-equivalent struc-
tures with prescribed (dynamically relevant) properties were published in [Szederkényi, 2010; Szederkényi
et al., 2011b; Szederkényi & Hangos, 2011; Szederkényi et al., 2012].

It is known that the state-variables of kinetic systems are always nonnegative valued, since they com-
monly describe the evolution of species concentrations in time. It is straightforward to show therefore that
kinetic models mathematically belong to the family of nonnegative systems for which the nonnegative
orthant is dynamically invariant [Haddad et al., 2010]. However, this important property is not neces-
sarily an obstacle to the kinetic description of e.g. electric or mechanical systems: Firstly, in [Samardzija
et al., 1989], the so-called X-factorable transformation is introduced that (together with an appropriate
coordinates-translation) allows the kinetic representation of a wide class of dynamical systems. The second
possibility is a coordinates-translation followed by a state-dependent time-rescaling, that is also suitable to
transform originally non-kinetic models into kinetic form [Szederkényi et al., 2005; Hangos & Szederkényi,
2011]. Both of these approaches will be applied in this paper for the kinetic representation of the studied
Lorenz system.

The kinetic realizations of certain chaotic systems have been studied previously in the literature.
In [Poland, 1993], a kinetic model of the Lorenz system was given by applying variable-translation and
the assumption of slow reaction steps and constant concentrations of certain species. The nuclear spin
generator (NSG) system is examined and transformed into chemical forms in [Xu & Li, 2002] using the
methods published in [Samardzija et al., 1989] and [Poland, 1993], respectively. The first deterministic
kinetic models of Chua’s circuit were presented in [Li & Xu, 2002] and [Xu & Li, 2003], while a stochastic
simulator was described in [Li & Zhu, 2004].

The main purpose of this paper is to study the structural non-uniqueness of the kinetic realizations
of dynamical systems using the example of the well-known Lorenz system. For this, an optimization-
based approach is proposed for effectively computing all dynamically equivalent structures that contain
the minimal number of reactions and thus provide a minimal parametrization of the system in terms of
the reaction rate coefficients.

The structure of the paper is the following. In section 2, the notations and computational background
for kinetic realizations of nolinear systems are given. The new contributions related to the applied method-
ology and the computational results can be found in sections 3 and 4, respectively, while section 5 contains
the conclusions of the reported work.
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2. Background

This section summarizes the notions and methods corresponding to CRN representation and CRN structure
computation. The description in this section is based on [Feinberg, 1979], [Szederkényi, 2010], [Szederkényi
et al., 2011b] and [Szederkényi et al., 2011a].

2.1. Mathematical models of deterministic chemical reaction networks obeying
the mass action law

We will use the commonly applied mathematical description of deterministic CRNs with mass action
kinetics as it was given in e.g. [Feinberg, 1979]. In this formulation, a CRN is characterized by three
sets:

(1) § ={Xy,..., X} is the set of species or chemical substances.
(2) C={C,...,Cn} is the set of complezes. Formally, the complexes are represented as linear combina-
tions of the species, i.e.

n
CZ':ZOZZ']'XJ', izl,...,m, (1)
J=1

where «a;; are nonnegative integers and are called the stoichiometric coefficients.

(3) R = {(C;,Cj) | C;,Cj € C, i # j, and C; is transformed to C; in the CRN} is the set of reactions.
The relation (Cj, C;) € R will be denoted as C; — C;. Moreover, a nonnegative weight, the reaction
rate coefficient denoted by k;; is assigned to each reaction C; — Cj. According to our convention, if
the reaction C; — C is not present in the CRN then k;; = 0.

It is important to remark that similarly to [Feinberg, 1987], the class of deterministic kinetic systems
is considered here as a general nonlinear system class, and it is much wider than the family of chemically
feasible kinetic systems. Therefore, we do not study the practical realizability of the obtained CRNs in
this paper. We note that the existence of thermodynamically feasible CRN structures can be examined in
the same optimization framework that we use in this paper by adding extra linear constraints (see, e.g.
[Szederkényi & Hangos, 2011]). Moreover, the realization computation techniques that are summarized in
subsection 2.4, were successfully applied to biochemical models known from the literature in [Szederkényi
et al., 2011a)].

Given the sets S, C and R, a weighted directed graph (usually called the reaction graph) G = (V, ) can
be constructed, where the set V contains the vertices that represent the complexes of the reaction network,
ie. V ={C1,Cy,...,Cy}. The set £ contains the directed edges representing the reactions between the
complexes, i.e. (C;,C;) € € if reaction C; — C; occurs in the CRN. Each directed edge (C;, C;) in the
reaction graph is weighted by the rate coefficient k;;. The undirected reaction graph obtained by replacing
directed edges of G with undirected ones will be denoted by |G|.

