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Abstract

Reversibility, weak reversibility and deficiency, detailed and complex balancing are generally

not ”encoded” in the kinetic differential equations but they are realization properties that may

imply local or even global asymptotic stability of the underlying reaction kinetic system when

further conditions are also fulfilled. In this paper, efficient numerical procedures are given for

finding complex balanced or detailed balanced realizations of mass action type chemical reaction

networks or kinetic dynamical systems in the framework of linear programming. The procedures

are illustrated on numerical examples.

Keywords: reaction kinetic systems, mass action kinetics, linear programming

AMS classification: 80A30 chemical kinetics

1 Introduction

Chemical reaction networks form a wide and intensively studied class of nonnegative polynomial

systems [39]. Beside describing pure chemical reactions, CRNs are often used to model complex

biological mechanisms [30], or models of application fields seemingly far from chemistry such as

mechanical or electrical systems [31]. The increasing and extended interest for this field is shown

by the fact that numerous surveys and tutorials have been published even in journals where the

primary scope is not chemistry [34, 4, 1].

A special subclass of CRNs is the set of reaction networks where the so-called mass action law

(MAL) is assumed to be valid. The strongest theoretical results concerning the dynamical properties

of CRNs are available for MAL kinetics. Chemical Reaction Network Theory (CRNT) initiated

by the results published e.g. in the pioneering papers and lectures [24, 15, 16, 14] deals with the

relations between structures/parameters and dynamical behaviour of CRNs. Ever since, there has

been continuous development in this field with significant contributions such as in [6, 7, 19, 33].

The principle of detailed balance has been applied in thermodynamics for long, which says that

the forward and backward rates of a certain molecular process must be equal at the equilibrium [3].

For chemical reactions, this means that the forward and reverse rates of each reversible elementary

reaction step should be equal at the equilibrium state [28]. In the 1970s, a special set of CRNs

called complex balanced systems were identified that exhibit ”regular”behaviour of the concentration

trajectories in the sense that at least local stability of the positive equilibrium points can be proved

and certain ”exotic” dynamical phenomena such as periodic or chaotic solutions can be ruled out

[23, 13].
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The widely known fundamental dogma of chemical kinetics says that parametrically and/or

structurally different CRNs can give rise to the same mathematical model in ODE form [32]. In

other words, seemingly very different CRNs may have exactly the same function in terms of the

time evolution of the species concentrations. Such networks will be called dynamically equivalent

in this paper. In [35] the notions of dense and sparse realizations were introduced for dynamically

equivalent reaction networks containing the maximal or minimal number of reactions with a fixed

set of complexes. Moreover, a computational method in the framework of mixed integer linear

programming (MILP) was proposed to compute such realizations. In [36], important properties of

dense realizations were described: it was shown that the structure (i.e. the unweighted directed

graph) of a dense realization of a given CRN is unique, and the unweighted directed reaction

graph of any other realization is the subgraph of the dense realization if the set of complexes is

fixed. Furthermore, additional MILP based methods were given for computing reversible CRN

realizations, and realizations with the minimal number of complexes.

Since, similarly to the number of linkage classes, reversibility, weak reversibility and deficiency,

detailed and complex balancing are generally also not ”encoded” in the kinetic differential equations

but they are realization properties, it is of interest whether a kinetic system or a CRN with multiple

possible structures has a detailed/complex balanced realization or not. The existence of such

realization(s) may imply local or even global asymptotic stability of the underlying reaction kinetic

system when further conditions are also fulfilled.

The outline of the paper is the following. In section 2, the basic notions in the fields of basic

CRN properties, kinetic realizability of polynomial systems, and linear programming (LP) will be

summarized. Section 3 contains the main contributions where the computation of CRN realiza-

tions with detailed balance and complex balance is casted into LP problems. Section 4 contains

illustrative examples, and finally, the most important conclusions can be found in section 5.

2 Preliminaries

2.1 Nonnegative systems

The concepts and basic results in this subsection are mostly taken from [4]. A function f =

[f1 . . . fn]
T : [0,∞)n → R

n is called essentially nonnegative if, for all i = 1, . . . , n, fi(x) ≥ 0 for

all x ∈ [0,∞)n, whenever xi = 0. In the linear case, when f(x) = Ax, the necessary and sufficient

condition for essential nonnegativity is that the off-diagonal entries of A are nonnegative (such a

matrix is often called a Metzler-matrix ).
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Consider an autonomous nonlinear system

ẋ = f(x), x(0) = x0 (1)

where f : X → R
n is locally Lipschitz, X is an open subset of Rn and x0 ∈ X . Suppose that

the nonnegative orthant [0,∞)n = R̄
n
+ ⊂ X . Then the nonnegative orthant is invariant for the

dynamics (1) if and only if f is essentially nonnegative.

