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Abstract

Background: The inference of biological networks from high-throughput data has received huge attention during

the last decade and can be considered an important problem class in systems biology. However, it has been

recognized that reliable network inference remains an unsolved problem. Most authors have identified lack of

data and deficiencies in the inference algorithms as the main reasons for this situation.

Results: We claim that another major difficulty for solving these inference problems is the frequent lack of

uniqueness of many of these networks, especially when prior assumptions have not been taken properly into

account. Our contributions aid the distinguishability analysis of chemical reaction network (CRN) models

with mass action dynamics. The novel methods are based on linear programming (LP) , therefore they allow

the efficient analysis of CRNs containing several hundred complexes and reactions. Using these new tools and

also previously published ones to obtain the network structure of biological systems from the literature, we find

that, often, a unique topology cannot be determined, even if the structure of the corresponding mathematical

model is assumed to be known and all dynamical variables are measurable. In other words, certain mechanisms

may remain undetected (or they are falsely detected) while the inferred model is fully consistent with the

measured data. It is also shown that sparsity enforcing approaches for determining ‘true’ reaction structures are

generally not enough without additional prior information.

Conclusions: The inference of biological networks can be an extremely challenging problem even in the utopian

case of perfect experimental information. Unfortunately, the practical situation is often more complex than that,
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since the measurements are typically incomplete, noisy and sometimes dynamically not rich enough, introducing

further obstacles to the structure/parameter estimation process. In this paper, we show how the structural

uniqueness and identifiability of the models can be guaranteed by carefully adding extra constraints, and that

these important properties can be checked through appropriate computation methods.

Background

During the last decade, the wide availability of high-throughput biological data has made it possible to

produce new knowledge via a systems biology approach [1–3]. The inference of biochemical networks (i.e.

the mathematical mapping of the molecular interactions in the cell) is therefore a question of key

importance in the field. During the last decade, many methods have been developed to solve the

network-inference (sometimes called reverse-engineering [4]) problems arising in e.g. gene expression [5–13],

signal transduction [14–17] and metabolic networks [18–25].

In this context, it is particularly worth mentioning the DREAM initiative (Dialogue for Reverse

Engineering Assessments and Methods) [26], which targeted the problems of cellular network inference and

quantitative model building in systems biology. DREAM tries to address two fundamental questions: (i)

how can we assess how well we are describing the networks of interacting molecules that underlie biological

systems? and (ii) how can we know how well we are predicting the outcome of previously unseen

experiments from our models? Interestingly, one of the main conclusions of the DREAM3 event was that

the vast majority of the teams’ predictions were statistically equivalent to random guesses. Moreover, even

for particular problem instances like gene regulation network inference, there was no one-size-fits-all

algorithm [27].

The use of a performance profiling framework with the DREAM3 benchmark problems revealed that

current inference methods are affected by different types of systematic prediction errors [6]. These authors

conclude that reliable network inference from gene expression data remains an unsolved problem. Further,

they highlight two major difficulties in the case of gene-network reverse engineering: limited data (which

may leave the inference problem underdetermined), and the difficulty of distinguishing direct from indirect

regulation. Prill et al [27] further explored the issue of intrinsic impediments to network inference,

designating identifiability of certain network edges and systematic false positives as the main barriers.
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In this paper, we consider the widely used reaction kinetic formalism, where dynamic models of biological

networks are described by a set of ordinary differential equations (see, e.g. [28–30] and the related

literature). In particular, we consider the central question of the identifiability of such a network as

understood in the systems and control area [31, 32].

Identifiability analysis studies whether there is a theoretical chance of uniquely determining the parameters

of a mathematical model assuming perfect noise-free measurements and error-free modeling [33–35]. One of

the early approaches for identifiability testing of nonlinear models is based on the Taylor-series expansion

of the system output using the fact that the Taylor coefficients are unique [36]. A similar but more general

method uses the generating series or Volterra-series coefficients of the system which is the nonlinear

generalization of the Laplace-transform method used for linear systems [37]. In [38] a similarity

transformation approach is proposed that gives necessary and sufficient conditions on local and global

identifiability through the checking of nonlinear controllability and observability conditions. The

appearance of differential algebra methods in systems and control theory [39, 40] opened the possibility for

new types of identifiability tests that have gained significant popularity [41–43]. Further theoretical

developments in the field include the identifiability conditions of rational function state space models [43],

the possible effect of initial conditions on identifiability [44], and the application of Lie-algebras [45]. While

identifiability is the property of a certain parameterized model, a related notion called distinguishability

addresses the problem whether two or more parameterized models (with the same or with different

structure) can produce the same output for any allowed input [46–48]. The literature about identifiability

and distinguishability of biological and chemical system models is relatively wide: Compartmental systems

(that form a special subclass of general mass-action networks) are studied in [38, 49, 50]. The authors treat

general nonlinear CRNs in [51, 52] and [53] where it is shown that for thermodynamically meaningful

models, nonlinearity reduces the chance of indistinguishability compared to the linear case [54]. Geometric

conditions for the indistinguishability of CRNs are given in [55] with a related comment in [56]. Computer

algebra tools can be successfully used for the symbolic computations needed for identifiability and

distinguishability testing of complex models [57–60] .

The importance of identifiability has been recognized previously in systems biology, too [14, 61–64].

However, and despite a number of works illustrating ways to test the structural and practical identifiability

of models [65–67], a significant portion of modeling studies in systems biology continue to ignore this key

property.

