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linear programming.
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INTRODUCTION

An important subclass of nonnegative polynomial dynamical systems is the set of chemical reaction network (CRN)
models obeying the mass-action law [1]. Such networks can be used to describe pure chemical reactions, but they
are also widely used to model the dynamics of intracellular processes, metabolic or cell signalling pathways [2].
Thus, CRNs are able to describe key mechanisms both in industrial processes and living systems. Being able to
produce all the important qualitative dynamical properties like stable and unstable equilibria, multiple equilibria,
bifurcation phenomena, oscillatory and even chaotic behaviour [3], CRN models are suitable for describing basically
any smooth bounded nonnegative dynamics [4]. This fact explains that CRNs have attracted significant attention not
only among chemists but in numerous other fields such as physics, or even pure and applied mathematics where
nonlinear dynamical systems are considered [5, 6, 7].

It has been known for long that different reaction networks can produce exactly the same kinetic differential equa-
tions [8, 1]. This phenomenon is also called macro-equivalence. In our terminology, CRNs with different parametriza-
tion are called dynamically equivalent, if they give rise to the same ODEs. A possible CRN (with a certain structure
and parametrization) having a given dynamics will be called a realization of that dynamics. Naturally, the phenomenon
of dynamical equivalence has an important impact on the identifiability of reaction rate constants: if a kinetic dynam-
ics have different dynamically equivalent CRN realizations, then the model, where the parameter set to be estimated
consists of all reaction rate coefficients, cannot be structurally identifiable [9] that is a fundamental obstacle to effec-
tive network inference. Moreover, since many important conditions on the qualitative properties of CRN dynamics are
realization-dependent, it is worth examining whether there exists a dynamically equivalent (or sufficiently ‘similar’)
realization that guarantees certain properties of the corresponding dynamics that are not directly recognizable from the
initial CRN or from the corresponding differential equations. Such an approach also gives us valuable help to set up
meaningful constraints that guarantee the structural uniqueness and identifiability of the examined network structure
[10].

Several optimization-based algorithms have been published lately for the computation of dynamically equivalent
or linearly conjugate CRN structures with prescribed chemically and/or dynamically relevant properties [11, 12, 13,
14, 15]. The aim of this paper is to introduce interval methods to extend the above mentioned results in order to
be able to scan through an interval of parameters (and thus through a family of models) instead of requiring exact
dynamical equivalence. The practical motivation behind this problem is that if we have a kinetic polynomial ODE
model estimated from concentration measurements, then the exact values of the coefficients are not precisely known.



In the present case, this uncertainty will be simply represented in the form of parameter intervals similarly to the study
on metabolic networks in [16].

BACKGROUND

Chemical reaction network representation and dynamical equivalence

Following the standard way [17], we characterize CRNs using the following three sets:

1. & ={Xi,...,X,} is the set of species or chemical substances.
2. ¢ ={Ci,...,Cy} is the set of complexes. Formally, the complexes are represented as linear combinations
of the species, i.e. C; = Z;?:l 0 X, i=1,...,m, where @;; are nonnegative integers and are called the

stoichiometric coefficients.

3. Z=A{(Ci,Cj) | C;,C; € €, and (; is transformed to C; in the CRN} is the set of reactions. The relation (C;,Cj) €
% will be denoted as C; — C;. Moreover, a nonnegative weight, the reaction rate coefficient denoted by k;; is
assigned to each reaction C; — C;. According to our convention, if the reaction C; — Cj is not present in the CRN
then k; = 0.

Given the above three sets, a weighted directed graph can be built & = (¥, &), where ¥ denotes the vertices which
are the complexes of the reaction network, ¥ = {Cy,Cs,...,Cy}. The set & contains the directed edges representing
the reactions between the complexes, i.e. (C;,Cj) € & if reaction C; — C; occurs. For each edge (C;,C;) of the CRN a
positive weight k;; is assigned as reaction rate for the reaction C; — Cj.

To describe the time-evolution of species concentration, we use the following widely applied factorization of the
kinetic ODEs [17]:

=Y A Px) =M -¥(x), (D)

where x = [X] € R" is the concentration vector of the species from .. Y € R"*"™ is called the complex composition
matrix where the jth column encodes the composition of the C; complex, namely Y; ; = «; ;. The Ay € R™™ matrix
stores the structure and parameters of the reaction graph. Ay is a column conservation matrix (also called the Kirchhoff
matrix of the CRN) and it is defined as follows:

R _Z;n:u#kil, if i=j
el = { ki, if i )

The last term in the differential equation is a monomial-type vector mapping defined by
vix) =]]x", j=1,....m 3)
i=1

A set of polynomial differential equations is called kinetic if it can be written in the form (1) with a matrix ¥
containing nonnegative integer entries, and a Kirchhoff matrix Ag.

