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ABSTRACT
Summary: Chemical reaction network theory (CRNT) is widely
used in modeling and analysing complex biochemical systems such
as metabolic networks and cell signalling pathways. Being able
to produce all the biologically and chemically important qualitative
dynamical features, CRNs have attracted significant attention in
the systems biology community. It is well-known that the reliable
inference of CRN models generally requires thorough identifiability
and distinguishability analysis together with carefully selected prior
modeling assumptions. Here we present a software toolbox CRNreals
that supports the distinguishability and identifiability analysis of CRN
models using recently published optimization-based procedures.
Availability and Implementation: The CRNreals toolbox and
the associated documentation are available at http://www.iim.

csic.es/˜gingproc/CRNreals/ . The toolbox runs under the
popular MATLAB computational environment and supports several
free and commercial linear programming (LP) and mixed integer
linear programming (MILP) solvers.
Contact: szeder@scl.sztaki.hu

1 INTRODUCTION
The key importance of dynamics in the explanation of complex
phenomena occurring in living systems is now a commonly accepted
view (Alon, 2007) that underscores the importance of mathematical
model building and model parameter estimation (Banga and Balsa-
Canto, 2008). An important family of nonnegative nonlinear
dynamical systems is the class of deterministic chemical reaction
network (CRN) models obeying the mass-action law (Horn and
Jackson, 1972). Such networks can be used to describe pure
chemical reactions, but they are also widely used to model the
dynamics of intracellular processes, metabolic or cell signalling
pathways.

Chemical reaction network theory (CRNT) is originated in the
1970’s by the pioneering works of Horn, Jackson and Feinberg
(Horn and Jackson, 1972; Feinberg, 1987). Since then, CRNT have
gained an increasing attention, and many strong results have been
published in the field on the relation between network structure
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and qualitative dynamical properties (Shinar and Feinberg, 2010;
Conradi and Flockerzi, 2011).

It is known from the early literature that different CRNs can
produce exactly the same kinetic differential equations (Horn and
Jackson, 1972). This phenomenon is calledmacro-equivalence
or dynamical equivalence. However, effective optimization-based
procedures for the analysis and synthesis of dynamically equivalent
CRNs have been developed only recently, using the possibility
of transforming propositional logic statements encoding structural
properties into MILP problems (Szederkényi, 2009; Szederkényi
et al., 2011b,a). The primary purpose of our toolbox is to make these
numerical methods accessible in an easily usable way.

As a related software tool, first we have to mention the Chemical
Reaction Network Toolbox (Ellison and Feinberg, 2000) that
can produce detailed reports about the basic network properties,
multiple and degenerate steady states, injectivity and (strong)
concordance. Additionally, the open source ERNEST Toolbox
(Soranzo and Altafini, 2009) performs a detailed model analysis
of the input CRN by determining the basic system features and
by using the Deficiency Zero or Deficiency One Theorems. The
toolbox is also capable of running the Deficiency One Algorithm
where applicable. However, both of the above-mentioned toolboxes
assume that the structure of the analyzed network is a prioriknown,
therefore they have no functionality for examining dynamical
equivalence.

2 METHODS AND IMPLEMENTATION
The basic model form of CRN dynamics describing the time-
evolution of species is the following:̇x = Y · Ak · ψ(x),
where x ∈ R

n is the concentration vector of the species,
Y ∈ R

n×m, called the complex composition matrix, stores
the stoichiometric coefficients of the complexes,Ak ∈ R

m×m

contains the information corresponding to the weighted directed
graph of the reaction network, andψj(x) =

∏n

i=1
x
Yij

i , for j =
1, . . . , m (see, e.g. (Horn and Jackson, 1972) for more details).
Therefore the basic data structure used by the CRNreals toolbox
for uniquely representing a CRN is the matrix pair(Y,Ak). Two
reaction networks with distinct specific values of the reaction rate

c© Oxford University Press 2012. 1



Szederk ényi et al

Fig. 1. Dense realization of a biochemical switch analysed in (Szederkényi
et al., 2011a).Core reactions are indicated by thick directed edges.

coefficients are calleddynamically equivalent realizations, if they
give rise to the same set of differential equations.

Besides several utility functions for basic model analysisand
manipulation, the main high-level functionality of the toolbox
includes the following.

1. Algorithmically building the so-called canonical CRN mecha-
nism (Érdi and Tóth, 1989) from kinetic polynomial ordinary
differential equations.

2. Finding dense and sparse realizations containing the maximal
and minimal nonzero reaction rate coefficients (see Fig. 1).We
note that dense realizations give a unique super-structurewith
a fixed complex set, and that the CRN structure is unique if and
only if the structures of the dense and sparse realizations are
identical (Szederkényiet al., 2011b).

3. Finding reversible and weakly reversible realizations.The
existence of such realizations has a key effect on the
boundedness of solutions and on the robust stability of the
system (depending also on the deficiency).

4. Finding detailed balanced and complex balanced realizations
if they exist. These properties have also important stability
implications.

5. Computing dynamically equivalent realizations with the
minimal and maximal number of chemical complexes from a
previously defined complex set.

6. Finding the so-called ‘core’ and ‘non-core’ reactions of
the CRN. Core reactions are present in any dynamically
equivalent CRN realization and thus they are indispensable
components of the system, while non-core reactions can (at
least mathematically) be substituted by others (Szederkényi
et al., 2011a).

The toolbox was implemented in the MATLAB computational
environment becuase of the easy and straightforward manipulation
of matrices and the flexible setup of LP and MILP solvers. The
toolbox provides conversion functions for importing and exporting
mass-action model structures using the libSBML API. Therefore,
computed structures can be easily transferred for further analysis
e.g. to the ERNEST toolbox.

Fig. 1 shows the structure of the dense realization of a
biochemical switch model analyzed in (Szederkényiet al., 2011a).
The dense realization and the core reactions were determined using
the CRNFindSDRealization and CRNFindCoreReact-
ions functions, respectively (the detailed computations can be
found in Example 4 of the toolbox).

3 CONCLUSION
A software toolbox called CRNreals was presented in this note for
the analysis and synthesis of dynamically equivalent CRNs.The
tools provided by our software aid modeling and dynamical analysis
in the following areas: (i) they support the distinguishability and
identifiability analysis of CRN models by deciding whether agiven
CRN has a unique structure or not, (ii) they clearly extend the
application scope of CRNT results by searching for dynamically
equivalent network structures with preferred properties such as
density/sparsity, (weak) reversibility, detailed/complex balance,
etc., (iii) they allow the CRNT-based analysis of nonnegative
polynomial models possibly coming from application areas other
than (bio)chemistry. Further work in future versions will be focused
on making the applied numerical methods more effective, and
on including the recently developed algorithms related to linear
conjugacy thus extending the notion of dynamical equivalence.
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