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Gábor Szederkényi1,2, György Lipták2, János Rudan1 and Katalin M. Hangos2,3
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Abstract—Motivated by the strong results on the
relation between the dynamics and graph structure
of kinetic systems, static and dynamic feedbacks for
polynomial nonlinear systems are proposed in this
paper that render the open loop system into weakly
reversible kinetic form. The solution of the problem
is based on optimization, and uses earlier results on
computing different realizations of kinetic systems. The
operation of the method is shown through illustrative
example.

I. Introduction

Nonnegative dynamical systems are characterized by the
property that the state variables always remain nonneg-
ative during the operation, i.e. the nonnegative orthant
is invariant for the dynamics. These systems appear pri-
marily in such applications where nonnegative physical
variables (e.g. concentrations, pressures, number of items
in a set etc.) describe the state of the studied systems.
Therefore the main application areas of nonnegative sys-
tems are chemistry, biology, thermodynamics, population
and epidemic modeling or even certain transportation pro-
cesses. It is important to note that any bounded operation
domain of a general non-positive system can be easily
shifted into the nonnegative orthant.

Deterministic kinetic systems with mass action kinetics
or simply chemical reaction networks (CRNs) form a wide
class of nonnegative systems. CRNs are able to produce all
the important qualitative phenomena (e.g. stable/unstable
equilibria, oscillations, limit cycles, multiplicity of equilib-
rium points and even chaotic behavior) that are important
for the study and better understanding of nonlinear pro-
cesses. Therefore, we can agree with the claim that CRNs
can be regarded as a possible ”prototype of nonlinear
systems” [25]. The theory of chemical reaction networks
has significant results relating network structure and the
qualitative properties of the corresponding dynamics [10],
[12](some relevant details will be summarized in subsection
II-D). However, the network structure corresponding to
a given dynamics is generally not unique [7]. Recently,
optimization-based computational methods were proposed
for dynamically equivalent network structures with given
preferred properties (see, e.g. [15], [20], [22], [24] and other

references in the first paragraph of section II). Therefore,
a straightforward extension of our earlier results on au-
tonomous kinetic systems is to study control systems and
the possibility of the application of feedback to achieve a
kinetic closed loop system with given advantageous struc-
tural properties. The aim of this paper is to present the
first results in this area considering polynomial nonlinear
systems with a simple linear input structure. The structure
of the paper is the following. Section II summarizes the
basic notions and known results about the optimization-
based computation of dynamically equivalent kinetic sys-
tems. The new contribution of the paper can be found
in sections III and IV, where a MILP-based controller
design procedure is proposed and an illustrative example
is shown, respectively. Finally, the most important conclu-
sions are drawn in section V.

II. Basic notions and tools

This section summarizes the basic system properties
and computation tools used later in feedback design. This
introductory section is based on the thesis [21] that sum-
marizes the notions and results of the authors published
originally in [8], [11], [14], [18], [20], [23], [24].

A. Nonnegative systems

The notions and results of this subsection section are
based on [6]. A function f = [f1 . . . fn]T : [0,∞)n → Rn

is called essentially nonnegative if, for all i = 1, . . . , n,
fi(x) ≥ 0 for all x ∈ [0,∞)n, whenever xi = 0. In
the linear case, when f(x) = Ax, the necessary and
sufficient condition for essential nonnegativity is that the
off-diagonal entries of A are nonnegative (such a matrix is
also called a Metzler-matrix ).

Consider an autonomous nonlinear system

ẋ = f(x), x(0) = x0 (1)

where f : X → Rn is locally Lipschitz, X is an open subset
of Rn and x0 ∈ X . Suppose that the nonnegative orthant
[0,∞)n = Rn

+ ⊂ X . Then the nonnegative orthant is
invariant for the dynamics (1) if and only if f is essentially
nonnegative.