If the set of applicable chemical complexes is previously given and fixed (which we assume in the paper), then the
condition for dynamical equivalence of two networks is simply given by Y ~A,(€1> =Y ~A,<€2>, where A,((l) and A,({z) denote
the Kirchhoff matrices of the first and second network, respectively.

HANDLING PARAMETER INTERVALS USING OPTIMIZATION

The starting point is that we have a kinetic ODE system x = M - \¥(x) where the coefficients of the monomials (i.e.
the elements of the M matrix) are not fixed, but they can belong to previously defined intervals. This way, a family
of polynomial models is given within which we can search for possible CRN structures with prescribed properties.
In this extended abstract, we are concentrating on determining the so-called dense and sparse realizations, containing
the maximal and minimal number of chemical reactions (i.e. nonzero reaction rate coefficients). As we will show, this
task can be written as a mixed integer linear programming (MILP) problem.



The linear constraints corresponding to mass action dynamics can be written as

Y Ar=M 4)
Z;'nzl[Ak}ij:()a j:17"'am (5)
My < My < M (6)
[A7);5 < [Axlij < [AF*]ij, (7

where M™" MM ¢ R"™™ and AZ“",A’,Z’“X € R™ ™ contain the lower and upper bounds for the elements of M and Ay,
respectively. The decision variables in (4)-(7) are the elements of M and the off-diagonal elements of Ay, while (4)
expresses the constraints corresponding to mass action dynamics, (5) represents the Kirchhoff property of Az, and (6),
(7) contain the bound (interval) constraints of the ODE coefficients and the reaction rate coefficients, respectively. Note
that a bounded interval-type constraint for the elements of A is only necessary technically if the final optimization
problem contains integer variables.

In order to track whether an individual reaction rate coefficient is zero or not, we introduce the binary variables &; J
fori,j=1,...,m, i# j. Then the logical constraint §;; =1 < k;; > 0 (where the symbol ‘<’ denotes ‘if and only
if”) can be translated to the following linear inequalities [18]:

OS[Ak]ij—E&'j, i,j:L...,m, l;é] (8)
0 < —[Ax]ij + [AY]ij8ij, 1,7=1,....m, i# ] 9)
where € > 0 is a small nonnegative threshold for treating reaction rate coefficients as zero or not. Finally, determining

the dense or sparse CRN structures leads to the maximization or minimization of the following objective function,
respectively:

F&)= Y & (10)
i, ]
i#]

EXAMPLE

Let us consider the following kinetic ODEs showing possible bistable behaviour taken from [19] and also examined
in [20]:

X1 = piX2 — Paxi — P3xX1X2 — paxi

iy = psxi — pexa, (1D
where all the parameters py,..., pe are positive real numbers. Using the algorithm described in [21], it is possible to
give the so-called ‘canonic’ reaction graph of (11) that is shown in Fig. 1.a. In the figure, the complex denoted by 0 is

the ‘zero complex’ for which all the o coefficients are zero (see e.g. [17] for the details). First, let us fix the parameters
of (11) randomly as: p;1 =1, pp =2, p3 = 1.5, pa = 0.7, ps = 1.3, pg = 2.2. It is visible from subplots 1.b and 1.c that
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FIGURE 1. (a) Canonic realization of eq. (11), (b) a possible sparse realization of eq. (11) with fixed parameters, (¢) dense
realization of eq. (11) with fixed parameters

the dynamically equivalent sparse and dense reaction structures for the fixed parameter set contain 6 and 13 reactions,
respectively.



Now, let us allow py,...,pg to be in the interval (0,3]. By minimizing the objective function (10), we obtain the
reaction structure shown in Fig. 2. It is apparent that this CRN realization contains only 4 reactions. The corresponding
parameter values are p; =3, pp =1, p3 =2.5, ps = 1.5, ps =1, ps = 1.5. Therefore, we found a parameter
combination in a set of models that allows us to realize the original kinetic model with the minimal number of
reactions. In other words, (11) cannot be described by less than 4 reactions if the model parameters are in the above
defined interval. It is interesting to mention, that it is mathematically proved in [19] that the structure shown in Fig.
2 is the smallest chemical reaction system with bistability, which coincides with our result. It is also important to
remark that the suggested optimization method is suitable for handling significantly larger networks than this example
(possibly consisting of several hundred complexes).

FIGURE 2. The sparsest reaction structure realizing (11) using intervals for pq,..., pg
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