Now we briefly define the notions and properties of CRNs that will be used in the analysis of the
computed structures. More details can be found in [Feinberg, 1987], while basic notions of directed graphs
are discussed in e.g. [Bang-Jensen & Gutin, 2001]. First of all, linkage classes are maximal connected
subgraphs (i.e. components) of G. That is, complexes C; and C; belong to the same linkage class if and
only if there exists a path from C; to C; in |G|. In the present paper, we do not treat isolated complexes
without any outgoing or incoming edges (i.e. trivial connected components) as separate linkage classes,
and we simply omit them from the CRN model (although we depict them in the figures for the sake of
completeness). We call a reaction graph weakly reversible, if there exists a directed path from C; to C;
whenever there is a directed path from C; to C; in the reaction graph.

To describe the time-evolution of species concentrations, we will use the following ODE form, which
was applied e.g. in [Horn & Jackson, 1972]

i =Y Ay U(2), (2)

where z € R™ is the concentration vector of the species from S, and Y € R™ ™ is the called the complez
composition matriz where the jth column encodes the composition of complex Cj as: Y;; = aj;. The
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Ay € R™*™ matrix stores the structure and parameters of the reaction graph. This is a column conservation
matrix (also called the Kirchhoff matriz of the CRN) with nonpositive diagonal and nonnegative off
diagonal entries is defined as follows:

[ i kas it i =
[Axij = { ey it 3)
The last term in eq. (2), namely ¥(z) = [11(z) ... ¥ (x)]”, is a monomial-type vector mapping defined
by

z/)j(:n):Hxi Jooj=1,...,m. (4)
=1

Clearly, because of eq. (4), we can uniquely define a CRN model with the matrix pair (Y, Ay).
To each reaction, we can associate a reaction vector denoted by e as

€ij = [Y]wj — [Y].J‘, (CZ,C]) c R, (5)

where [Y]. ; denotes the ith column of Y. The rank of a network is the rank of the set of all reaction vectors
in the CRN.

We have to discuss briefly the usage of the so-called zero complexr in our models. The zero complex
is formally represented by a zero column vector in Y, i.e. it is a special complex containing no species.
Similarly to [Feinberg, 1987], we use it to uniformly represent the environment, i.e. a CRN containing a
(non-removable) zero complex is actually an open system. Therefore, the reactions of the type that are
commonly written in the literature as S — X and X — P, where S is a species of constant concentration
and P is an unreactive product (the concentration of which is not included into the dynamic model), will
be written as 0 — X and X — 0, respectively, where ‘0’ denotes the zero complex. Similarly, reactions like
X 4+ 5 — 2X will be simply written as X — 2X. It is emphasized that this is only a notational convention
simplifying the description of CRNs. The resulting kinetic dynamics describing the concentrations in &
are the same in both cases, and the two ways of representation can be easily transformed to each other, if
necessary.

The structure of the reaction graph is directly connected with certain important dynamical properties
of the CRN. The deficiency (a nonnegative integer number depending on the structure of the reaction
graph and on complex composition but not on the particular values of reaction rate coefficients) is a good
example for this [Feinberg, 1987]. The deficiency d of a CRN is given by the simple formula

d=m—1-s, (6)

where m is the number of (non-isolated) complexes in the network, [ is the number of linkage classes and s is
the rank of the network. Roughly speaking, lower deficiencies (particularly 0 and 1) with certain structural
properties like weak reversibility can guarantee an ‘ordered’ behaviour of kinetic dynamics without ‘exotic’
phenomena such as periodic solutions or chaos. Therefore, we do not expect that the deficiencies of the
kinetic realizations of the studied Lorenz system will be low. Some examples of the direct consequences
related to deficiency number such as the Deficiency One and Deficiency Zero Theorems can be found in
[Feinberg, 1987].

2.2. Transformation of polynomial models into kinetic form

In this section, the background and the applied methods for transforming a general polynomial ODE system
to kinetic form will be described.

2.2.1.  Kinetic polynomial systems

Firstly, it is important to summarize when it is possible to assign a mass-action type CRN to a general
polynomial dynamical system. In such a case, we call a dynamical system kinetic. The necessary and
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sufficient condition for this that is easy to check, was first published in [Hérs & T6th, 1981]. Consider an
autonomous nonlinear system

&= F(z), z€R" (7)

with polynomial right hand side. The system (7) is kinetic if and only if the coordinates functions f; of F'
fulfill

filx) = —zig(x) + h(z), i=1,...,n, ()

where g and h are polynomial functions with nonnegative coefficients. This means that all the negative
monomial terms in the ith coordinate function of f must contain z;, i.e. negative cross-effects are not
allowed in kinetic models.

In the constructive proof of the above condition in [Hars & Téth, 1981], a simple procedure is presented
to build the so-called “canonical” CRN realization of a kinetic ODE. We briefly summarize this algorithm
for convenience here, since we apply it later in Section 4 to compute the initial CRN corresponding to the
Lorenz system transformed to kinetic form. Let the polynomial coordinates functions of the right hand
side of a kinetic system (7) be given in the following form

fi(m):Zmina;bjk, i=1,...,n, 9)
k=1

J=1

where r; is the number of monomial terms in f;. Let us denote the transpose of the ith standard basis
vector in R™ as e; and let B; = [bj1 ... bjn]. Then, the steps necessary to construct the canonical CRN
realization are the following.

