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Abstract

In this short paper the structural (i.e., reaction-graph-
related) properties of kinetic systems with uncertain param-
eters are examined. It is briefly shown that certain struc-
tural analysis results developed earlier for non-uncertain
kinetic systems can be generalized to the case when the
monomial coefficients are represented as points of a convex
polyhedron.

1. Introduction

Kinetic systems with polynomial non-linearities are typ-
ically used for the description of dynamical processes com-
ing primarily from biochemistry [10]. However, their ap-
plication domain is actually much wider than that, and ex-
tends to a large family of non-negative systems [1]. The
simple factorization of kinetic models containing the Lapla-
cian matrix of the reaction graph allows the development
of efficient structure-computation methods in various opti-
mization frameworks (see, e.g. [5, 6]).

Even if the monomials of a kinetic system are assumed
to be known, the parameters (i.e. the monomial coefficients)
are often uncertain in practice. For example, one may con-
sider the situation when the kinetic polynomial ODE model
is identified from noisy measurement data. In such a case,
using the covariance matrix of the estimates, we can define
a simple interval-based [7], or more generally, a polytopic
uncertain model. The goal of this paper is to generalize
and briefly illustrate some basic notions such as sparse and
dense realizations (see [8]) and the corresponding computa-
tion model for uncertain kinetic systems.

2. Background

2.1. Kinetic systems

Non-negative polynomial systems are defined in the
form:

ẋ =M · ϕ(x) (1)

where x : R → Rn is a non-negative valued function,
M ∈ Rn×p is a coefficient matrix and ϕ : Rn

+ → Rp

+

is a monomial-type vector-mapping. The sign conditions
of the elements of M ensuring the invariance of the non-
negative orthant with respect to the dynamics (1) can be
easily checked [2].

We consider kinetic systems as a special subset of non-
negative dynamical systems, that are suitable for describing
the dynamics of chemical reaction networks (CRNs). How-
ever, we treat kinetic models as a general nonlinear system
class, and do not require that they are chemically realiz-
able. Several thermodynamically relevant properties such
as component mass conservation, detailed or complex bal-
ance can be ensured by adding further convex constraints to
the computations (see, e.g. [4]).

In a reaction network reactions take place among com-
plexesC1, . . . , Cm, that are generated as formal linear com-
binations of speciesX1, . . . , Xn. A reaction network can be
characterized by two matrices. The complex composition
matrix Y ∈ Nn×m describes the structures of the com-
plexes

Cj =

n∑
i=1

[Y ]ij ·Xi i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}

The presence of the reactions in the CRN are encoded
trough the rate coefficients as the off diagonal elements of
the Kirchhoff matrix Ak ∈ Rm×m, which is a Metzler



matrix with zero column-sums, i.e.

m∑
i=1

[Ak]ij = 0 ∀j ∈ {1, . . . ,m} (2)

[Ak]ij ≥ 0 i 6= j (3)

According to this notation, there is a reaction Ci → Cj

if and only if [Ak]ji is strictly positive. Since the kinetic
model is uniquely determined by the complex composition
matrix and the Kirchhoff matrix, we refer to a CRN by the
corresponding matrix pair (Y,Ak).

If mass action kinetics is assumed, the equations govern-
ing the dynamics of the concentrations of the species in
the CRN described by the function x : R → Rn

+ can be
written in the form of a polynomial system:

ẋ = Y ·Ak · ψ(x) (4)

where ψ : Rn

+ → Rm

+ is a monomial function with coordi-

nate functions ψj(x) =
n∏

i=1

x
[Y ]ij
i , j ∈ {1, . . . ,m}.

A non-negative polynomial system (1) is called a kinetic
system if there exists a reaction network (Y,Ak) so that the
dynamics of the two models are equivalent, i.e.

M · ϕ(x) = Y ·Ak · ψ(x). (5)

Reaction networks with different sets of complexes and
reactions can be governed by the same dynamics [3, 10]. If
Equation (5) is fulfilled, then the CRN (Y,Ak) is called a
dynamically equivalent realization of the kinetic system
(1).