2.2 Mass action reaction networks

The overview in this subsection is largely based on [35]. A CRN obeying the mass action law is

a closed system where chemical species Xi, i = 1, ..., n take part in r chemical reactions. The

concentrations of the species denoted by xi, (i = 1, ..., n) form the state vector, i.e. xi = [Xi]. The

elementary reaction steps have the following form:

n
∑

i=1

αijXi →
n
∑

i=1

βijXi, j = 1, ..., r (2)

where αij is the so-called stoichiometric coefficient of component Xi in the jth reaction, and βiℓ

is the stoichiometric coefficient of the product Xℓ. The linear combinations of the species in eq.

(2), namely
∑n

i=1 αijXi and
∑n

i=1 βijXi for j = 1, . . . , r are called the complexes and are denoted

by C1, C2, . . . , Cm. Note that the stoichiometric coefficients are always nonnegative integers in

classical reaction kinetic systems. The reaction rates of the individual reactions can be described

as

ρj(x) = kj

n
∏

i=1

[Xi]
αij = kj

n
∏

i=1

x
αij

i , j = 1, ..., r (3)

where kj > 0 is the reaction rate coefficient of the jth reaction. The reaction rate and reaction rate

coefficient of the reaction Ci −→ Cj will also be denoted by ρij(x) and kij , respectively, whenever

it is more convenient.

In our computations, the following form will be used for the description of the dynamics of

CRNs obeying the mass action law [14]:

ẋ = Y · Ak · ψ(x) (4)

where x = [X] ∈ R
n is the concentration vector of the species, Y ∈ R

n×m stores the stoichiometric

composition of the complexes, Ak ∈ R
m×m contains information about the structure of the reaction
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network, and ψ : Rn 7→ R
m is a monomial-type vector mapping given by

ψj(x) =
n
∏

i=1

x
αij

i , j = 1, . . . ,m (5)

where αij = [Y ]ij . To denote the right hand side of eq. (4), the notation M = Y · Ak will also be

used. The structure of Y and Ak is the following. The ith column of Y contains the composition

of complex Ci, i.e. Yji is the stoichiometric coefficient of Ci corresponding to the specie Xj. Ak

is a column conservation matrix (i.e. the sum of the elements in each column is zero), called the

Kirchhoff matrix of the CRN, defined as

[Ak]ij =

{

−
∑m

l=1 kil, if i = j

kji, if i 6= j
(6)

It is important to note that the pair (Y,Ak) uniquely characterizes a particular realization of a given

CRN. The invariance of the nonnegative orthant for the dynamics of CRNs is shown by several

authors (see, e.g. [39, 4]).

To handle the exchange of materials between the environment and the reaction network, the so-

called ”zero-complex”can be introduced and used which is a special complex where all stoichiometric

coefficients are zero i.e., it is represented by a zero vector in the Y matrix [14].

For the reaction Ci → Cj , the corresponding reaction vector is defined as

vk = [Y ]·,j − [Y ]·,i (7)

where [Y ]·,i denotes the ith column of Y . Similarly to reaction rate coefficients, whenever it is more

practical, vij denotes the reaction vector corresponding to the reaction Ci → Cj .

The rank of a reaction network denoted by s is defined as the rank of the vector set H =

{v1, v2 . . . , vr} where r is the number of reactions. The elements of H span the so-called sto-

ichiometric subspace denoted by S, i.e. S = span{v1, v2 . . . , vr}. The positive stoichiometric

compatibility class containing a concentration x0 is the following set [15]:

(x0 + S) ∩ R
n
+

where R
n
+ denotes the positive orthant in R

n.

The deficiency d of a reaction network is defined as [14, 15]

d = m− l − s (8)
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where m is the number of complexes in the network, l is the number of linkage classes (graph

components) and s is the rank of the reaction network.