It is easy to prove that kinetic systems are essentially
nonnegative.
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B. Mixed integer linear programming and propositional
calculus

A mixed integer linear program is the maximization or
minimization of a linear function subject to linear con-
straints. A mixed integer linear program with k variables
(denoted by y ∈ Rk) and p constraints can be written as
[16]:

minimize cT y

subject to:

A1y = b1

A2y ≤ b2 (2)

li ≤ yi ≤ ui for i = 1, . . . , k

yj is integer for j ∈ I, I ⊆ {1, . . . , k}

where c ∈ Rk, A1 ∈ Rp1×k, A2 ∈ Rp2×k, and p1 + p2 = p.
A very useful result is that statements in propositional

calculus can be transformed into linear inequalities (see,
e.g. [3]). Therefore, a propositional logic problem, where
a statement must be proved to be true given a set of
compound statements can be solved by means of a lin-
ear integer program. For this, logical variables must be
introduced. Then the original compound statements can
be translated to linear inequalities involving the logical
variables.

C. Dynamics and structure of kinetic systems

The problem of kinetic realizability of polynomial vector
fields was first examined and solved in [13] where the
constructive proof contains a realization algorithm that
produces the weighted directed graph of a possible associ-
ated kinetic mechanism (called the canonical mechanism).
According to [13], the necessary and sufficient condition
for kinetic realizability of a polynomial vector field is that
all coordinates functions of f in (1) must have the form

fi(x) = −xigi(x) + hi(x), i = 1, . . . , n (3)

where gi and hi are polynomials with nonnegative coeffi-
cients.

Now we introduce a representation of kinetic systems
that transparently shows the relation between the graph
structure and the dynamics and that is suitable to
put structure-related computations into an optimization
framework. If the condition (3) is fulfilled for a polynomial
dynamical system, then it can always be written into the
form

ẋ = Y ·Ak · ψ(x), (4)

where x ∈ Rn is the vector of state variables, Y ∈ Zn×m
≥0

with distinct columns is the so-called complex composition
matrix, Ak ∈ Rm×m contains the information correspond-
ing to the weighted directed graph of the reaction network
(see below). According to the original chemical meaning
of this system class, the state variables represent the
concentrations of the chemical species denoted by Xi, i.e.

xi = [Xi] for i = 1, . . . , n. Moreover, ψ : Rn 7→ Rm is a
mapping given by

ψj(x) =
n∏

i=1

x
Yij

i , j = 1, . . . ,m. (5)

Ak is a column conservation matrix (i.e. the sum of the
elements in each column is zero) defined as

[Ak]ij =

{
−
∑m

l=1,l 6=i kil, if i = j

kji, if i 6= j.
(6)

The complexes are formally defined as nonnegative linear
combinations of the species in the following way:

Ci =
n∑

j=1

YjiXj , i = 1, . . . , n (7)

The weighted directed graph (or reaction graph) of kinetic
systems is G = (V,E), where V = {C1, C2, . . . , Cm} and E
denote the set of vertices and directed edges, respectively.
The directed edge (Ci, Cj) (also denoted by Ci → Cj)
belongs to the reaction graph if and only if [Ak]j,i > 0. In
this case, the weight assigned to the directed edge Ci → Cj

is [Ak]j,i. Loops (i.e. edges starting from and leading to
the same vertex) are not allowed in reaction graph. Thus,
it can be seen that Ak is the negative transpose of the
weighted Laplacian matrix of G. The diagonal elements
[Ak]ii contain the negative sum of the weights of the edges
starting from the node Ci, while the off-diagonal elements
[Ak]ij , i 6= j contain the weights of the directed edges
(Cj , Ci) coming into Ci. Therefore, we can call Ak the
Kirchhoff matrix. A CRN is called weakly reversible if
whenever there exists a directed path from Ci to Cj in
its reaction graph, then there exists a directed path from
Cj to Ci. We remark, that it is allowed that a column (let’s
say column i) of the matrix Y is the zero vector. In such
a case, node Ci is called the zero complex. Without going
into the details, we mention that for biochemical models,
the zero-complex was originally introduced to handle the
exchange of materials between the environment and the
system [9]. From a systems theoretic point of view, the
zero complex simply allows constant positive terms on the
right hand sides of kinetic ODEs.