It has been known for long that chemical reaction networks with different structure and/or parametrization
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may produce the same dynamical models describing the time-evolution of species concentrations [28, 55]. A

related problem, namely the non-unique structure of Petri nets associated to reaction network dynamics, is

studied in [68]. Additionally, the value of prior information in biological network inference was clearly

shown in [69, 70] by applying Bayesian network models. However, a constructive optimization-based

approach for the study of dynamically equivalent (or similar) reaction networks is a recent

development [71–74], which we further extend in this paper.

As a novelty, we present in this paper the definition and a computational method to find the so-called core

reactions that are present in any dynamically equivalent reaction network if the set of complexes is given a

priori. Moreover, a computationally improved method is introduced for the computation of dense

realizations of CRNs together with a modified algorithm to check the uniqueness of a constrained reaction

network structure. Structural non-uniqueness and the use of the proposed computational methods will be

illustrated with the help of biological models known from the literature.

The structure of the paper is the following. The ‘Methods’ section introduces the notions of chemical

reaction networks, structural identifiability and distinguishability of dynamical models. Moreover, it

contains the procedures to obtain core reactions of a network and its sparse and dense representations,

which rely on standard methods of linear programming (LP) and mixed integer linear programming

(MILP) [75–78]. The analysis of four biological system models can be found in the ‘Results and discussion’

section, followed by the conclusions.

Methods

The model class considered in this paper is of the following form

ẋ = f(x, u, θ), x(0) = x0 (1)

y = h(x, u, θ),

where x ∈ R
n is the state vector, y ∈ R

m is the output, u ∈ R
k is the input, and θ ∈ R

d denotes the

parameter vector. We assume that the functions f and h are polynomial in the variables x, u and θ.

Clearly, mass action type CRNs described in the following subsection (where θ is typically the set of

reaction rate coefficients), and simple deterministic models of gene regulation such as the one in Example 4

belong to this model class.

Basic notions and known results related to mass-action models
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In this subsection, the basic definitions for the description of CRNs will be given together with the already

published results on finding dynamically equivalent network realizations with certain prescribed properties.

Structural and dynamical description of mass-action networks

Following [79] and several other works, we will characterize CRNs with the following three sets.

1. S = {X1, . . . , Xn} is the set of species or chemical substances.

2. C = {C1, . . . , Cm} is the set of complexes. Formally, the complexes are represented as linear

combinations of the species, i.e.

Ci =

n
∑

j=1

αijXj, i = 1, . . . ,m, (2)

where αij are nonnegative integers and are called the stoichiometric coefficients.

3. R = {(Ci, Cj) | Ci, Cj ∈ C, and Ci is transformed to Cj in the CRN} is the set of reactions. The

relation (Ci, Cj) ∈ R will be denoted as Ci → Cj . Moreover, a nonnegative weight, the reaction rate

coefficient denoted by kij is assigned to each reaction Ci → Cj . Naturally, if the reaction Ci → Cj is

not present in the CRN then kij = 0.

The above characterization naturally gives rise to the following graph structure (often called

‘Feinberg-Horn-Jackson graph’ or simply reaction graph) of a CRN [29]. The weighted directed graph

G = (V,E) of a CRN consists of a finite nonempty set V of vertices and a finite set E of ordered pairs of

distinct vertices called directed edges. The vertices correspond to the complexes, i.e. V = {C1, C2, . . . Cm},

while the directed edges represent the reactions, i.e. (Ci, Cj) ∈ E if complex Ci is transformed to Cj in the

CRN. The positive reaction rate coefficients kij are assigned as weights to the corresponding directed edges

Ci → Cj in the graph. (Edges corresponding to zero rate coefficients are not drawn in the reaction graph.)

A set of complexes {C1, . . . , Ck} is called a linkage class of a CRN, if the complexes of the set are linked to

each other in the reaction graph but not to any other complex. It is remarked that loops (i.e. directed

edges that start and end at the same vertex) are not allowed in reaction graphs.

Assuming mass-action kinetics, the following dynamical description will be used to describe the

time-evolution of species concentrations [29, 79]:

ẋ = Y · Ak · ψ(x), (3)
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where xi denotes the concentration of species Xi. Let us denote the (i, j)th element of an arbitrary matrix

W by Wi,j , where i is the row index and j is the column index. The jth column of Y contains the

composition of complex Cj , i.e. Yi,j = αji. The structure and parameters of the reaction graph are stored

in the column conservation matrix Ak (also called the Kirchhoff matrix of the CRN) as follows

[Ak]i,j =

{

−
∑m

l=1,l 6=i kil, if i = j

kji, if i 6= j.
(4)

Finally, ψ : Rn 7→ R
m is a monomial-type vector mapping defined by

ψj(x) =

n
∏

i=1

x
Yi,j

i , j = 1, . . . ,m. (5)

Dynamical equivalence of mass-action networks

As it is known even from the early literature [28], CRNs with different structures and/or parametrization

can give rise to the same kinetic differential equations. Therefore, we will call two CRNs given by the

matrix pairs (Y (1), A
(1)
k ) and (Y (2), A

(2)
k ) dynamically equivalent, if

Y (1)A
(1)
k ψ(1)(x) = Y (2)A

(2)
k ψ(2)(x) = f(x), ∀x ∈ R̄

n
+, (6)

where for i = 1, 2, Y (i) ∈ R
n×mi have nonnegative integer entries, A

(i)
k are valid Kirchhoff matrices, and

ψ
(i)
j (x) =

n
∏

k=1

x
[Y (i)]k,j

k , i = 1, 2, j = 1, . . . ,mi. (7)

In this case, (Y (i)A
(i)
k ) for i = 1, 2 are called realizations of a kinetic vector field f (see, e.g. [80] for more

details). It is also appropriate to call (Y (1), A
(1)
k ) a realization of (Y (2), A

(2)
k ) and vice versa.