Procedure 1 for computing the canonical CRN realization from [Hars & Téth,
1981]
For eachi=1,...,n and for each j =1,...,r; do:

(1) Qj: = Bj + Sign(mij) - €
(2) Add the following reaction to the graph of the realization

n n
Z bjp Xy — Z Qe X
k=1 k=1

with reaction rate coefficient |m;;|, where Q; = [gj1 ... gqjn).

2.2.2.  Transforming non-kinetic systems into kinetic form

In this section, we address the transformation of general polynomial ODEs not fulfilling the condition
(8) into kinetic form using two different methods. First of all, we have to ensure that the trajectories of
the system corresponding to the studied operating domain remain in the positive orthant. For this, the
following simple translation of the state variables is used, if the positive orthant is not invariant for the
original system’s dynamics:

T=x+W, (10)

where the elements of W = [w; wa ... wn]T € R™ are sufficiently large that all trajectories of the translated
system remain in the positive orthant if started from the studied initial conditions.

Now we describe the two distinct approaches, to transform our translated model into kinetic form.
State-dependent time-rescaling. Time-rescaling is a common operation in physical sciences. The par-
ticular form of it depending on the positive state variables can be used e.g. for stability analysis of nonlinear
systems (see [Gléria et al., 2001] and [Szederkényi et al., 2005]) or for motion control [Szadeczky-Kardoss
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& Kiss, 2009]. In our case, the relationship between the original and transformed time-scales is defined by

dt = [ z:Xidr, (11)
=1

where ¢t and 7 are the time variables of the original and rescaled systems, respectively, and y; € {0, 1} for
1 =1,...,n. It is important to stress that the positivity of the state variables implies that 7 is a strictly
monotonously increasing (and therefore invertible) function of ¢, and the phase-portraits of the original
and rescaled models are identical. We will use the following notations for the derivative of x with respect
to t and T, respectively: & = %, ' = %.

Clearly, the ODEs (7) corresponding to the new time-scale have the following form:

' = F(z) Hmixz', (12)
i=1

from which it is easy to see that y; can always be chosen such that the negative cross-effects are eliminated
in the time-rescaled system.

X-factorable transformation. Another method for transforming a polynomial system into kinetic form
was proposed in [Samardzija et al., 1989]. A polynomial system of the form (7) is called X-factorable if the
right hand side of it can be factorized as

F(z) = D(z)G(x) (13)

where G € R” — R" is a polynomial vector field and D(z) = diag{xi,z2,...,z,} € R™™. It can be
shown that the positive orthant for any X-factorable system is invariant for the dynamics [Haddad et al.,
2010], and any X-factorable system is kinetic. Well-known examples of X-factorable systems are classical
Lotka-Volterra models [Takeuchi, 1996].

Let us suppose that the solutions of (7) from a given set of initial conditions are strictly positive
(possibly after a variable translation of the form (10)) but the model itself is not X-factorable. Then we
assign the following transformed X-factorable model to the original one given by (7):

i = D@)F (), (14)
where again, D(z) = diag{Z1,Z2,...,Zn}. It is obvious that the phase-portraits of the two systems (7) and
(14) are not identical in this case. However, under mild conditions, the system trajectories are ‘sufficiently
similar’ in the interior of the positive orthant in the sense that the “distortion is weak or negligible for
trajectories far from the boundary” of the positive orthant, while “a substantial compression of trajectories

occurs close to the boundary” [Samardzija et al., 1989]. Moreover, the behaviour of (14) around the strictly
positive equilibrium points is essentially dynamically equivalent to that of (7) [Samardzija et al., 1989].

2.3. Dynamaical equivalence of mass-action networks

Now we formally define the dynamical equivalence (or macro-equivalence) of reaction networks that has
already been mentioned in the Introduction. Let us define two CRNs with the following matrix pairs

(Y, A,(cl)) and (Y®), A,(f)). We call these CRNs dynamically equivalent, if
YW AN O () = v D AP @) (1), va e R, (15)

where for i = 1,2, Y(® e R"™ ™ have nonnegative integer entries, AS) are valid Kirchhoff matrices, RCLF

denotes the closed nonnegative orthant and
n
; (1, .
V@) =Ty ™, i=12j=1,....m (16)
k=1

We will assume that the set of complexes are fixed and known before the computations, therefore (15) can
be rewritten as

v-AY —y. AP = p (17)
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with M being the invariant matrix containing the coefficients of the monomials in the kinetic polynomial
ODEs.