The reaction vector corresponding to Ci → Cj , and
denoted by ek is defined as

ek = [Y ]·,j − [Y ]·,i, k = 1, . . . , r, (8)

where [Y ]·,i denotes the ith column of Y . The rank of
a reaction network denoted by s is the rank of the set
of vectors H = {e1, e2 . . . , er} where r is the number of
reactions. The stoichiometric subspace, denoted by S, is
defined as S = span{e1, . . . , er}. The positive stoichiomet-
ric compatibility class containing a x0 ∈ Rn is the following
set [10]:

(x0 + S) ∩ Rn
+,

where Rn
+ denotes the positive orthant in Rn. The de-

ficiency d of a reaction network is defined as [9], [10]:
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d = mni − l − s, where mni is the number of non-
isolated (i.e. reacting) vertices in the reaction graph, l is
the number of linkage classes (graph components) and s
is the rank of the reaction network. The deficiency is a
very useful measure for studying the dynamical proper-
ties of reaction networks and for establishing parameter-
independent global stability conditions.

Using the notation

M = Y ·Ak, (9)

equation (4) can be written in the form

ẋ = M · ψ(x), (10)

where M contains the coefficients of the monomials in
the polynomial ODE (4) describing the time-evolution of
the state variables. It is clear from the above description
that the system’s reaction graph and the corresponding
dynamics can be fully characterized by the matrix pair
(Y,Ak).

As it has been mentioned before, in [13], the authors give
a procedure for generating a possible reaction graph for a
given kinetic ODE system. (As we will see in subsection
II-E, this reaction graph is generally not unique) It is
worth sketching this algorithm in the same form as it was
given in [19]. Let us write the right hand side of a kinetic
system (1) as

fi(x) =

ri∑
j=1

mij

n∏
k=1

x
bjk
k , (11)

where ri is the number of monomial terms in fi. Let us
denote the transpose of the ith standard basis vector in
Rn as ei and let Bj = [bj1 . . . bjn].

Procedure 1 for constructing the canonical mecha-
nism [13]
For each i = 1, . . . , n and for each j = 1, . . . , ri do:

1) Cj = Bj + sign(mij) · ei
2) Add the following reaction to the graph

of the realization
n∑

k=1

bjkXk −→
n∑

k=1

cjkXk (12)

with weight |mij |, where
Cj = [cj1 . . . cjn].

The main significance of the above procedure is that
through defining and adding graph nodes and directed
edges in (12), it generates the Y matrix for a kinetic
system. We will use the principle of this procedure for
generating the complex composition matrix for a closed
loop kinetic system in section III.

D. Relations between graph structure and dynamical prop-
erties

The following results and conjectures illustrate the
potential of applying the theory of kinetic systems in
nonlinear control.

The Deficiency Zero Theorem [10] shows a very robust
stability property of a certain class of kinetic systems.
It says that deficiency zero weakly reversible networks
possess well-characterizable equilibrium points, and inde-
pendently of the weights of the reaction graph (i.e. that
of the system parameters) they are at least locally stable
with a known logarithmic Lyapunov function that is also
independent of the system parameters. Moreover, they
are input-to-state stable with respect to the off-diagonal
elements of Ak as inputs [4], it is straightforward to
asymptotically stabilize them by additional feedback [17],
and it is possible to construct efficient state observers for
them [5].

The Global Attractor Conjecture says that for any com-
plex balanced CRN (i.e. there exists a strictly positive
equilibrium point x∗ such that Akψ(x∗) = 0) and any
initial condition x(0) ∈ Rn

+, the equilibrium point x∗ is a
global attractor in the corresponding positive stoichiomet-
ric compatibility class.

The Boundedness Conjecture says that any weakly re-
versible reaction network with mass-action kinetics has
bounded trajectories.

Recently, both the Global Attractor Conjecture and the
Boundedness Conjecture were successfully proved for one
linkage class kinetic systems [1], [2].

The Deficiency Zero Theorem together with the Bound-
edness Conjecture underline the importance of weak re-
versibility. Therefore, we will concentrate on this property
in section III.