We will assume throughout the paper that the set of complexes (i.e. the stoichiometric matrix Y ) is fixed

and known before the computations. In this case, the condition (6) for dynamical equivalence can be

written as

Y ·A
(1)
k = Y · A

(2)
k =:M, (8)

where A
(1)
k and A

(2)
k are valid Kirchhoff matrices and M is the invariant matrix containing the coefficients

of the monomials.

Among the dynamically equivalent realizations, it is important to recall the following characteristic ones

described in [71, 72]. A sparse realization contains the minimal number of reactions that is needed for the

exact description of the corresponding dynamics (3). A dense realization contains the maximal number of
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reactions among dynamically equivalent realizations with a fixed complex set given by Y . While sparse

realizations are generally structurally non-unique (as it will be illustrated for the constrained case, too, in

Example 1), the structure of dense realizations with a given complex set is unique, and it contains every

possible dynamically equivalent structure as a proper subgraph (i.e. a dense realization is a kind of

super-structure) [71].

Known computation approaches for finding preferred CRN realizations

Here we briefly summarize the already published results corresponding to the computation of preferred

dynamically equivalent CRN realizations (more details of these methods can be found in the

publications [71–73,81]). The computation of dense and sparse realizations can be traced back to mixed

integer linear programming (MILP) where the decision variables are the non-diagonal elements of Ak, the

linear constraints encode the kinetic properties of the model, and the objective function contains integer

variables for minimizing/maximizing the number of nonzero reaction rate coefficients [72]. It is remarked

that the computation of sparse realizations is an NP-hard problem, where generally mixed integer linear

programming cannot be avoided [82]. There exist certain conditions under which the problem can be

solved in polynomial time [83] but these are often not fulfilled in the case of CRNs. Moreover, there are

effective heuristics to address the problem [84], but convergence to one of the truly sparsest structures is

not guaranteed. Luckily, the MILP-based computation of sparse CRN realizations can be parallelized

effectively thus allowing a larger number of complexes to be treated. The computation of realizations

having the minimal/maximal number of complexes or the reversibility property can also be solved in the

MILP framework [71]. Moreover, it was shown in [73] that finding detailed balanced and complex balanced

realizations of CRNs is a simple linear programming (LP) problem. Finally, weakly reversible dynamically

equivalent CRN realizations can also be determined (if they exist) using MILP [85].
Constrained realizations of CRNs and testing their structural uniqueness

The following is a straightforward extension of the results published in [71]. To prove the uniqueness of a

CRN structure given a set of simple constraints, we have to extend the notions of dense and sparse

realizations. The constraint set denoted by K will be used for the exclusion of selected reactions from the

CRN, i.e. it is of the form:

K = {[Ak]i1,j1 = 0, . . . , [Ak]is,js = 0}, (9)

where s is the number of individual constraints, and ik 6= jk for k = 1, . . . , s. Now we can introduce the

following definitions. A dynamically equivalent constrained realization of a CRN (Y,Ak) is a reaction

7



network (Y,A′
k) such that Y · Ak = Y ·A′

k and the prescribed constraints K in the form of eq. (9) are

fulfilled for A′
k. A dynamically equivalent constrained dense realization of a CRN (Y,Ak) is a constrained

realization that contains the maximal number of nonzero elements in A′
k. Similarly, the constrained sparse

realization is a constrained realization with the minimal number of nonzeros in A′
k. To characterize

constrained dense/sparse realizations, the results of [71] can be adapted easily as follows.

P1 Given a CRN (Y,Ak) and a constraint set K, the unweighted reaction graph of any constrained

realization is the subgraph of the unweighted reaction graph of the constrained dense realization.

P2 If the sets of complexes and constraints are fixed, then for any CRN, the structure of the constrained

dense realization is unique.

P3 The reaction graph structure of a CRN with given sets of complexes and constraints is unique if and

only if the unweighted directed graphs of its constrained dense and sparse realizations are identical.

The proofs of P1, P2 and P3 follow similar (although not completely identical) lines that were published

in [71], and they are given for convenience in subsection A.1 of the Appendix at the end of the paper.

New concepts and computation results related to dynamically equivalent networks

This subsection contains new methodological contributions that extend the previously published results.
Making the computation of dense realizations more efficient

Computing dense realizations is treated originally also in a MILP-framework in [72]. However, using the

structural uniqueness of such realizations given by P1, it is easy to give a polynomial-time algorithm based

on a finite series of linear programming (LP) optimization steps. The idea of the improved algorithm is

simple: the reaction Ci → Cj belongs to the (constrained) dense realization if and only if there exists any

dynamically equivalent (constrained) realization where [Ak]j,i > 0. The result directly follows from the fact

that the unweighted reaction graphs of (constrained) dense realizations give a unique super-structure.

This allows us to formulate a polynomial-time method based on pure LP to determine (constrained) dense

realizations. The details of the computations corresponding to this improved method are described in

subsection A.2 of the Appendix.