Clearly, if A and A? give dynamically equivalent realizations with fixed Y, then A®) — 4 +4

early, if A" and A, give dynamically equivalent realizations wi xed Y, then A,

also gives a valid dynamically equivalent realization with Y. Therefore, a kinetic system with different
dynamically equivalent realizations has infinitely many dynamically equivalent realizations. Thus, we can
apply computational methods to calculate those realizations that fullfil predefined properties such as density
or sparsity, weak reversibility, etc. The detailed description of these methods can be found in [Szederkényi,
2010; Szederkényi et al., 2012, 2011b,a].

2.4. Known optimization methods for computing certain CRN realizations

In this subsection, we briefly recall the computation framework first described in [Szederkényi, 2010] and
some related results for convenience. For a fixed complex composition matrix Y, sparse realizations contain
the minimum number of nonzero off-diagonal elements (i.e. reactions) in the A matrix. On the other hand
dense realizations contain the maximal number of nonzero off-diagonal elements in Aj. These calculations
can be formulated as mixed integer linear programing (MILP) problems, where we assume that we have a
canonical CRN and its parameters are known. Solving the MILP optimization, we want to find other valid
Ay Kirchhoff matrices that fulfill the given requirements.
The mass-action dynamics can be expressed as equality and inequality constraints as

Y -Ay=M (18)
m
Y A =0, j=1,....m (19)
i=1

where the elements of Ay are the decision variables. We also put lower and upper bound constraints on the
decision variables to make the optimization problem computationally tractable and to avoid unbounded
feasible solutions.

[Aglij < lij, 4,5=1,...,m i #j (22)
Using these constraints we can find such Aj; matrices where the number of nonzero off-diagonal elements
are minimal or maximal. To achieve this, we introduce logical variables denoted by § and construct the
following compound statements.

5ijZIH[Ak]ij>6, Li=1,....mi#j (24)

where ‘<’ encodes the if and only if logical statement, € is an arbitrary small threshold variable (below
the value of €, we treat the corresponding reaction rate as zero in the reaction graph). The inequalities in
(22) and (24) can be combined into the following form [Raman & Grossmann, 1994]

0 < —[Aplij + 105 <0, i, j=1,...,m,i#j (26)

The function summing the nonzero reaction rate coefficients is:

m
h(d)= > 6. (27)
i, j=Tij
By maximizing or minimizing h(J), we are able to compute realizations with maximal or minimal number
of reactions, i.e. the dense or sparse realizations of a canonical CRN.
As section 4 will illustrate, sparse realizations are structurally non-unique, meanwhile the structure of
the dense realization with a given complex set is unique and contains every possible dynamically equivalent
structure as a proper subgraph, i.e. it is a kind of superstructure [Szederkényi et al., 2011b].
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The dynamically equivalent realizations share some common structural elements that are essential
for the equivalence. The so-called core complexes and core reactions belong to these important elements.
Core complexes are those vertices of the reaction graph that are present as reactants or products in any
dynamically equivalent realizations of a given CRN. It is easy to observe that a complex is non-reacting
(or isolated) in a CRN realization, if both the corresponding row and colum of Ay contains only zeros (i.e.
there are no incoming or outgoing directed edges to/from that complex in the reaction graph). Based on
this, we can formulate a simple test to find core complexes. The complex CY} is a core complex if and only
if the constraint

DA+ D (A =0 (28)
i=1 =1
ik itk

together with (18)-(21) is infeasible. Since no integer variable is involved in this constraint, core complexes
can be found with linear programming (LP).

Similarly to core complexes, core reactions are present (possibly with different rate coefficients) in any
dynamically equivalent realization of a CRN [Szederkényi et al., 2011a]. Whether a reaction belongs to the
set of core reactions or not, can be tested with simple linear programming, too. Therefore, C; — Cj is a
core reaction if and only if (18)-(21) with

[Ag]ji =0 (29)

yields an infeasible LP problem. From now on, we will denote the number of reactions in the dense and
sparse realizations with Ry and R, respectively, and the number of core reactions and core complexes with
R, and N, respectively.

We remark that it is straightforward to extend the notions of dense and sparse realizations together
with core reactions and core complexes to the constrained case, when some of the mathematically possible
reactions are a’priori excluded from the reaction network by setting the appropriate elements of Ay to zero.
The notations for this are the following. The simple constraint set denoted by X used for the exclusion of
selected reactions from the CRN is given by:

K =A{[Aklisjs =0, ..., [Akli,j. = 0}, (30)

where s is the number of individual constraints, and iy # ji for k =1, ..., s. Then, a dynamically equivalent
KC-constrained realization of a CRN (Y, Ay) is a reaction network (Y, A} ) such that Y- Ay, =Y - A} and the
prescribed constraints /C in the form of eq. (30) are fulfilled for Aj.. A dynamically equivalent K-constrained
dense realization of a chemical reaction network (Y, Ax) is a K-constrained realization that contains the
maximal number of nonzero elements in A} . Similarly, a K-constrained sparse realization is a K-constrained
realization with the minimal number of nonzeros in A} . Naturally, a dynamically equivalent constrained
realization may not exist for certain constraint sets, therefore the existence of such realizations must be
checked through the feasibility of the corresponding optimization problem.