E. Dynamical equivalence and searching for preferred re-
alizations

It has been known since at least the 1970s that reac-
tion graphs with different structure and/or with different
weighting can induce exactly the same kinetic differential
equations. Therefore, we call two reaction networks given
by the matrix pairs (Y (1), A

(1)
k ) and (Y (2), A

(2)
k ) dynami-

cally equivalent, if

Y (1)A
(1)
k ψ(1)(x) = Y (2)A

(2)
k ψ(2)(x) = f(x), ∀x ∈ Rn

+

(13)

where for i = 1, 2, Y (i) ∈ Rn×mi have nonnegative integer
entries, A

(i)
k are valid Kirchhoff matrices, and

ψ
(i)
j (x) =

n∏
k=1

x
[Y (i)]kj

k , i = 1, 2, j = 1, . . . ,mi. (14)

In this case, (Y (i)A
(i)
k ) for i = 1, 2 are called dynamically

equivalent realizations of the corresponding kinetic vector
field f . It is also appropriate to call (Y (1), A

(1)
k ) a (dynam-

ically equivalent) realization of (Y (2), A
(2)
k ) and vice versa.
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It was shown in e.g. [20] that key properties such as the
number of directed edges or non-isolated vertices in the
reaction graph, the number of linkage classes, deficiency,
(weak) reversibility or complex balance are realization-
dependent properties. Therefore, optimization- (LP and
MILP) based computational procedures have been pro-
posed to decide the existence of and compute kinetic real-
izations with preferred structural properties [15], [22], [24].
The optimization framework for this is shortly summarized
below. We assume that we have a kinetic polynomial
system of the form (10). Then, dynamical equivalence and
the Kirchhoff property of Ak can be expressed using the
following linear constraints:

Y ·Ak = M (15)
m∑
i=1

[Ak]ij = 0, j = 1, . . . ,m (16)

[Ak]ij ≥ 0, i, j = 1, . . . ,m, i 6= j (17)

[Ak]ii ≤ 0, i = 1, . . . ,m, (18)

where Ak is the decision variable.

The constraints for weak reversibility can be constructed
as follows. We use the fact known from the literature that
a CRN is weakly reversible if and only if there exists a
vector with strictly positive elements in the kernel of Ak,
i.e. there exists b ∈ Rn

+ such that Ak · b = 0. Since b is
unknown, too, this constraint in this form is not linear.
Therefore, we introduce a scaled matrix Ãk with entries

[Ãk]ij = [Ak]ij · bj . (19)

It is clear from (19) that Ãk is also a Kirchhoff matrix
and that 1 ∈ Rm (the m-dimensional vector containing
only ones) lies in ker(Ãk). Moreover, it is easy to see that
Ãk defines a weakly reversible network if and only if Ak

corresponds to a weakly reversible network. Therefore, the
following constraints have to be fulfilled for Ãk

m∑
i=1

[Ãk]ij = 0, j = 1, . . . ,m

m∑
i=1

[Ãk]ji = 0, j = 1, . . . ,m

[Ãk]ij ≥ 0, i, j = 1, . . . ,m, i 6= j

[Ãk]ii ≤ 0, i = 1, . . . ,m.

(20)

Moreover, we set the following logical constraint for the
structural identity (i.e. the position of zero and non-zero
elements) of Ak and Ãk:

[Ak]ij > ε↔ [Ã]ij > ε, i, j = 1, . . . ,m, i 6= j, (21)

where ‘↔’ means ’if and only if’, and ε is a sufficiently
small positive threshold for distinguishing practically zero
and nonzero elements. The propositional logic expression

(21) can be translated into the following linear inequalities

0 ≤ [Ak]ij − εδij , i, j = 1, . . . ,m, i 6= j,

0 ≤ −[Ak]ij + uijδij , i, j = 1, . . . ,m, i 6= j. (22)

0 ≤ [Ãk]ij − εδij , i, j = 1, . . . ,m, i 6= j

0 ≤ −[Ãk]ij + uijδij , i, j = 1, . . . ,m, i 6= j,

where δij , i, j = 1, . . . ,m, i 6= j are boolean variables, and
uij are uniform upper bounds for the off-diagonal elements
of Ak and Ãk. Thus, the final set of decision variables in
this case is [Ak]ij , [Ãk]ij and δij for i, j = 1, . . . ,m, i 6= j.