Using the notion and described properties of constrained realizations, we are now able to test the

structural uniqueness of given CRNs. To accomplish this, only the (constrained) dense and sparse

realizations have to be computed and compared (see P3). This method will be illustrated in Example 2.
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Definition and computation of core and non-core reactions

We will call a reaction a core reaction, if it is present in any dynamically equivalent realization of a CRN

with a given complex set (and possibly an additional constraint set). Other reactions, the rate coefficient of

which can be zero in certain realizations, are called non-core reactions. It clearly follows from the

definition, but is remarked separately that the set of core reactions is generally not identical to the set of

reactions of a sparse realization. The identification of core reactions of a CRN has not been published yet,

therefore we give the outline of the corresponding computation method. Firstly, a dense realization of the

network has to be computed to get all the mathematically possible reactions. Then, for each reaction

Cp → Cq in the dense realization, the feasibility of the following constraint set has to be checked:

Y · Ak =M (10)
m
∑

i=1

[Ak]i,j = 0, j = 1, . . . ,m (11)

[Ak]i,j ≥ 0, i, j = 1, . . . ,m, i 6= j, (i, j) 6= (q, p) (12)

[Ak]i,i ≤ 0, i = 1, . . . ,m (13)

[Ak]q,p = 0, (14)

where the matrix Ak contains the decision variables, and the known matrices are Y and M . It is

well-known that this task is equivalent to an LP problem where the objective function is an arbitrary linear

function of the elements of Ak [76]. Then, reaction Cp → Cq is a core-reaction if and only if the set defined

by (10)-(14) is empty (i.e. the corresponding LP problem is infeasible), because in this case there is no

dynamically equivalent CRN realization where Cp → Cq is not present. We remark here that the presented

procedures for determining constrained dense realizations and computing core reactions are parallel in their

original forms since the individual LP steps are independent of each other. Therefore the proposed

methods can be very effectively implemented in a grid or multi-core hardware environment [86].
Basic concepts on structural identifiability and distinguishability

Let us recall eq. (1). Shortly speaking, global structural identifiability means that

ŷ(t|θ′) ≡ ŷ(t|θ′′) ⇒ θ′ = θ′′, (15)

where

ŷ(t|θ) = h(x(t, θ), u(t), θ), (16)
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and x(t, θ) denotes the solution of (1) with parameter vector θ. According to (15), a structurally

non-identifiable model can produce exactly the same observed output with different parametrization. This

is clearly a fundamental obstacle of determining the true model parameters from measurements even if the

selected model structure is considered to be correct.

Let us denote two parameterized models with possibly different structure by M1(θ1) and M2(θ2),

respectively, where θi denote the parameter vector. Then M1 is called distinguishable from M2 if for any

θ1 (possibly except for a finite number of values) there is no θ2 such that the input-output behaviour of

M1 and M2 is the same [47]. Clearly, if M1 and M2 are indistinguishable and both model structures are

feasible in a certain application, then there is no way to decide from input-output measurements to which

one corresponds to the true model that generated the data.

In the case of CRNs, we will assume that all species concentrations are measured (i.e. y = x), the input is

zero (i.e. we study autonomous systems), and that the set of possible chemical complexes is given.

Generally, the model parameter vector θ is the set of reaction rate coefficients which are the off-diagonal

elements of Ak. Clearly, if a CRN has several different dynamically equivalent realizations, then these

realizations are not distinguishable without additional constraints, and the model cannot be identifiable if

all the rate coefficients are to be determined [55]. This situation can be improved by using prior

knowledge in the form of adding further constraints on the model parameters such as the simple ones given

by eq. (9). This way, the number of parameters to be estimated can be reduced and/or their feasibility

region can be shrinked. It is important to note that although the structural uniqueness of a CRN definitely

reduces the degree of non-identifiability (since zero and non-zero parameters are separated), it does not

necessarily imply structural identifiability [53], and this latter property has to be checked by further

numerical methods. [31, 32].

Results and Discussion

In this section, the application of the previously mentioned methods for finding different dynamically

equivalent structures will be illustrated using biological models taken from the literature. The detailed

numerical data corresponding to Examples 1-3 are contained in a standard spreadsheet form with brief

explanations in Additional file 1: CRN data.xls.
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Example 1: a positive feedback motif

The first example is a positive feedback motif shown in Fig. 1.a and taken from [87] containing 5 species,

11 complexes and 9 reactions. This basic motif is also discussed in [88]. The network contains a gene that

promotes its own transcription and translation after dimerization. In the model, X1 and X2 denote the

concentrations of protein monomers and dimers, respectively. X3 and X4 are the concentrations of

unoccupied and occupied promoters, respectively, and X5 corresponds to the mRNA. The degradation of

dimers is ignored. The roles of the reaction rate coefficients are the following: k1 and k2 are the

dimerization and re-dimerization rates, respectively. k3 and k4 are the binding and dissociation rates of the

dimer to the promoter, while k5 and k6 denote the activated and basal transcription rates, respectively. k7

is the degradation rate of the mRNA, k8 is the degradation rate of the monomer, and k9 denotes the

translation rate. The time-evolution of the species-concentrations is described by the following ODEs:

ẋ1 = −2k1x
2
1 + 2k2x2 + k9x5 − k8x1 (17)

ẋ2 = k1x
2
1 − k2x2 − k3x2x3 + k4x4 (18)

ẋ3 = −k3x2x3 + k4x4 (19)

ẋ4 = k3x2x3 − k4x4 (20)

ẋ5 = k5x4 + k6x3 − k7x5. (21)

Our starting point is that we have a dynamic model of the process in the standard polynomial form of

(17)-(21), the parameters of which are known from the results of identification and/or from literature. As

we will see below, without well-defined constraints on the possible set of complexes and reactions, exactly

the same dynamics can be realized in principle by a wide range of mechanisms.

