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Abstract—A flexible modular robotic software environment
based on the popular MRPT toolkit is reported in this paper
that is able to integrate path planning, navigation and control
algorithms easily from several sources. The different modules
(which are responsible for SLAM, trajectory tracking, sensor
and actuator handling, visualization etc.) communicate with each
other via a carefully developed network based protocol set that
ensures transparency and robust operation. The system can also
be used as a simulation environment and it is capable of com-
parative benchmarking of different navigation algorithms. Laser
scanner based map building and navigation of an autonomous
wheelchair is shown as application examples to illustrate the
features of the developed software environment.

I. INTRODUCTION

Currently there are numerous navigation and control algo-
rithms in the field of indoor mobile robotics. The available
robotic software toolkits present several implemented algo-
rithms, but system-level integration still remains a challenging
task. This inspired us to create a high-level, modular robotic
software environment based on a selected toolkit to handle
our special application requirements and significantly extend
previous functionalities. The presented software system is based
on the Mobile Robotic Programming Toolkit (MRPT) [1] pack-
age which is developed by the MAPIR Lab at the University
of Malaga. MRPT is a software framework containing several
modern tools and algorithms, written in C++. Based on this
framework a high-level module set can be created to operate
on a mobile robot. The software platform composed from these
modules can serve as the basis for testing, benchmarking and
using several algorithms and robotic tools. The main purpose
of the development is to create a flexible and modular software
platform which can be used efficiently in a distributed computa-
tional environment that are typical in many robotic applications.
Our software is a high-level, application-oriented system using
algorithms and tools from several sources to control a vehicle
in indoor environment. Beyond standard requirements for a
robotic software environment such as robustness and portability,
our high-level, integrated system was designed to meet the
following main requirements:

« strongly modular construction
« multi-host, distributed architecture
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« probabilistic computational framework

¢ an environment where the incorporation of new algorithms

and features is easy.

In the following, we will present how the developed software
meets these requirements. In Section II some projects with
similar goals are introduced. In Section III, we will consider
the main properties and foundations of the proposed system.
In Section IV, we will enumerate the main design principles.
Section V describes some implemented modules in detail and
finally in Section VI, we will present applications with the
proposed system.

II. RELATED WORK

Since a truly autonomous robot is a fairly complex system,
a well designed software solution is an essential part of it.
Modularization is a common engineering approach to handle
large and complex systems. Besides reducing problem complex-
ity, the modularization also gives the opportunity to separate
responsibility and the implementation methods of the tasks.

In R. Brooks’ seminal paper [2] introduces a layered system
architecture. These layers are organized in horizontal hierarchy
where the top layer reflects the most desired behaviour. This
design principle strongly affects the architecture of robotic
software systems since then.

Numerous software libraries and off-the-shelf robotic soft-
ware products are available currently, we have selected three of
them for discussion. These open source programs are widely
used by the research community and they also have several
similarities to our system.

The Player project [3] focuses on the mobile robot hardware
abstraction. It contains several drivers for commercial mobile
robots and sensors and it has a framework for developing Player
compatible drive for any kind of devices. Similarly to our sys-
tem, the different modules are communicating with each other
via TCP/IP protocol. On the other hand the data distribution is
different in Player than in our case. In Player each module can
operate in PUSH or PULL data sending mode whereas in our
system each module sends the messages to a central module
for further distribution. Unfortunately Player does not have a
coherent probabilistic framework like the one that MRPT has.

The Carnegie Mellon Navigation (CARMEN) Toolkit [4] has
a layered architecture as well, where the base layer is respon-



sible for hardware abstraction and located at the bottom of
the hierarchy along with collision avoidance. The middle layer
is responsible for localization and navigation, and finally the
high level tasks are solved by the top layer. For communication
between the modules it uses Inter Process Communication (IPC)
system. This type of message distribution is similar to our
system. The main problem with CARMEN is the lack of public
release since 2008.

The MARIE middle-ware framework [5] focuses on the
reusability and integration with new and existing software com-
ponents. For example, MARIE can use several of CARMEN’s
applications like path planner or localizer. It supports a wide
range of communication protocols, communication mechanisms
and robotics standards.