It is also true in this case that for a fixed complex and constraint set, the dense realization gives a
maximal superstructure of all possible realizations [Szederkényi et al., 2011a]. Moreover, it is important
to note here that the computation of constrained dense realizations can be traced back to a series of
pure LP steps [Szederkényi et al., 2011a] and therefore it can be performed in polynomial time, while the
computation of a sparse realization without any prior knowledge about R; and Rs still requires integer
variables and MILP computations.

3. Computation of all possible sparse structures

In this section, we present a computational approach to calculate all possible dynamically equivalent sparse
CRN structures. Firstly, we describe the main ideas behind the applied computation method. We exploit
the above described fact that the structure of the dense realization of a CRN is unique, and it contains the
structures of all possible dynamically equivalent realizations as sub-graphs. The first step is the computation
of an arbitrary sparse and dense realization of the studied kinetic system to determine Rg and R;. Then,
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we extract all possible sparse structures by ‘pulling down’ the dense one. For this, it is clear that we have
to remove as many reactions from the dense realization (if possible) as the difference between the number
of reactions in the dense and sparse realizations, i.e. Ry — Rs. By ‘removing’ a reaction from a CRN, we
mean that the corresponding reaction rate coefficient in Ay is made zero while maintaining dynamical
equivalence with the initial kinetic system. Using only the fact that core reactions are not removable from
any realization, the maximal theoretical number of possibilities to be checked is

_(Rs—R.\ _ (Rq— R.)!
Nimas = (RZ - RS> " (Rg— Rs)!(Rs — R.)!" (31)

This means that in the worst case, we have to check N, possibilities for dynamical equivalence, where
each checking requires the solution of an LP problem with constraints (18)-(23) and (30). As we will see
later in the case of the Lorenz system, IN,,4; can be so large even in the case of a small network, that it might
be computationally infeasible to check all possibilities individually. To ease the computational burden, we
identify the set of reaction pairs (denoted by R? C R x R) which are non-core reactions, but if any reaction
pair from R? is not present in a given reaction graph, then the corresponding dynamically equivalent
realization cannot be sparse. In other words, the exclusion of any reaction pair from R? always implies
the inclusion of more than 2 other reactions in the reaction graph, and this clearly violates the sparsity
constraint. Knowing this information, we can omit from the systematic search those realizations that do not
contain any pair from R?2, and this can drastically reduce the overall computation time. The computational
background for determining R? is simple: any pair of distinct reactions R, = (C; — C;, Cx, — C}) belongs
to R? if and only if the constrained sparse realization not containing the elements of R, contains more
reactions than the original unconstrained sparse realization. This means that determining RY requires

(Rd ; RC) MILP optimizations steps.

Let us introduce the following additional notations. Let P(S) denote the power set of an arbitrary set
S, and let |S| be the cardinality of S. Let R(Y, Ax) denote the set of reactions of a CRN with complex
composition matrix Y and Kirchhoff matrix Aj. Furthermore, let P*(S) denote the elements (sets) of
P(S) containing k elements, i.e. P¥(S) = {A € P(S) | |A| = k}. Now we can summarize the computation
steps for determining all sparse realization structures more formally as follows (the sparse realizations with
different structures are collected into the set called Sparse_structs).

1. Let Sparse_structs:= ().
Determine the canonical realization (Y, Af) of the studied kinetic system using Procedure 1.
Compute a dense realization (Y, A%) of (Y, AS). Let Ry := |R(Y, AY)|.
Compute a sparse realization (Y, A7) of (Y, Af). Let Ry := |R(Y, A7)
Identify the set of core reactions R, of (Y, Af). Let R, := |R¢|.
Let R? := ().
. For each pair of distinct reactions {C; — Cj,Cx — Ci} in R(Y, AY) \ R. do:
7.1. Let ICl = {[Ak] g = O [Ak] Ik = 0}.
7.2. Compute a Kj-constrained sparse realization (Y, A}k,cl) of (Y, A%).
7.3. If (Y, AR') exists and |R(Y, AK")| > Ny then let R2 := R2 U (C; — C},Cx — C)).
8. Let z := Ry — R;.
9. Let R* := P*(R(Y, AY) \ R.).
10. For each R; = {C;1 — Cj1,...,Ci; — Cj;} € R* do:
10.1. If R; does not contain any reaction pair from R2 then do:
10.1.1. Let ’CQ = {[Ak]jl,il == 0, ey [Ak]jz,iz = 0}
10.1.2. Compute a ICa-constrained realization (Y, Afz) of (Y, A%).
10.1.3. If (Y, AfQ) exists, then let Sparse_structs:=Sparse_structs U (Y, Afz).