The matrices characterizing the stoichiometry and graph structure of the system are the following

(indicating only the nonzero non-diagonal elements of Ak):

Y =













2 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0
0 1 0 0 0 1 0 1 0 1 0













(22)

[Ak]2,1 = k1, [Ak]1,2 = k2, [Ak]4,3 = k3, [Ak]3,4 = k4, [Ak]5,4 = k5, (23)

[Ak]7,6 = k6, [Ak]9,8 = k7, [Ak]9,10 = k8, [Ak]11,8 = k9. (24)

We used the following parameter values that were taken from the Appendix of [87].

k1 = k2 = k3 = k4 = 107, k5 = 1.7, k6 = 0.025, k7 = 0.1, k8 = 0.05, k9 = 0.5, (25)
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where the units of measure are [M−1] for k1, . . . , k4, and [min−1] for k5, . . . , k9. The dynamically equivalent

dense realization of the network is shown in Fig. 1.b, where the 8 core and 4 non-core reactions are

indicated separately. The three different sparse structures are shown in the subplots of Fig. 2. The first

subplot is identical to the original structure shown in Fig. 1.a. This means that the mechanism cannot be

described exactly with less than 9 reactions. It turns out from the second and third subplots that (at least

mathematically), the degradation of mRNA is dynamically not a necessary element of the model. However,

the biological plausibility of the mathematically possible structures and reactions always has to be carefully

examined.

As it is expected, the possible structures of sparse/dense realizations and the corresponding core and

non-core reactions can change with the modification of parameter values. This is illustrated in Fig. 3.a,

where the following randomly generated parameter values were used:

k1 = 18.9, k2 = 7.1, k3 = 15.4, k4 = 12.7, k5 = 10.6, k6 = 3.5, k7 = 11.3, k8 = 9.1, k9 = 4.0. (26)

It is visible that the structure of the dense realization is the same as in Fig. 1.b but the core reactions are

different from the ones shown there. Here the degradation of mRNA is described by a core reaction but

interestingly, the reaction corresponding to translation is not a core one. Naturally, this implies that the

possible sparse realization structures with the second parametrization are different from the ones shown in

Fig. 2. Note that here the only goal was to illustrate the possible change of core and non-core reactions,

and therefore the biological relevance of the parameter values in eq. (26) is not assumed in this case.

In the next step, let us assume that another complex, namely X2 +X4 is allowed in the model (again not

necessarily assuming biological meaningfulness in this particular case). With the addition of this new

complex, the stoichiometric matrix of the system can be written as

Y ′ =













2 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 1
0 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 1
0 1 0 0 0 1 0 1 0 1 0 0













. (27)

The dense CRN realization of the dynamics (17)-(21) with the updated Y ′ matrix given in eq. (27) using

the original parameters described in (25) is shown in Fig. 3.b, where the core and non-core reactions are

again indicated. It is apparent that now there are only 5 core reactions, and none of the remaining 12

reactions are essential to represent the dynamics (17)-(21). This means that the introduction of a new

complex increased the flexibility of the network (i.e. mathematically, the majority of the reactions can be

substituted by other ones and the network still maintains its original dynamics). Of course, not any
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combination of the non-core reactions can be omitted from the network, because the sparse realizations

show that at least 9 reactions are needed to keep dynamical equivalence. It can be computed easily that

the theoretical maximum number of sparse realizations with different structures is
(

12
17−9

)

= 495. However,

as the numerical experiments show, majority of these structures do not give a practically feasible

dynamically equivalent realization.

The above results clearly show that certain mechanisms may remain undetectable (or they are falsely

detected) even if we have complete species concentration measurements and full information about possible

complex formation, that are not very realistic assumptions. Moreover, the sparsest dynamically equivalent

structure of mass-action models is not unique, therefore sparsity enforcing approaches for determining

‘true’ reaction structures are not enough in themselves without the necessary amount of prior information

given in the form of additional constraints. The practical situation is most often even worse than that,

since the measurements are typically incomplete, noisy and sometimes dynamically not rich enough, that

may introduce further obstacles to the structure/parameter estimation process [66, 89].

Example 2: a biochemical switch in yeast cells

The following example is taken from [90] and it describes a ‘switching device’ in yeast cycle regulation. The

detailed system description can be found in [90] and in the accompanying supporting information

document. The order of state variables, corresponding to concentrations, is the same as in the original

article, and is shown below:

x1: [Sic1], x2: [Sic1P], x3: [Clb], x4: [Clb·Sic1], x5: [Clb·Sic1P], x6: [Cdc14], x7: [Sic1P·Cdc14], x8:

[Clb·Sic1P·Cdc14], x9: [Clb·Sic1·Clb]. The original structure with 18 reactions is shown in Fig. 4.a. The

Y matrix of the network is given by

Y =





























0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0





























. (28)

The non-zero off-diagonal elements of Ak are (the diagonal ones can be computed using the column
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conservation property):

[Ak]2,1 = k3, [Ak]2,3 = k2, [Ak]3,2 = k1, [Ak]4,5 = k5, [Ak]5,4 = k4, [Ak]6,5 = k6,

[Ak]6,8 = k9, [Ak]7,8 = k8, [Ak]8,7 = k7, [Ak]9,10 = k11, [Ak]10,9 = k10, [Ak]11,10 = k12, (29)

[Ak]12,13 = k14, [Ak]13,12 = k13, [Ak]14,13 = k15, [Ak]15,16 = k17, [Ak]16,15 = k16, [Ak]17,16 = k18.

Since there are no parameter values published in [90], we used the following randomly selected rate

coefficients:

k = [4.1 3.2 6.7 7.3 3.8 2.4 4.5 5.1 6.2 7.7 8.6 9.5 2.4 4.9 5.8 10.2 6.3 8.5]T . (30)

The structure of the dense realization indicating the 12 core and 16 non-core reactions can be seen in Fig.

4.b.