We want to determine realizations on a fixed set of com-
plexes, which defines the matrix Y and the monomial func-
tion ψ. The kinetic system (1) can be transformed so that
the monomial function ϕ is equal to ψ (and p = m holds),
but the described dynamics remains the same. In this case
Equation (5) can be written as:

M = Y ·Ak (6)

A reaction network can also be represented by a weighted
directed graph G(V,E) called Feinberg-Horn-Jackson
graph or reaction graph for brevity [10]. The vertices and
edges represent the complexes and reactions, respectively.
There is a directed edge from complex Ci to Cj if and only
if [Ak]ji is positive, which is the weight of the edge.

2.2. Uncertain kinetic systems

If the parameters determining the model are not precisely
known, the non-negative system describing the dynamics
can be written using uncertain parameters.

We consider the matrix M decoding the coefficients of
the monomials as a point M̃ in the Euclidean space Rnm. In

the uncertain model we assume that all the possible points
M̃ are in a closed convex polyhedronM, which is defined
as the intersection of halfplanes determined by the facets
of the polyhedron. The boundaries of the halfplanes are
hyperplanes with normal vectors n1, . . . , np ∈ Rnm and
constants b1, . . . , bp ∈ R. Applying these notations, the
polyhedron M can be written as the set of solutions of a
linear inequality system as follows.

M = {M̃ ∈ Rnm | ni · M̃ ≤ bi, i ∈ {1, . . . , p}} (7)

In the case of the uncertain model, we examine realizations
assuming a fixed set of complexes. Therefore, the parame-
ters of the model are the matrix Y and the polyhedronM,
and a reaction network (Y,Ak) is called a realization of the
uncertain kinetic system [M, Y ] if there exists a coefficient
matrix M ∈ Rnm so that the equation M = Y · Ak holds
and the point M̃ is in the polyhedronM. This realization
is referred to as (M,Ak).

2.3. Computational approach

A realization (M,Ak) of an uncertain kinetic system
[M, Y ] on a fixed set of complexes can be computed ap-
plying linear optimization.

In the optimization model the variables are all the entries
of the matrix M and the off-diagonal entries of matrix Ak,
while the additional required properties of a realization can
be written as linear constraints. Dynamical equivalence is
determined by Equation (6), the Kirchhoff property of ma-
trix Ak is defined by Equations (2) and (3), and the the
coefficients being in the possible set can be ensured by the
inequalities in the definition (7) of the polyhedron M. It
is possible to define some additional linear constraints on
the variables to characterize only special realizations of the
model. Due to the linearity of the constraints, the set of
possible realizations is a convex (constrained) polyhedron.

The objective function of the optimization model can be
defined according to the properties of the realization in de-
mand, as we will see in Section 3.

3. Realizations with special properties

Among the realizations of a kinetic system there are
some with particular importance. A dynamically equivalent
realization of a kinetic system with a fixed set of complexes
having maximal or minimal number of reactions is called
dense or sparse realization, respectively [8]. It is known
that for any kinetic system there might be several different
sparse realizations. However, the dense realization is struc-
turally unique and defines a superstructure. The superstruc-
ture is the reaction graph of the dense realization that con-
tains the reaction graphs of every realization of the kinetic



system as a subgraph. Such realizations can be introduced
in the case of the uncertain model as well.

Definition 3.1. A realization (M,Ak) of the uncertain ki-
netic system [M, Y ] is called a dense (sparse) realiza-
tion if there is a maximal (minimal) number of reactions
taking place, considering all possible coefficient matrices
M̃ ∈M.

It can be proven that despite the different dynamical
properties, the dense realization of the uncertain kinetic sys-
tem has the superstructure property. The proof is based on
the same idea as in the general case, see [9].

Proposition 3.2. The dense realization of an uncertain ki-
netic system [M, Y ] (considering a finite set of linear con-
straints on the parameters) determines a superstructure
among all realizations of the (constrained) model.

Proof. As we have seen, the set of possible realizations of
the constrained uncertain kinetic system can be represented
by a convex polyhedron P . If the point D ∈ P represents
a dense realization, then the superstructure property means
that any coordinate of an arbitrary point inP can be positive
only if the same coordinate in D is positive as well. Let
us assume by contradiction that there is another realization
Q ∈ P so that there is an index j ∈ {1, . . . nm} for which
Dj = 0 and Qj > 0 hold. Because of the convexity of P ,
the convex combination

R = c ·D + (1− c) ·Q c ∈ (0, 1)

is also in the polyhedron, however R has more positive co-
ordinates than the dense realization does, which is a contra-
diction.