NSOtk LN

For the generation of R?, we applied the fast algorithm described in section 7.2.1.3 of [Knuth, 2008].
We emphasize again that integer variables are required only for steps 4 and 7.2 of the above algorithm,
and all other realizations can be computed by standard linear programming. We remark that after the
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initialization steps 1-6, the necessary time for the subsequent computations can be pre-estimated quite
precisely, knowing the average time required for a MILP or LP realization computation step.

4. Results: sparse kinetic realizations of the Lorenz system

The starting point is the classical set of equations corresponding to the Lorenz system:

.i‘l =0 (.7}2 — xl)
.i’z = pPr1 — T2 — T1x3 (32)
T3 = 1172 — B3
with parameter values ¢ = 10,p = 28,5 = 8/3 that are known to lead to chaotic behaviour. It is also
known that the nonnegative orthant is not invariant for the original dynamics (32), therefore firstly a
coordinates-translation was applied with W = [24, 25, 26]. The principles for selecting the elements of
W were the following. Firstly, they should be as small as possible while allowing the shift of the studied
operating domain to the strictly positive orthant. Secondly, they should be different in order to avoid any
monomial cancellations later in the kinetic models. The translated model reads:
i‘l =0Xy — 0T + a(w1 — ’wg)
Ty = (p+w3)T1 — Ty + wi1Tg — T1T3 — pw1 + we — Wiws3 (33)

T3 = T1T2 — waZ1 — w1Z2 + wiwa — B3 + fws

4.1. State-dependent time-rescaling

It is easy to see that the set of ODEs (33) is generally not kinetic. Therefore, we apply the most general
time-scaling that contains all 3 state variables, namely dt = Z1Z2Z3d7. The rescaled kinetic equations are
written as

T = 0T\ T5T3 — 0T TaT3 + o(wy — wo)T1ToT3

s 2 - e T S B

Ty = (p + ¢3)T1T2Ts + (wo — w1p — WiW3)T1T2Ts — T1T5T3 — T1TaT5 + W1T1T2T5 (34)
2.9 Y 2 N )

Ty = T1THT3 — W2k T2T3 — W1T1T5T3 + (wiwa + fws)T1T2T3 — BT1T2T5

The simulated system trajectories of (34) are shown in Figure 1(a). Let us denote the species corresponding
to the concentrations T1,Zo and Z3 by X1, X2 and X3, respectively. Then, Procedure 1 for building the
canonical structure (described in Subsection 2.2.1) generates the following complex set for the canonical
realization of (34)

Cr=X1+Xo+ X3,C0 = Xo+ X3,03 =2X1 + Xo+ X3,0y = X +2X5 + X3,
C5 =2X14+2Xo0+ X3,C6 = X1+ X3,C7r = X1 + Xo+2X3,05 = X7 +2X9 +2X3, (35)
Cy=2X14+Xo+2X3,C1p=2X1 +2X3,C11 =2X71 4+ Xo,C10 = X1 +2X5,C13 =2X1 +2Xo + 2X3

The canonical reaction network corresponding to (34) is shown in Figure 2, which shows the reaction
rate coefficients on the directed edges. The core reactions and core complexes are indicated by dashed
arrows and grey rectangles, respectively in all figures showing CRN structures. The 6 core reactions of the
system are the following:

Cy — Cy, C3 — C11, C4 — Ch2, C5 = Ch3, C7 — Cg, Cg — Chp.

Moreover, all complexes in (35) are core complexes with the exception of Cs = X7 + X3. We remark
that the canonical realization can be computed symbolically, but the optimization techniques for computing
the forthcoming dense and sparse realizations are numerical, and they use the previously described model
parameter values.

To compute all possible sparse structures of this CRN, we need further information such as the possible
minimal and maximal number of reactions and also the set of core reactions. Using the computation



Computing all Sparse Kinetic Structures for a Lorenz System Using Optimization 11

methods described in section 2, we can easily obtain these data. The values of the realization parameters
in the case of the time-rescaled model are the following: Ry = 51, R; = 13, R. = 6, and N, = 11. The
value of Nyyaq (i.e. the maximal number of required LP steps to check all possibilities) is 45.379.620 in this
case which would require about 630 hours of computation time on the desktop PC that we used, assuming
approximately 0.05 s for one LP step.

In the case of the time-rescaled model (34), P? was found to be the following:

P2 ={(C3 — C5,C3 — C13), (Cy — C5,Cy — C13), (C1 — Cs,C1 — C1g), (C1 — C,C1 — C11)} (36)

Using P2, the search space was reduced to 442.454 possibilities, that is a huge reduction compared to
the initial more than 45 million. After checking the candidate realizations with the method described in
section 3, we found that 5376 different structures are valid dynamically equivalent sparse realizations. Out
of these, 504 are such that they contain only the 11 core complexes.