It can be shown using the computational methods described in the ‘Methods’ section that the only possible

sparse realization structure is identical to that of the original network. Therefore in this special case, there

is only one possible reaction structure containing the minimal number of reactions. A straightforward

approach to ensure the structural uniqueness of the whole network is to exclude all reactions that are not

meaningful from the examined application’s point of view or that are contradictory to modeling

assumptions. For the current example, the removal of an unexpectedly low number of reactions is enough

to obtain a unique structure. It can be shown by computing the corresponding constrained dense and

sparse realizations, that excluding the reactions X5 → X3 +X5, X4 → X3 +X4, X2 +X3 → X3 +X5, and

X3 +X1 → X3 +X4 is enough to make the reaction structure unique that is identical to the original

structure shown in Figure 4. In other words, the exclusion of 4 well-selected reactions leads to the removal

of an additional 6 reactions leaving only 18.

Example 3: a repressilator structure with 5 nodes and auto-activation

Consider the repressilator model shown in Fig. 5 with 5 nodes where also auto-activation is assumed.

Similarly to [91], we make the following assumptions: cooperative regulator binding, genes are present in

constant amounts, transcription and translation are modeled by single-step kinetics, and finally, proteins

are degraded by first order reactions. We note that complex dynamic phenomena such as multiple steady

states or oscillations have been shown with a wide range of parameters in similar systems, especially in the

case when the number of genes is odd [91]. We also assume that there is some protein production (leakage)

when both the activator and the repressor are bound to the genes (although this assumption does not

affect the main results of the forthcoming analysis). It is clearly shown in [92] that kinetic models with
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simple mass-action kinetics very effectively describe complex dynamics in genetic regulatory networks,

therefore we follow the same modeling methodology. Using the assumptions listed above, the CRN

describing the system is the following:

Gi + Pi

ki,1

⇄

ki,2

GA
i (auto-activation 1) (31)

GA
i

ki,3

→ GA
i + Pi (protein production 1) (32)

Gi + Pj

ki,4

⇄

ki,5

GR
i (repression 1) (33)

GR
i + Pi

ki,6

⇄

ki,7

GAR
i (auto-activation 2) (34)

GA
i + Pj

ki,8

⇄

ki,9

GAR
i (repression 2) (35)

GAR
i

ki,10

→ GAR
i + Pi (protein production 2) (36)

Pi

ki,11

→ 0 (protein degradation) (37)

for the index pairs (i, j) ∈ {(1, 5), (2, 1), (3, 2), (4, 3), (5, 4)}. In eqs. (31)-(37), Gi and Pi represent the ith

gene and protein, respectively. For the genes, superscripts A and R refer to activated and repressed states,

respectively. Let us denote with ri,k the reaction with rate coefficient ki,k in eqs. (31)-(37).

Two cases with different sets of randomly selected rate coefficients were studied, and the structures of the

obtained results were the same. The numerical details can be found on the 3rd sheet of Additional File 1:

CRN data.xls. The total number of reactions for the repressilator model is 55 that is equal to the number

of reactions in the sparse realization. The dense realization contains 70 reactions which means that there

are a maximum of 15 more mathematically possible reactions while maintaining exactly the same dynamics

as the original biological model. These additional reactions are the following:

GAR
i → GR

i , Pi +GR
i → GR

i , Pi +GR
i → Pi +GAR

i , for i = 1, . . . , 5. (38)

The number of core reactions in the model are 45. The set of non-core reactions (that, in principle can be

substituted by other reactions) is given by

GAR
i ⇆ GR

i + Pi, i = 1, . . . , 5. (39)
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In particular, it is easy to show (see also Additional File 1: CRN data.xls) that reactions GAR
i → GR

i + Pi

and GAR
i → GR

i are always indistinguishable. Similarly, the reaction GR
i + Pi → GAR

i can be substituted

with the combination of reactions GR
i + Pi → GR

i and GR
i + Pi → GAR

i + Pi. It can be seen from these

results that in order to have a model with unique structure, it is very important to a priori exclude all

reactions that are not meaningful for the particular application.

Example 4: sparse linear gene regulation network models

For structural identification, gene regulation networks are often modeled as linear time-invariant

systems [84, 93] of the form

ẋ = Ax +Bu, (40)

where A ∈ R
n×n contains the connectivity information of the network. Ai,j > 0 indicates activation from

node j to node i, while Ai,j < 0 means repression, diagonal elements of A represent auto-activation or

auto-repression depending on their sign. x ∈ R
n is the fully or partially measurable state of the system

describing the time evolution of concentrations, and the input part Bu represents experimental

perturbation (e.g. activation) of the genes. It is also a common assumption that the network is ‘sparse’

which means that there are only a limited number of activation or repression links between the nodes (i.e.

the matrix A is ‘sparse’, too). But assuming sparsity can be a serious obstacle to identifiability as it will

be shown.

First, consider the ‘true’ genetic network structure that was simulated and inferred in [93] and that is

redrawn in Fig. 6.a. From the figure, we can reconstruct the structure of the corresponding A matrix as

follows (the exact parameter values are not described in the paper, but the investigated structural

properties do not depend on the individual parameter values)
































∗ 0 0 0 0 0 0 0 + 0
0 0 0 0 0 0 0 + + 0
0 0 ∗ 0 0 − 0 0 0 0
0 0 0 0 0 0 + 0 0 +
0 0 0 + 0 0 0 − 0 0
0 0 0 0 0 ∗ 0 0 + 0
0 0 + + 0 0 0 0 0 0
0 0 0 0 − 0 − 0 0 0
0 0 0 0 0 − + 0 0 0
0 0 0 0 0 0 + − 0 0

