III. FOUNDATIONS OF THE SOFTWARE SYSTEM

MRPT is an open-source robotic toolkit programmed in
C++. This toolkit is under continuous development with strong
support of the community. MRPT was selected as basis for
our work because this framework uses a coherent probabilistic
approach which is a powerful computational paradigm to solve
mobile robot navigation tasks. Furthermore, MRPT contains
a large amount of implemented algorithms and software tools
like Simultaneous Localization and Map building (SLAM) tech-
niques [6], Kalman Filter, Particle Filter, hardware drivers, data
structures for several kinds of maps, 3D visualization and many
auxiliary utilities. It incorporates several third-party software
modules: wxWidgets and OpenGL engine, ArialLab hardware
abstraction layer [7] to handle a large variety of commercial
mobile robots, drivers for several types of sensors and other
tools. Furthermore, it contains a lot of basic level tools: TCP/IP
socket handling, operating system independent timing, math
libraries, computational and algorithmic packages.

MRPT is built up from a well designed class hierarchy
presenting high-level programming methods, e.g. serializable
classes, smart pointer implementations, skeletons and other
useful features. Several complex data structures like occupancy
grid map [8] are incorporated into the class hierarchy, based on
the above described programming methods.

MRPT is designed for probabilistic robotics that means prob-
abilistic approach for perception, system modeling and state
estimation is fully supported. All the information which is
gathered by the sensors can be incorporated into probabilistic
density functions. The proper function can represent the cer-
tainty/uncertainty over the system states. The Bayesian frame-
work is available [9] to describe all elements of the simultaneous
localization and map building problem. Sensor models, motion
models for mobile robots and map realizations for feature and
grid mapping are also available in this toolkit. For probabilistic
density representation, two solutions are available, namely the
Gaussian for unimodal densities and the Particle Filter for
multimodal densities.

Due to the high activity in the field of mobile robotics,
many new algorithms, solutions are published. For that reason
we designed an interface, which has the ability to integrate
these new algorithms into our system. This setup enables us to

investigate their properties and compare them to other existing
algorithms.

IV. DESIGN PRINCIPLES AND PROPERTIES OF THE
MODULAR SYSTEM

In this section we summarize the most important design
principles and properties of our software system.

A. Architectural design

Using the algorithms implemented in MRPT, also from third
party sources or from our own implementations, a set of separate
modules along with software components were created. Each
module is responsible for a specific task like SLAM, path
planning, trajectory following control, handling of sensors and
actuators, visualization, etc. Apart from the above tasks, addi-
tional modules were implemented that allow us to use the system
as a simulation environment, too. Such modules are responsible
for recording the measured data and playing it back, and for
monitoring the inner state variables of the software system. The
structure of the software system can be seen in Figure 1.
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Fig. 1. The block scheme of the proposed modular system. Each module
has a specific task. They are connected each other via a TCP/IP channel.
Inter-module communication is managed by the Comserver module.

The architecture provides transparency between the real and
simulated experiments. Simultaneously running different algo-
rithms on the same data can also be done thus comparative
benchmarking is possible. If one wants to integrate a new algo-
rithm into the proposed system, only the used data structures of
the new algorithm should be adjusted to an acceptable network
message, like robot position, grid map, etc.

Separating functionalities of the system into modules ensures
robustness and safety: failure of a single module will usually not
cause the failure of the whole system since other independent
modules can work properly or they can perform the appro-
priate shutdown sequence. In addition, modular system offers
the opportunity to separately develop, test and tune modules
before integrating into the system. The unified form of data
representation used at the communication allows us to change
specific modules without modifying any settings or parameters
in other modules. This form of communication is achieved by
using the MRPT’s built-in object serialization.

During the design of the modules, we had to consider the
desired speed of the operation. The typical sensors in robotics
like laser scanners, cameras, etc. operate around 50-100Hz. If
on-line data processing is needed, than the modules that are



time-critical has to be fast enough to complete the required com-
putations between sensor readings. There can be other modules
which can tolerate network delay and message buffering.

The modules communicate with each other via a well-defined
interface and protocol set while performing their tasks. The
communication protocol defines message types containing spe-
cific data (e.g. robot position, planned path, motion command,
etc.). Each module’s network interface inherits from a common
root class. This architecture can be seen in Figure 2.
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Fig. 2.  General structure of a module consists a network interface, and
a working thread. Object serialization/deserialization parts are resposible for
converting data structure.

The standard TCP/IP protocol is used for message trans-
portation while the distribution of messages is handled by a
central module using a publish-subscribe based architecture
as described in Section V-A. The network handling layer is
completely transparent to each module which means that the
modules have (and need) no knowledge of the source of data.

The modular system design and using an IP based protocol to
connect each module have the advantage that the modules can
be distributed to several computers in order to achieve higher
computation power.