Similarly to [14] and many other authors, the following weighted directed graph (often called

Feinberg-Horn-Jackson graph) is assigned to the reaction network (2). The directed graph D =

(Vd, Ed) of a reaction network consists of a finite nonempty set Vd of vertices and a finite set Ed of

ordered pairs of distinct vertices called directed edges. The vertices correspond to the complexes,

i.e. Vd = {C1, C2, . . . Cm}, while the directed edges represent the reactions, i.e. (Ci, Cj) ∈ Ed

if complex Ci is transformed to Cj in the reaction network. The reaction rate coefficients kj for

j = 1, . . . , r in (3) are assigned as positive weights to the corresponding directed edges in the

graph. A reaction network is called reversible, if whenever it contains the reaction Ci −→ Cj , then

the reverse reaction Cj ←− Ci is also present in the CRN. A reaction network is called weakly

reversible, if each complex in the reaction graph lies on at least one directed cycle (i.e. if complex

Cj is reachable from complex Ci on a directed path in the reaction graph, then Ci is reachable

from Cj on a directed path). An important point of the well-known Deficiency Zero Theorem [15]

says that the ODEs of a weakly reversible deficiency zero CRN are robustly stable with a known

logarithmic Lyapunov function for all positive values of the reaction rate coefficients.

If the corresponding forward and backward reaction pairs form a cycle in the directed graph of

a reversible CRN, then this cycle of reversible edge-pairs will be called a circuit (to distinguish it

from a directed cycle). E.g. the CRN in Fig. 2 c) contains a circuit of length 3, while the CRNs in

Figs. 2 a) and b) do not contain any circuit.

2.3 Kinetic realizability of nonnegative polynomial systems

An autonomous polynomial nonlinear system of the form (1) is called kinetically realizable or simply

kinetic, if a mass action reaction mechanism given by eq. (4) can be associated to it that exactly

realizes its dynamics, i.e. f(x) = Y · Ak · ψ(x) where matrix Y has nonnegative integer elements,

ψ contains the monomials according to (5), and Ak is a valid Kirchhoff matrix. In such a case,

the pair (Y,Ak) will be called a realization of the kinetic system (1). As it is expected from linear

algebra, the same polynomial system may have many parametrically and/or structurally different

realizations, and this is particularly true for kinetic systems coming from application domains other

than chemistry. The problem of kinetic realizability of polynomial vector fields was first examined

and solved in [25] where the constructive proof contains a realization algorithm that produces the

weighted directed graph of a possible associated mass action mechanism. According to [25], the

necessary and sufficient condition for kinetic realizability is that all coordinates functions of the
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right hand side of (1) must have the form

fi(x) = −xigi(x) + hi(x), i = 1, . . . , n (9)

where gi and hi are polynomials with nonnegative coefficients. Roughly speaking, condition (9)

means that kinetic systems cannot contain negative cross-effects. From this, it is easy to see that

all nonnegative linear systems are kinetic, since a linear system characterized by a Metzler matrix

where only the diagonal elements can be negative is obviously in the form of (9). Moreover,

classical Lotka-Volterra (LV) systems that are known to be nonnegative, are always kinetic, too.

However, there are many essentially nonnegative polynomial systems that are not directly kinetic,

since some of the monomials in fi that do not contain xi have negative coefficients. To circumvent

this problem, one possible way is to embed the differential equations into the LV class that can

be done algorithmically [22]. However, this solution usually results in the significant dimension

increase of the state space (i.e. in the increase of species in the corresponding kinetic realization).

If the equations and the possible initial conditions guarantee that all state variables remain strictly

positive throughout the solutions, then a more advantageous method is a simple state-dependent

time-rescaling of the equations that preserves the important qualitative properties of the system

and the solutions [37, 21]. The above summary clearly shows that the class of systems that are

kinetic or can be transformed to kinetic form is really wide within nonnegative systems.

The very short description of the realization algorithm presented in [25] is the following. Let us

write the polynomial coordinate functions of the right hand side of a kinetic system (1) as

fi(x) =

ri
∑

j=1

mij

n
∏

k=1

xbjk , i = 1, . . . , n (10)

where ri is the number of monomial terms in fi. Let us denote the transpose of the ith standard

basis vector in R
n as ei and let Bj = [bj1 . . . bjn]. Then, the necessary steps (transcribed into an

easily implementable form) for constructing a realization are given by:
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Algorithm 1 from [25]

For each i = 1, . . . , n and for each j = 1, . . . , ri do:

1. Cj = Bj + sign(mij) · ei

2. Add the following reaction to the graph of the realization

n
∑

k=1

bjkXk −→

n
∑

k=1

cjkXk

with reaction rate coefficient |mij |, where Cj = [cj1 . . . cjn].

As we can see later in section 4, Algorithm 1 often produces a non-minimal reaction structure with

more reactions and/or complexes than the minimal number needed for the kinetic representation

of the studied polynomial system.