, (41)

where ‘+’, ‘-’ and ‘*’ represent positive, negative and nonzero (but otherwise undefined) parameter values,

respectively. If there are no prior assumptions about the structure of the interconnection matrix or about
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the relations between certain parameters, we can easily test the structural non-identifiability of the model

by checking whether all nodes are reachable from the perturbed node on a directed path in the

interconnection graph or not [33]. The reachability of nodes can be tested by several methods, e.g. a

depth- or breadth-first-search (DFS or BFS) of the corresponding directed graphs that are fast

polynomial-time algorithms [94]. To give a very simple example, it is clear from Fig. 6.a, that if nodes 1 or

2 were excited by an input signal, then the connections between the other nodes (3-10) would be

undetectable by any method, however sophisticated it is. To examine whether situations like this one are

common, we generated 10000 random state space models using the same method, and assuming zero initial

conditions as in [93]. The connectivity of the corresponding directed graphs was tested using DFS. For 10

nodes and 2 nonzero elements in each row of A (i.e. N = 10, K = 2), we obtained that 73.38% of the

generated models are structurally non-identifiable. The histogram showing the number of reachable states

is shown in Fig. 6.b. The situation is dramatically improving if K is increased to 3 as shown in Fig. 6.c. In

this case, around 17% of the models are structurally non-identifiable. When we have 20 nodes and 5

nonzero elements in each row of A (the second case investigated in [93]), then only 1.6% of the generated

models are structurally non-identifiable. The results show that ‘sparsity’ has a clearly negative effect on

structural identifiability because of limited information transmission between nodes. And finally, we did

not speak at all about practical identifiability which is known to be a challenging issue even if the required

structural properties are fulfilled [66].

Relation between high level networks and CRN structure

As shown in Example 3, the various possible dynamically equivalent CRN structures do not correspond to a

different GRN structure, if all species concentration measurements are available and the mapping described

in [92] is used for transforming the models into each other. Hence, exact matching of the dynamics of

different GRN structures may generally be a too severe restriction. To extend this line of research, the

relaxation of dynamical equivalence to ‘close dynamical similarity’ seems to be more meaningful but the

corresponding definitions and computational methods are much more complex than in the case of

dynamical equivalence. One promising recent approach to assess dynamical similarity of CRNs (that also

adds more degrees of freedom to the computations) is the concept of ‘linear conjugacy’ [74]. However, it

might happen that dynamically completely equivalent GRN structures will be shown in the future.
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Conclusions

It has been shown in this paper using illustrative examples that biological network structures modeled by

CRNs often cannot be uniquely determined even if the structure of the corresponding mathematical model

is assumed to be known and all dynamical variables are measurable. The structural uniqueness and

identifiability of the models often require additional constraints.

The main new contributions of the paper are the following. Firstly, core reactions present in any

dynamically equivalent CRN realizations with a given complex set have been defined and a simple

procedure with polynomial time-complexity has been given for determining them. Clearly, the core

reactions are mandatory elements of every dynamically equivalent CRN realization assuming a fixed

complex set. Secondly, a polynomial-time method based on linear programming for computing dense

realizations has been outlined that is more scalable and therefore presents a clear improvement over the

previously used MILP-based method. As an additional minor extension of previous results, constrained

realizations of CRNs have been defined, and a computational method has been proposed to check the

uniqueness of constrained realizations.

The presented concepts and algorithms were illustrated on previously published models describing

biological processes. It was shown that the set of core reactions may change with the modification of the

complex set. The examples also show that the frequently applied sparsity assumption alone is not enough

for structural uniqueness of CRNs. Moreover, in the case of simple linear genetic network models, too

sparse structures can degrade identifiability properties. The results further support the fact that as much

prior information as possible should be incorporated in structural and parametric inference problems.
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Appendix
A.1 Proofs of P1, P2 and P3

Proof of P1. Let us denote the ith column of any matrix W by W·,i. The proof is based on the following

well known fact of linear algebra. Consider an inhomogeneous set of linear equations:

Ax = b (42)

If x = p is any particular solution of (42) then the entire solution set for (42) can be characterized as

{p+ v | v is any solution of Ax = 0} (43)

The matrix equation Y ·Ak =M (see eqs. (3) and (8)) obviously defines m sets of linear equations of the

form

Y · [Ak]·,i =M·,i, i = 1, . . . ,m (44)

Let us choose any i indexing the sets of equations in (44). For simplicity, let p = [Ak]·,i, b =M·,i. Let us

assume that there are z elements of the constraint set (9) where jk = i for k = 1, . . . , s. (If z is 0, then we

get the earlier result proved in [71].) These constraints can be expressed by further linear equations of the

form:

[Ak]h,i = 0, h = 1, . . . , z (45)

The equation sets (44) and (45) can be written into a single set of equations as

Ȳ · p = b̄ (46)
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where Ȳ ∈ R
(n+z)×m and b̄ ∈ R

n+z . Let us assume now that p is a dense solution for (46), i.e. it contains

the maximal possible number of nonzero elements. If p has no zero elements, then the result to be proved

is trivially satisfied. Therefore, without the loss of generality we can assume that the first l < m elements

of p are nonzero, while the rest are zero, i.e. pj 6= 0 for j = 1, . . . , l, and pj = 0 for j = l+ 1, . . . ,m. This

can always be achieved by the appropriate reordering of the elements of p. Assume now that p′ ∈ R
m is

also a solution for (46), but p′c 6= 0 for some c ∈ Z, l + 1 ≤ c ≤ m. Then p′ = p+ v, where Ȳ · v = 0, and

vc 6= 0. In this case, p′′ = p+ λ · v is also a solution for (46) for any λ ∈ R and λ can always be chosen so

that p′′j 6= 0 for j = 1, . . . , l, and there is at least one index l + 1 ≤ c ≤ m for which p′′c 6= 0. However, this

contradicts to the assumption that p is a dense solution for (46).