4.2. X-factorable transformation

Besides the state-dependent time-scaling, we also investigated the 3-dimensional Lorenz system with the
X-factorable transformation. Firstly, we again performed a coordinates shift on model (32) and then applied
the X-factorable transformation. The resulting equations are

T = oF1 Ty — a:i% —o(wy — we)Ty
Ty = (w3 + p)T1Zo — T3 + widody — T1Z0ds + (wy — wip — c1¢3) o (37)
Iy = T129@3 — wiZads — wod1 &3 + (wywe + Pws)is — BT,

where W = [100, 101, 1], which is basically taken from [Samardzija et al., 1989], but ws is modified from

100 to 101 to avoid cancellation of the last monomial in the first equation.
Again, using Procedure 1, the complexes of the canonical realization are given as

Cl = Xl,CQ = 0,03 = 2X1,C4 =X; —|—X2,C5 =2X; —|—X2,06 = XQ,
C7=2X5,05 = X1 +2X5,Cyg = Xo + X3,C10 = 2Xo + X3,C11 = X1 + Xo + X3, (38)
Cr2 = X1 + X3,C13 = X3,C14 = 2X3,C15 = Xy + Xo + 2X5,

where the species X7, X3 and X3 correspond to the state variables 1, 2 and Z3 of (37), respectively.
The reaction graph of the canonical realization is shown in Figure 6. The list of core reactions is

C1 = (2,06 — C,C11 — Ci5,C13 = Cha, (39)

while the core complexes are C, Cy, C4, Cg, C13, C14, C15. The characteristic parameter values for this
network are Ry = 12, Ry =44, R. = 4. and N, = 8.

The value of N,q. is 76.904.685 that would require about 1068 hours of computation time to check
each possible combination. For P, we obtained:

P2 = {(C3 — C1,C3 — C3), (C1a — C1,C1a — C3), (C7 — Cz,C7 — Cg), (Crg — Ca,C1q — C13), (40)
(C4 — 03,04 — 05), (C4 — 05,04 — Cg), (04 — 07,04 — Cg), (Cg — 07,09 — Clo)}.

After checking the possible sparse graph structures, we found that only 2864 do not contain any pair from
P2, which is only 0.0037% of the original nearly 77 million possibilities. It was computationally easy to
check these 2864 candidates, among which we found only 48 valid dynamically equivalent sparse realization
structures. In this case, there was no such realization that only contained the core complexes.

Due to the large number of dynamically equivalent structures, the reaction graphs for all
sparse realizations from both methods are provided in an electronic supplement downloadable from
http://daedalus.scl.sztaki.hu/PCRG/works/Suppl2012_001.pdf ‘ Therefore, only a few character-
istic examples are included in the main text of the paper. The core reactions and core complexes are
indicated by dashed arrows and grey boxes, respectively in the figures. The numbers of the complexes are
written above the boxes containing the complexes. The unique identification numbers (serial numbers) of
the sparse structures are indicated at the top of the figures. The isolated (unconnected) complexes are
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omitted from the models but they are drawn in the figures for easier comparison. The superstructures (i.e.
the dense realizations) are shown in Figs 5 and 8, respectively. Fig. 3 shows a sparse realization of (34)
with the maximal number of linkage classes (three), while a sparse realization of (34) containing only the
11 core complexes can be seen in Fig. 4. From the 48 sparse realizations of (37), Fig. 7 shows one with the
minimal number of complexes (13).

The brief comparison of the time-rescaling and X-factorable transformation cases can be found in Table
6. As the table shows, we haven’t found any weakly reversible realizations among the sparse ones. This
means that there are no sparse complex balanced realizations with the given complex sets, since it is known
that complex balancing implies weak reversibility [Horn, 1972]. Moreover, the deficiencies of all obtained
sparse CRNs are high (between 7 and 9) that is related to the dynamical complexity of the network.

5. Conclusions

Dynamically equivalent sparse kinetic realizations of a classical Lorenz system were computed in this
paper. The optimization-based computational framework proposed originally in [Szederkényi, 2010] was
successfully used to solve this task. The set of complexes for the realizations was generated using the
procedure published in [Hérs & Téth, 1981]. The original model was transformed to kinetic form using two
different approaches known from literature: the state-dependent time-rescaling that completely preserves
the structure of the phase-space, and the X-factorable transformation. Firstly, the essential components
(i.e. the core reactions and core complexes) of the networks have been determined. The studied realization
computation problem is clearly of combinatorial nature, therefore an effective reduction of the search space
was proposed using core complexes and the advantageous properties of dense realizations. All different
sparse structures are listed in an electronic supplement. The large number of valid solutions clearly illustrate
the possible structural non-uniqueness of chemical reaction networks. To the best of the authors’ knowledge,
it has been the first attempt to enumerate all dynamically equivalent structures of a kinetic dynamical
system with a given property.
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Figures