B. Analysis of the architecture

The usage of TCP/IP protocol is a solid foundation for a
stable inter-modular communication. It is capable of handling
packet loss, and checks data corruption. However, it is important
that the network protocol itself introduces data flow speed
variations which causes network delay and jitter. These have
crucial importance in time-dependent robotic systems. Due to
the differences in time complexities of the tasks, each module
provides messages in a different pace. For that reason the
network interface has a message queuing system. With the help
of the message queue we prevent TCP/IP buffer overflow on
the client side. Depending on the purpose of the module we
can process all of the messages in the queue or we can select
the last received one for processing. The first scenario is useful
during data recording. However, the second is applicable for
delay sensitive cases, for instance generating the control signal
in the control module.

During a specific system’s design it is important to identify
the modules which are sensitive to data delay and jitter. After
that, there are several ways to handle the problem: in the
case of the presence of a slowly processing module, buffering
data is possible to ensure the possibility of off-line processing.
Another solution can be the sampling of incoming data on
a lower frequency. Delays introduced by the network can be

handled effectively by running the critical modules on the same
computer, or on computers which are connected via a wired
network instead of a wireless connection which is more sensitive
to this issue.

The used network message distribution technique enables us
to run the same modules with different parameter settings on the
same data set parallelly. This ensures a good configuration for
parallel benchmarking and testing.

The object serialization technique applied is the same for all
type of data sent through the network meaning that all data is
encapsulated into the same wrapper class. Consequently, none
of the packages have priority before the others, and the handling
procedure of the packages are the same for each data type. The
wrapper class has two attributes: a message type number which
describes the type of the data encapsulated into the message, and
a data field to store the actual data.

V. REVIEW OF IMPORTANT MODULES

In this section, we will introduce the main properties of
some selected modules. These elements provide the necessary
functionality for an autonomously navigating robot. As it has
been pointed out, further modules can be easily added to the
system, by connecting them to the communication channel
via the previously introduced interface. Data flow between the
selected modules and the content of the network messages can
be seen in Figure 3.
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Fig. 3. Data flow in the system. The arrows show the flow of the messages
through the system, distributed by the Comserver.

A. Communication server

In the center of the architecture there is a communication
server. It is responsible for distributing the network messages
based on a publish-subscribe model. This kind of message
distribution model works as the following. The modules send
a subscribe message to the communication server containing
the type number of the message which they want to receive.
The communication server registers them as subscribers, and
distributes the network messages containing data to the modules
subscribed for. If a module has completed its task, then it un-
subscribes from the network messages with a specific message
sent to the server right before exiting. This means that after the
unsubscribing from a message type, the server will not transmit
the corresponding packages to the network interface of module.

As it can be seen the communication server handles dy-
namically the subscribe-unsubscribe requests from the modules.



This scenario ensures the minimal load on the communication
channel.

B. The robot interface

The robot interface module is responsible for all hardware-
dependent tasks. This can be considered as a hardware ab-
straction layer, because no other modules have access to the
hardware. This module has three main tasks to perform:

« handling the robot’s built-in encoders to read odometry

information,

« handling the external sensors, specifically in our case, a

laser scanner to obtain the distance measurements

¢ accepting the control commands from the controller mod-

ule and executing them on the robot.

After reading out the encoder data and other sensory informa-
tion, these are serialized into the proper wrapper class, and sent
through the network to the SLAM module.

The robot interface module obtains the motion commands
from the network originating from the controller module and
executes them. The control command network message incor-
porates linear and an angular speed values. The robot interface
transforms the values according to the moving robot’s physical
model, to use them as a motion command.

Raw sensor data is used for collision detection. If there is
a laser distance measurement which has a lower value than a
given threshold, the module immediately stops the robot by
setting the wheels’ speed to zero. The operator can enable the
command execution again, but the robot will move only if
there is no distance measurement under the distance threshold.
The threshold for collision detection can set according to the
given experimental situation and the physical dimensions of the
moving robot. This type of collision detection is practical in very
dense indoor environments, where there is no possibility for re-
planning due to time restriction or lack of free route.

C. Map building and localization

This module has a central role in the whole system’s function-
ality. After receiving the odometry and laser data it performs
the simultaneous localization and map building task which is
fundamental for the navigation of the mobile robot. We selected
a scan-matching based approach for the SLAM problem [10].
The output of this module is an occupancy grid map and a
probabilistic density function describing the estimated robot
pose.