Finally, by choosing an arbitrary linear objective func-
tion of the decision variables, weakly reversible realizations
of the studied kinetic system can be computed (if any
exists) in an MILP framework using the linear constraints
(15)-(18), (20) and (22).

III. Kinetic feedback design using optimization

In this section, the optimization problems for the design
of static and dynamic kinetic feedbacks will be presented.

A. Open loop model form

We assume that the equations of the open loop polyno-
mial system with linear input structure are given as

ẋ = M · ψ1(x) +Bu, (23)

where x ∈ Rn, is the state vector, u ∈ Rp is the input,
ψ1 ∈ Rn → Rm1 contains the monomials of the open-loop
system, B ∈ Rn×pand M ∈ Rn×m1 .

The problem that we will study is to design a static
or dynamic monomial feedback such that the closed loop
system is kinetic, and there exists a realization that ful-
fills a required property (in this particular case, weak
reversibility).

B. Static feedback design

We assume a polynomial feedback of the form

u = K · ψ(x), (24)

where ψ(x) = [ψT
1 (x) ψT

2 (x)]T with ψ2 ∈ Rn → Rm2

containing possible additional monomials for the feedback,
B ∈ Rn×m, and K ∈ Rp×(m1+m2). The closed-loop system
can be written as

ẋ = M · ψ1(x) +BK

[
ψ1(x)
ψ2(x)

]
. (25)

We can partition K into two blocks as

K = [K1 K2], (26)

where K1 ∈ Rp×m1 and K2 ∈ Rp×m2 . Using this notation,
the closed loop dynamics is given by

ẋ =
[
M +BK1 BK2

]︸ ︷︷ ︸
M

[
ψ1(x)
ψ2(x)

]
= M · ψ(x). (27)

The aim is to set the closed loop coefficient matrix M
such that it defines a kinetic system with ψ. It is clear
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from subsection II-C that this is possible if and only if M
can be factorized as M = Y · Ak where Y ∈ Zn×(m1+m2)

≥0 ,

and Ak ∈ R(m1+m2)×(m1+m2) is a valid Kirchhoff matrix.
Based on Procedure 1 summarized in subsection II-C,

we can give a simple method to generate matrix Y (and
thus ψ2 given by such monomials that do not appear in
(23)) using the monomials of the open loop system as
follows. Let col(A) denote the set of columns in a matrix
A. Moreover, let the monomials of (23)) given by

ψ1(x) =
n∏

i=1

x
bij
i , j = 1, . . . ,m1, (28)

and let ei denote the ith standard basis vector in Rn. Then,
we can build Y as follows

Procedure 2 for generating Y
Let col(Y ) = ∅
For each j = 1, . . . ,m1 do:

Let v(j) := [b1j b2j . . . bnj ]
T

For each i = 1, . . . , n do:

Let col(Y ) := col(Y ) ∪ v(j)
Let col(Y ) := col(Y ) ∪ (v(j) + ei)
If vji > 0 then let col(Y ) := col(Y )∪(v(j)−ei)

We remark that the above procedure gives only one feasi-
ble set of monomials, and Y (and therefore ψ2) can be fur-
ther extended by additional column vectors (monomials),
if necessary. After constructing Y , the kinetic property
of the closed loop system can be given as a set of linear
constraints:

Y ·Ak = M (29)
m1+m2∑

i=1

[Ak]ij = 0, j = 1, . . . ,m1 +m2 (30)

[Ak]ij ≥ 0, i, j = 1, . . . ,m1 +m2, i 6= j (31)

[Ak]ii ≤ 0, i = 1, . . . ,m1 +m2, (32)

where the unknowns are the controller parameter matrix
K contained in M and the Kirchhoff matrix Ak. Finally,
the weak reversibility of the reaction graph of the closed
loop system can be prescribed by setting the constraints
(20) and (22) for Ak. Thus, the feedback gain computation
and the search for weakly reversible realizations of the
closed loop system has been integrated into one MILP
optimization problem.