Proof of P2. This is a straightforward consequence of P1, since the unweighted directed graphs of all

constrained dense realizations must be identical.

Proof of P3. If the graph structure of the constrained realization is unique, then it trivially implies that the

structures of the constrained dense and sparse realizations are identical, since there exists only one possible

constrained reaction structure. If the structures of the constrained dense and sparse realizations are

identical, then the number of nonzero reaction rates is the same in any constrained realizations including

the constrained dense ones. Then it follows from P1 that the constrained reaction structure is unique.

A.2 Details of the improved computation method to find dense realizations

The task of determining which reactions of a CRN belong to the dense realization can be effectively solved

through the following problem set consisting of m(m− 1) LP computation steps, where m is the number of

complexes in the CRN.

for each p, q = 1, . . . ,m, p 6= q do:

maximize fpq = [Ak]p,q

subject to :

Y ·Ak =M,

m
∑

i=1

[Ak]i,j = 0, j = 1, . . . ,m, (47)

0 ≤ [Ak]i,j ≤ Uij , i, j = 1, . . . ,m, i 6= j,

[Ak]i,i ≤ 0, i = 1, . . . ,m,
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where the decision variables are the off-diagonal entries of Ak, and Uij are appropriately large positive

upper bounds for [Ak]i,j to exclude the possibility of unbounded feasible solutions. The reaction Cq → Cp

is in the dense realization if and only if the maximal objective function value for fpq in (47) is positive. Let

us denote the solution of (47) corresponding to (p, q), p 6= q by Āpq
k . Since the linear equality and

inequality constraints in (47) are trivially convex, we will use the average of the obtained solutions Āpq
k as a

lower bound to compute a possible dense realization in the final optimization step. For this, we define

ǫij =















1

m(m− 1)

m
∑

p, q = 1
p 6= q

Ā
pq
k















i,j

, i 6= j. (48)

By construction, ǫij ≥ 0 ∀i 6= j, and ǫij > 0 if and only if the reaction Cj → Ci is in the dense realization.

Then the actual dense realization can be determined by solving the following LP feasibility problem for Ak

(with arbitrary linear objective function):

Y · Ak =M,

m
∑

i=1

[Ak]i,j = 0, j = 1, . . . ,m,

ǫij ≤ [Ak]i,j ≤ Uij , i, j = 1, . . . ,m, i 6= j, (49)

[Ak]i,i ≤ 0, i = 1, . . . ,m.

It is important to remark that the definition of ǫij in the form of (48) guarantees the solvability of (49).

Naturally, the above described method can also be used for determining constrained dense realizations by

adding constraints of the form (9) to the LP problems (47) and (49).
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71. Szederkényi G, Hangos KM, Péni T: Maximal and minimal realizations of reaction kinetic systems:
computation and properties. MATCH Communications in Mathematical and in Computer Chemistry 2011,
65:309–332.
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Figure titles and captions
Figure 1 - Positive feedback motif: original reaction graph and dense realization structure

(a) This subfigure shows the reaction graph of a gene regulation network model with positive feedback

described originally in [87] and used in Example 1. (b) This subfigure shows all the mathematically
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possible reactions that can result in the same dynamical behaviour as the original biologically meaningful

network shown in Fig. 1. The core-reactions in the dense realization are shown with solid arrows, while the

non-core reactions are indicated by dashed arrows.

Figure 2 - Sparse realization structures for the positive feedback motif

Three different dynamically equivalent structures can be given for the positive feedback motif with the

minimal number of reactions. The core and non-core reactions are indicated in the same way as in Fig. 1.b.

Figure 3 - The effect of modifying the complex set and the parameters

(a) The core and non-core reactions of the dense realization of the positive feedback motif are shown in this

subfigure with a randomly selected parametrization that is different from the one given in [87]. (b) The

core and non-core reactions of the dense realization of the positive feedback motif can be seen in this

subfigure when an additional complex X2 +X4 is involved into the model.
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Figure 4 - Model of a biochemical switch in yeast cells

(a) The subfigure shows the original structure of a CRN describing a biochemical switch published in [90].

The numbering of species and rate coefficients is identical to the description in the original paper. (b) The

dense realization of the network is depicted in this subfigure and contains 28 reactions, out of which only

12 belong to the set of core reactions.

Figure 5 - A standard repressilator structure

A repressilator structure with 5 nodes and auto-activation is shown in the figure. The mass-action type

CRN model of this structure contains 51 distinct complexes and 55 reactions.
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Figure 6 - A sparse gene regulation network and their structural identifiability properties

(a) This subfigure is the reproduction of one of the sparse gene regulation networks used for structural

identification in [93]. The network has 11 activation (solid edges), 6 suppression (dashed edges), and 3

autoregulation links (at nodes 1, 3 and 6) with undefined sign. (b) The subfigure shows that the vast

majority of the randomly generated models in the case when N = 2 and K = 2 are structurally

unidentifiable, because not all nodes of the network are reachable from the perturbed one. (c) As the

network becomes less sparse (N = 10, K = 3), the structural identifiability properties are quickly

improving. In this case, more than 80% of the randomly generated models are structurally identifiable.

Additional Material

Additional file 1: CRN data.xls

Excel file. Detailed numerical data of the CRNs shown in Examples 1-3. This file contains the
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detailed data (i.e. stoichiometric matrices and reaction rate coefficients) of the dynamically equivalent

reaction networks studied in Examples 1,2 and 3. The individual sheets correspond to the different

examples.
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