It follows that the structure of the dense realization is
unique. If there were two different dense realizations,
then the reaction graphs representing them would contain
each other as subgraphs, consequently these graphs must be
structurally identical.

If the parameters and constraints of the uncertain ki-
netic system allow, we might be able to prove the structural
uniqueness of the uncertain model based on the following
proposition.

Proposition 3.3. The dense and sparse realizations of the
(constrained) uncertain kinetic system has the same number
of reactions if and only if all realizations of the model are
structurally identical.

Proof. According to the definitions, if in the dense and
sparse realizations there is the same number of reactions,
then in all realizations there must be the same number of
reactions. Since the structure of the dense realization is
unique, there cannot be two realizations with the maximal

number of reactions and with different structures, therefore
all realizations must be structurally identical to the dense
realization. The converse statement is trivial.

The dense realization of the (constrained) uncertain ki-
netic system can be determined by a recursive algorithm,
based on the same idea as the method in [9]. The basic
principle of the computation is the following. For every re-
action, a realization is assigned that contains that reaction, if
possible. A realization usually contains several reactions,
therefore, generally there is no need to perform a separate
optimization step for each reaction. The convex combina-
tion of the computed realizations is also a realization, where
all reactions are present that are in the computed realiza-
tions. Consequently it represents a dense realization. The
computation can be performed in polynomial time since it
requires at most m(n +m − 1) LP optimization steps and
some minor computation.

In the algorithm the realizations are determined using the
following procedure:

FindPositive(M, Y, L,H) returns a point Q ∈ P that
represents a realization of the uncertain model [M, Y ],
fulfils a finite set L of linear inequalities, and considering
a set H of indices the value of the objective function∑

j∈H qj is maximal. The procedure also returns the set B
of indices where k ∈ B if and only if Qk > 0. If there is
no such realization then the pair (0, ∅) is returned.
Based on the above, the algorithm for determining the
dense superstructure of uncertain models is as follows.

Algorithm 1
1: procedure COMPUTE DENSE(M, Y, L)
2: H := {1, 2, . . . ,mn+m2 −m}
3: B := H
4: Result := 0 ∈ Rm2−m+n

5: loops := 0
6: while B 6= ∅ do
7: (Q,B) := FindPositive(M, Y, L,H)
8: Result := Result+Q
9: H := H \B

10: loops := loops+ 1
11: end while
12: Result := Result/loops
13: if Result = 0 then
14: There is no such realization.
15: else
16: Result is a dense realization.
17: end if
18: end procedure



4. Example

In this section the realizations of a Lotka-Volterra type
uncertain kinetic system are examined. For simplicity we
define the uncertain parameters so that each of them must
be within a predefined distance to the nominal parameter.
The nominal model is defined by the matrices

M =

[
0.4 0 −0.018 0 0 0
0 0 0.023 −0.8 0 0

]
Y =

[
1 2 1 0 0 1
0 0 1 1 0 2

]
We assume that the nonzero entries in M are uncertain, and
thus the elements M̃ ∈M are given by:{

Mij − δ ≤ M̃ij ≤Mij + δ for i, j s.t. Mij 6= 0

M̃ij = 0 for i, j s.t. Mij = 0,

where δ is a positive real number. It is easy to see that
the polyhedronM is a 4- dimensional cube. In the case
of δ = 0.01, there are two structurally different sparse re-
alizations. By increasing δ to 0.04 the sparse realization
becomes unique, but there are less reactions in it.
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Figure 1: Different sparse realizations in case of δ = 0.01
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Figure 2: Sparse realization for δ = 0.04

It is generally expected that in the dense realization the
number of reactions increases with the extension of uncer-
tainty intervals. However, in the case of the present exam-
ple, we find that it remains structurally the same for the
values 0.01 and 0.04 of δ.
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Figure 3: The reaction graph of the dense realization

It can be seen in Figs. 1, 2 and 3 that all the depicted
reaction graphs are indeed subgraphs of the graph corre-
sponding to the dense realization.
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[7] F. Llaneras and J. Picó. An interval approach for dealing
with flux distributions and elementary modes activity pat-
terns. Journal of Theoretical Biology, 246:290–308, 2007.
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