The localization part is solved by the Iterative Closest Point
algorithm [11]. ICP itself is incapable to track multi-hypothesis
of the robot pose. For that reason, we used a particle filter
together with ICP to have multi-hypothesis of the estimated
pose. The ICP algorithm provides a measure of the quality of
the registration process, a "goodness" value to show the fitting
of the last measurement set to the previously built map. During
the tests, we compared the properties of the classic ICP and the
Levenberg-Marquardt optimization [12]. Based on these results
we selected the second one for further usage.

The map building part differentiates free space from the
obstacles by integrating the sensor measurements into an occu-
pancy grid map using the estimated robot pose. This map serves

as a basis of path planning. The result of the map building is an
updated metric map that integrates the new sensor readings.

The algorithm can be parametrized via an initialization file
where several options can be changed, namely the properties of
the generated map, the cell update properties of the map, the
type and parameters of the ICP algorithm, etc.

The SLAM module generates precise log files during its work
that helps to analyze the performance and quality parameters of
the algorithm with the applied parameter set on the given data.
With the help of this, some useful information were obtained
about the properties of the algorithms, for example memory
usage, execution time.

The MRPT contains the implementation of the two traditional
SLAM approach, namely the feature-based SLAM [6] and a
scan-matching based SLAM . The measurement result of a
laser rangefinder can be easily processed by a scan-matching
algorithm. The particle filter based ICP is implemented in the
MRPT. The design of the software system enables to test more
map building techniques, and use the one which seems to be
optimal considering the given project’s specialties.

Fig. 4. Scan-matching based SLAM built metric map. In the bottom region
the robot, in the top region the goal point is located, between them, a planned
path can be seen.

D. Path planning

Path planning is a task where an autonomous mobile robot
is calculating a collision-free trajectory between two points in
its environment. To solve the trajectory planning problem in a
dynamic environment, one needs to know the properties of the
autonomous system (e.g. the motion model of the robot), and
the robot has to be able to map its operation environment. Then
the task is to plan an appropriate motion between two given con-
figurations such that some additional constraints (e.g. collision
avoidance, maximal allowable control signals) are satisfied as
well. A planned path on a map can be seen in Figure 4.

The path planner module subscribes for the messages origi-
nating from the SLAM module: the current map and the esti-
mated position of the robot on it, and from the user interface:
the desired goal position. The main function of the path planner
is the low-frequency path planning, which means finding a free
route from the current position to the desired target. The output



of this module is the planned path, which will be used by the
trajectory following controller to drive the robot along it. The
planned path is a set of free points in the map, in an equal
distance from each other. This discrete set of points has to be
transformed into a continuous and smooth path to drive on; this
task is completed by the controller module.

In the case of mobile robots in dynamic environment one of
the most important task of the path planner is replanning. The
change in the map based on sensory data, or the change of the
goal position by a user command results that the current path
is not free or valid any more. In this case the replanning of the
path is needed. Some algorithm used in this field is developed
for fast replanning, by using the previous planning step’s results
to speed up the procedure.

The path planning task can be considered as a searching
problem in the configuration space determined by the current
map. Two main methods are used in our system: the A* [13]
and the D* Lite algorithm [14]. D* Lite is a state-of-art search
algorithm, capable for fast replanning.

Similarly to other modules, changing the core algorithm in
the module is quite easy. The parameters of the path planning
are described in a separated initialization file.

Trajectory is a path which is an explicit function of time. The
motion is defined by a path geometry and by a velocity profile
which describes the time distribution along the reference path.
Considering this statement, it is essential to add a time parameter
to the planned path to ensure that the controller can drive the
robot on the path. This time scaling problem is an important
part of motion planning because the capabilities of the vehicle,
the control algorithm and the requirements of the task have to be
considered at the same time.

E. Trajectory following control

Controlling a mobile robot on a reference path requires the
usage of a proper control algorithm. The controller generates
the motion commands on a way to minimize the difference
between the actual position of the robot and the desired path.
Feedback control is needed to handle the complex requirements
introduced by the disturbances, difficult reference paths and
other problems. Because of all these things the designing, tuning
and implementing of a well-operating controller is a challenging
task.

The incoming data from the path planner is a discrete finite
set of free points along the desired path. With the help of
curve fitting the set of points is converted into a continuous
line. In this system a B-spline interpolation technique is used
to get the curve. As a result the paths have a smooth curvature
with continuous derivatives. Constraints such as velocity and
acceleration limits or maximum curvature could be considered,
too [15]. The output of the module are the motion commands,
namely the desired angular and longitudinal speed values. These
commands are received and executed by the robot interface.