2.4 Complex balance and detailed balance

Definition 2.1. A CRN realization (Y,Ak) is called complex balanced at x∗ ∈ R
n
+, if

Akψ(x
∗) = 0. (11)

Definition 2.2. A reversible CRN realization (Y,Ak) is called detailed balanced at x∗ ∈ R
n
+, if

ρij(x
∗) = ρji(x

∗), ∀i, j such that Ci ⇆ Cj exists (12)

i.e. the forward and reverse reaction rates for each reversible reaction are equal at x∗.

Clearly, if a CRN is complex balanced at x∗, then x∗ is an equilibrium point, i.e. Y Akψ(x
∗) = 0.

Furthermore, it is easy to check that detailed balancing at x∗ implies complex balancing at x∗ for

reversible networks, but the converse is generally not true.

Definition 2.3. A reversible CRN realization (Y,Ak) is called complex balanced (detailed balanced),

if it is complex balanced (detailed balanced) at each positive steady state.

It is important to remark, that both the complex balance and detailed balance properties depend

on the structure of the reaction digraph and on the numerical values of the reaction rate coefficients
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[5]. In [17], necessary and sufficient conditions were given for detailed balancing (see also [29] for a

clear explanation of conditions) using the circuit and spanning forest conditions below. The circuit

conditions require that the product of the reaction rate coefficients should be equal taken in either

directions along a circuit. The spanning forest conditions say that

∏

(kij)
γij =

∏

(kji)
γij (13)

where the products are taken for each reaction step in the spanning forest of the reaction digraph

and γ denotes the solutions of the equation

∑

i,j

γijvij = 0, for all i, j such that Ci −→ Cj exists, (14)

and vij is the reaction vector of the reaction Ci −→ Cj.

It is worth summarizing the following important properties and relations of detailed and complex

balancing collected from [13, 23, 17, 20, 5, 10].

P1 If there is no circuit in the reaction graph, then the spanning forest condition is alone necessary

and sufficient for detailed balancing.

P2 If the deficiency of the CRN is zero, then the circuit condition is necessary and sufficient for

detailed balancing.

P3 If the deficiency of the CRN is zero, and there is no circuit in the reaction digraph, then the

reaction is detailed balanced.

P4 If the circuit conditions are satisfied in a reversible CRN containing at least one circuit, then

detailed balancing and complex balancing are equivalent.

P5 If a CRN is complex balanced (detailed balanced) at any positive x∗ then it is complex balanced

(detailed balanced) at all other positive equilibrium points.

P6 If a CRN is complex balanced then it is weakly reversible.

P7 A CRN is complex balanced for any positive values of reaction rate coefficients if and only if

a) it is weakly reversible, and b) the deficiency of the system is zero.

P8 If a CRN is complex balanced then there is precisely one equilibrium point in each stoichiometric

compatibility class. Furthermore, each equilibrium point is at least locally stable with a known

strict Lyapunov function.
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Additionally, we have to mention the so-called Global Attractor Conjecture for which no counterex-

ample has been found, but the construction of a complete proof seems to be technically challenging

[5]. The conjecture says that for any complex balanced CRN and any initial condition x(0), the

equilibrium point x∗ is a global attractor in the corresponding positive stoichiometric compatibility

class. The conjecture further supports the need for a method to find complex balanced realizations

of kinetic systems, if stability properties of such systems are to be studied. The circuit and spanning

tree conditions for detailed balancing are hard to insert into an optimization framework in their

original form, but another simple algebraic condition will allow the use of linear programming for

this purpose. Moreover, property P5 will enable us to use an arbitrary positive steady state to find

a detailed balanced or complex balanced realization if it exists.

2.5 Linear programming

Linear programming (LP) is an optimization technique, where a linear objective function is mini-

mized/maximized subject to linear equality and inequality constraints [8, 9]. LP has been widely

used in chemistry and chemical engineering in the fields of system analysis [2, 26], simulation [18]

and design [27]. The standard form of linear programming problems that will be used in this paper

is the following

minimize cT y (15)

subject to:

Ay = b (16)

y ≥ 0 (17)

where y ∈ R
n is the vector of decision variables, c ∈ R

n A ∈ R
p×n, b ∈ R

p are known vectors and

matrices, and ’≥’ in (17) means elementwise nonstrict inequality.