Fig. 1. (a) Phase-plane plot of the kinetic Lorenz system obtained via time-rescaling (left), (b) Phase-plane plot of the Kinetic
Lorenz system obtained using the X-factorable transformation (right).
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Fig. 2. Canonical realization of the Lorenz system with state-dependent time-scaling. In this case, the canonical realization is
also a sparse one. The parameters are: k31 =0, k41 =1, kr1 =8, k12 =0, k35 = ptws, ka5 = 0, k1,6 = |w2 —w1p—wiws|,
k1,7 = wiws + Bws, krg = w1, ko,10 = 0, k3,11 = w2, k4,12 = w1, k5,13 = 0.
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Fig. 3. Sparse realization of the model (34) with 3 linkage classes. The reaction rate coefficients are: k7 1 = 2.6667, k1,2 = 10,
ky3=1, k34 =10, k1 g = 1271, k17 = 699.33, k78 = 24, kg 10 = 1, k3,11 = 69, k4,12 = 33, k3,13 = 44, k413 = 9, k5,13 = L.
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Fig. 4. Sparse realization of the model (34) that contains only the core complexes. The reaction rate coefficients are: k1 2 =
1882.7, k7 4 = 2.6667, kg7 = 1, kr g = 21.333, k1,10 = 1271, kg 10 = 1, k1,11 = 601.67, k3 11 = 59, k3,12 = 10, k4,12 = 35,
k3,13 = 44, k413 = 10, k513 = 1.
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Fig. 5. Dense realization of (34) containing 51 reactions. The reaction rate coefficients are k1,2 = 679.63,k13 = 0.1, k14 =
0.1,k15 = 0.1,k1 6 = 602.37,k17 = 0.1,k1 8 = 0.1,k1 9 = 0.1,k1,10 = 669.13,k1,11 = 0.1,k112 = 0.1,k113 = 0.1,k31 =
0.1,k32=0.1,k34=0.1,k35 =44.6,k36 =0.1,k3 7 =0.1,k38 =0.1,k39 = 0.1,k3 10 = 0.1,k3 11 = 16.2,k3 12 = 9.3, k3,13 =
0.1,kg1 =0.1,kg2 =0.1,kg3=0.1,kg5 =96,kg6 =0.1,kg7=0.1,kgg=0.1,kg9=0.1,kg10=0.1ksg11 =0.1kg12
24.4,kq13 = 0.1,k513 = 1,k71 = 0.1,k7 2 = 1.1833,k73 = 0.1,k7 4 = 0.1,k7 5 = 0.68335,k7 ¢ = 0.1, k78 = 23.217,k7 9
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Fig. 6. Canonical realization of the Lorenz system transformed with X-factorable transformation. This realization sparse as
well. The values of the rate coefficients are: k12 =0, k3,1 =0, ka7 = p+ w3, ka5 = 0, kg2 = wip + (wiwz — w2), kre =1,
ko7 =1, k11,15 =1, k11,12 = 1, k121 = wo, k13,14 = wiws + fws, k14,13 = B
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Fig. 7. One of the 48 possible sparse realizations of (37) that contains 13 complexes. The parameters are: k121 = 101,
k12 =10, k32 = 5, kg2 = 2799, ka3 = 10, krg = 1, kg 7 = 100, kg g = 39, k11,12 = 1, k14,13 = 2.6667, k13,14 = 10103,
k1115 =1

Linkage Classes: 1 # of Reactions: 44
Deficiency: 11 # of Complexes: 15

Fig. 8. Dense realization of (37) with 44 reactions. The parameter values are the following: ki o = 10.1,k; 3 = 0.1,k31 =
0.1,k32 = 4.95,ks1 = 0.1,kg2 = 0.1,kg3 = 0.1,ky5 = 10.2,kgs = 0.1,kg7 = 0.1,kg8 = 29.2,kg 2 = 2799.1,kg 7 =
0.1,k72 = 0.45,k76 = 0.1,kgo = 0.1,kgs = 0.1,kg7 = 99.9,kg 10 = 0.4,kg13 = 0.1,kg14 = 0.1,k111 = 0.1,k112 =
0.1,k113 = 0.7,k114 = 0.1,k115 = 0.1, k11,6 = 0.1, k11,7 = 0.1, k11,8 = 0.1,k11,9 = 0.1,k11,10 = 0.1, k11,12 = 0.1, k11,13 =
0.1,k11,14 = 0.2,k11,15 = 2.2,k121 = 100.7,k122 = 0.1,k123 = 0.3,k1213 = 0.1,k1214 = 0.1,k132 = 0.1,k1314 =
10103, k14,2 = 1.2833, k14,13 = 0.1
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Tables

Table 1. Comparison table of the two approaches for transforming the Lorenz
system into kinetic form. In the header line, ‘SD-TS’ and ‘X-factorable’ denote
state-dependent time-scaling and X-factorable transformation, respectively.

Feature SD-TS X-factorable
Ry 51 44
Rs 13 12
R 6 4
Ce 12 8
no. of complexes in the canonical realization 13 15
no. of valid sparse realizations 5376 48
no. of realizations containing only core complexes 504 0
minimal no. of linkage classes 1 1
maximal no. of linkage classes 3 3
no. of weakly reversible realizations 0 0
minimal deficiency 7 8
maximal deficiency 9 9