C. Computation of dynamic feedbacks

To increase the degree of freedom in transforming a
polynomial system to kinetic form via feedback, it is a
straightforward idea to apply a dynamic extension. In this
case, let us write the equations of the open-loop system as

ẋ(1) = M11ψ1(x(1)) +Bu, (33)

where x(1) ∈ Rn, M11∈Rn×m1 , ψ1 : Rn → Rm1 , B ∈ Rn×p,
and u ∈ Rp. Let us give the equations of the dynamic

extension as

ẋ(2) = M21ψ1(x(1)) +M22ψ2(x), (34)

where x(2) ∈ Rk, M21 ∈ Rk×m1 , M22 ∈ Rk×m2 . Moreover,

x =

[
x(1)

x(2)

]
∈ Rn+k, ψ(x) =

[
ψ1(x(1))
ψ2(x)

]
, (35)

where ψ2 : Rn+k → Rm2 . Let us again use a monomial
feedback in the form

u = Kψ(x) = K1ψ1 +K2ψ2, (36)

where K1 ∈ Rp×m1 , K2 ∈ Rp×m2 , and K = [K1 K2]. The
equations of the closed loop system are given by

ẋ =

[
M11 +BK1 BK2

M21 M22

]
· ψ(x) = M · ψ(x) (37)

The feedback gain computation and the weak reversibility
constraint is completely analogous to the static feedback
case described in subsection III-B with the only exception
that we have more unknowns (i.e. decision variables) in
matrices M21 and M22 giving generally more degrees of
freedom to solve the feedback design problem.

IV. Example

Let us consider the following polynomial system

ẋ1 = 1 + x1x2 + u (38)

ẋ2 = 1− 5x1x2 (39)

ẋ3 = 4x1x2 − 3x23 (40)

It is easy to see from (38) that for u = 0, the system has
no equilibrium points in the nonnegative orthant. Using
the notations of section III, we have:

ψ1(x(1)) = [1 x1x2 x
2
3]T , (41)

M11 =

 1 1 0
1 −5 0
0 4 −3

 , B =

 1
0
0

 (42)

For a dynamical feedback, let us introduce one new vari-
able x(2) = x4, and two additional monomials as follows:
ψ2(x) = [x21 x4]T . Then, after performing the procedure
presented in subsection III-C, we find that the MILP
optimization problem is feasible, and

K = [0 0 0 − 6 4], M21 = [0 0 0], M22 = [3 − 3]. (43)

This means that the feedback

u = −6x21 + 4x4 (44)

and the dynamic extension

ẋ4 = 3x21 − 3x4 (45)

results in a closed loop system that has a weakly reversible
realization with zero deficiency. Therefore, the controlled
system has bounded trajectories in the positive orthant
and moreover, it is globally stable with a known logarith-
mic Lyapunov function. The resulting weakly reversible
reaction graph of the closed loop system is depicted in
Fig. 1.

– 71 –

 ICCC 2013 • IEEE 9th International Conference on Computational Cybernetics • July 8-10, 2013 • Tihany, Hungary



Figure 1. Weakly reversible kinetic structure of the closed loop
system

V. Conclusions

Optimization based procedures have been proposed in
this paper to transform a polynomial nonlinear system into
(weakly reversible) kinetic form using static and dynamic
nonlinear feedbacks. The motivations behind the approach
were the following: firstly, the application of the known
strong results relating the graph structure and dynamics
of kinetic systems, and secondly, the utilization of recent
results of the authors on determining dynamically equiva-
lent reaction graphs with dynamically relevant structural
properties for autonomous kinetic systems. As a first step
in kinetic feedback design, we were focusing on weakly
reversible closed loop systems in this paper. It was shown
that the feedback gain computation and the search for
weakly reversible realizations of the closed loop system can
be integrated into one MILP optimization step. The main
limitation of the approach is the linear input structure of
the open loop system. (However, this requirement allows
us the direct use of MILP.) Further work will be devoted
to the targeted selection of additional monomials in ψ2

and to robustness with respect to system parameters (i.e.
what is the parameter range within which there exists a
preferred realization of the closed loop system).
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