The control algorithm is using a virtual vehicle approach.
This means that there is a virtual vehicle moving on the desired
trajectory. The control task is to minimize the error between
the virtual vehicle’s state and the real vehicle’s state. In such

a problem, the controller has to deal with two problems. In one
hand, it is needed to control the virtual vehicle’s speed according
to the trajectory’s properties and the distance between the virtual
and the real vehicle. On the other hand, it calculates the real
vehicle’s motion commands to decrease the error which consists
of the position and orientation differences between the real and
the virtual vehicle. The control of the virtual vehicle is based on
[16].

In our case, the controlled vehicle is a differential driven
robot. The controller which is used in our implementation is
detailed in [17]. First the position error values are calculated
comparing the desired and estimated position. With the properly
selected feedback gains the feedback input can be calculated.
Finally the motion commands’ values are computed.

During the tests the controller worked on 20Hz, and it drove
the robot fast and accurately without vibration or other noises
and could handle complex motion tasks, e. g. Y-turns.

The modular architecture of the system enables us to change
the controller module also. MRPT contains a tool to navigate
differential driven robots, called Reactive Navigation package.

F. Further auxiliary modules

In our system, there are several auxiliary modules which help
handling the robot and the generated data. Namely, there is a
data recorder module (called logger), a data playback module
(called logplayer), a visualization module as a user interface,
and a module to monitor the state of selected modules on-line.

Logger and logplayer modules are using the MRPT built-in
class serialization techniques to write the data into files and read
it back.

MRPT has a built-in OpenGL abstraction layer for 3D object
visualization, which is used in the user interface module. The 3D
objects in this case are the robot, the map itself, the goal position
and the elements of the planned path. The user can select a point
on a map as a goal position which triggers the re-planning of the
path by the path planner module.

Monitoring the output of selected modules is useful when the
robot operates in a real-world environment: with the help of the
proper module, the operator can observe the trends in different
module’s latencies, motion command values, properties of the
paths and other important values.

Further modules (e.g. parameter server, alternative control
interfaces, etc.) can be implemented and integrated into the
system, as it is needed by the given project.

VI. APPLICATIONS

Our long term aim is to develop a robotic wheelchair sys-
tem. Autonomous robotic wheelchairs are receiving increasing
attention all over the world due to the need of easier wheelchair
mobility caused by longer life spans in ageing societies. There
are many people with partial disabilities who could benefit from
semi-autonomous/autonomous wheelchairs. Standard electric
wheelchairs have been in use for a long time, but many disabled
people cannot control an ordinary electric wheelchair while
independent mobility would be a huge advance in their life.

These motivations encouraged us to create the previously in-
troduced mobile robotic software. The highlighted requirements



introduced in Section I are crucially important in the case of an
autonomous wheelchair.

The developed system was widely tested in several environ-
ments. The robustness of the modules were tested with several
parameter combinations and also in difference circumstances,
e.g. unexpected module shutdown, with various network delay,
etc.

A commercially available PowerBot robot was used as a
testbed. All the functionalities of the Powerbot are accessible
via ArialLab [7]. The hardware abstraction module was located
on the on-board computer of the PowerBot. The robot was
equipped with Sick LMS-100 laser rangefinder which per-
formed with high accuracy in indoor environment [18].

For a testing environment a small-scale, dense environment
and a large scale indoor environment were used. In a small-scale
scenario the task of the robot was to navigate in a classroom,
where several objects were located. The long term behaviour of
the system was investigated in our university main hall and in an
exhibition center.

The trajectory following control tests were done in both scale.
We manually selected a sequence of goal points on the map. We
paid lots of effort to solve the problem of the synchronization of
the virtual vehicle and the actual robot, which is essential for a
smooth control. Path planning can not produce on-line speed in
large environments due the size and density of the map.

In these scenarios the modules performed their tasks on
the desired level, the current state of our system enable us to
navigate several types of robots with high accuracy.

VII. CONCLUSION

In this paper, we presented the design and implementation of
a high-level, modular mobile robotic framework, based on the
MRPT toolkit. The contributions of the work presented in this
paper are the following.

The main design principles and architectural requirements
were considered. The analysis of the architecture is presented
to show the main properties of the designed system.

To show the usability and effectiveness of the proposed
system model and the selected toolkit, several modules’ imple-
mentation and functions are detailed. Each of them plays an
important role in a mobile robot navigation task, and together
can operate reliably as a coherent software environment.

As a future work, further modules will be created, e. g.
dynamic object detection and tracking module with the help of
the Joint Probabilistic Data Association Filter [19]. Further de-
velopments in the system architecture can improve performance
and can facilitate integration new algorithms and tools.
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