The feasibility of the simple LP problem (15)-(17) can be checked using the following necessary

and sufficient condition [8].
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Theorem 2.1. Consider the auxiliary LP problem

minimize

p
∑

i=1

zi (18)

subject to:

Ay + z = b (19)

y ≥ 0, z ≥ 0 (20)

where z ∈ R
p is a vector of auxiliary variables. Let us assume (without the loss of generality) that

b ≥ 0. There exists a feasible solution for the LP problem (15)-(17) if and only if the auxiliary LP

problem (18)-(20) has optimal value 0 with zi = 0 for i = 1, . . . , p.

It is easy to see that y = 0, z = b is always a feasible solution for (18)-(20). The above theorem

will be useful for establishing that no detailed or complex balanced realization exists in certain

cases.

3 Finding balanced realizations using linear programming

In this section, we assume that an initial CRN realization (Y (1), A
(1)
k ) or a kinetic polynomial system

is given together with an arbitrary positive steady state x∗ that has been determined analytically

or simply through simulations. If we start from a kinetic polynomial system, we use Algorithm

1 for generating an initial realization (Y (1), A
(1)
k ). In any case, M (1) = Y (1) · A

(1)
k . Let us denote

ψ(x∗) simply by ψ∗.

3.1 Constraints representing mass action dynamics

Similarly to [35], let us introduce the following notations. The Kirchhoff-matrix of the searched

realization is written as

A
(s)
k =













−a11 a12 . . . a1m

a21 −a22 . . . a2m
...

...
...

...

am1 am2 . . . −amm













(21)

Then, the optimization variable, y is defined columnwise as

y =
[

a11 a21 a31 . . . am1 a12 . . . a(m−1)m amm

]T

∈ R
m2

(22)
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Taking into consideration the diagonal elements in (21) with a negative sign enables us to constrain

all elements of y to be nonnegative. Let [W ]i,· and [W ]
·,j denote the ith row and jth column of an

arbitrary matrix W , respectively. Let us define the following matrices (with known entries) as

Ȳ i =

[

[

Y (1)
]

·,1
. . .

[

Y (1)
]

·,i−1
−
[

Y (1)
]

·,i

[

Y (1)
]

·,i+1
. . .

[

Y (1)
]

·,m

1 . . . 1 −1 1 . . . 1

]

∈ R
(n+1)×m, (23)

M̄ =

[

M (1)

0 . . . 0

]

∈ R
(n+1)×m, (24)

Then the equality constraints encoding mass action dynamics can be written as

Ae1 · y = Be1 (25)

where

Ae1 =













Ȳ 1 0 0 . . . 0

0 Ȳ 2 0 . . . 0
...

...
...

...

0 0 0 . . . Ȳ m













∈ R
m(n+1)×m2

(26)

(with zeros representing zero blocks of size (n+ 1)×m), and

Be1 =















[

M̄
]

·,1
[

M̄
]

·,2
...

[

M̄
]

·,m















(27)

The inequalities expressing sign constraints for the reaction rate coefficients are simply

y ≥ 0. (28)

The choice of the objective function In principle, the objective function (15) can be any

linear function of y that is determined by the choice of the vector c. In section 4, we will minimize

or maximize the sum of reaction rate coefficients. The minimization of the sum corresponds to the

choice of c = 1
2 [1 . . . 1]T in the standard LP-problem (15)-(17), while the maximization is obtained

by selecting c = −1
2 [1 . . . 1]T . Note that the minimum of the sum of reaction rate coefficients is

bounded if the LP constraints are feasible, but the maximum is not necessarily, and this must be

kept in mind.
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3.2 Additional constraints for complex balancing

Using the definition of a complex balanced steady state, the equality constraints for complex bal-

ancing are

−a11ψ
∗

1 + a12ψ
∗

2 + · · ·+ a1mψ
∗

m = 0 (29)

a21ψ
∗

1 − a22ψ
∗

2 + · · ·+ a2mψ
∗

m = 0 (30)

...

am1ψ
∗

1 + · · · + am(m−1)ψ
∗

m−1 − ammψ
∗

m = 0 (31)

Clearly, these constraints can be written as

Ae2 · y = Be2, (32)

where

Ae2 =













−ψ∗

1 0m−1 ψ∗

2 0m−1 . . . ψ∗

m 0m−1

0 ψ∗

1 0m−1 −ψ∗

2 . . . ψ∗

m 0m−2

...

0m−1 ψ∗

1 0m−1 ψ∗

2 . . . 0m−1 −ψ∗

m













, Be2 = 0 ∈ R
m, (33)

and 0k denotes a 1× k row vector of zeros.

3.3 Further constraints for detailed balancing

The most suitable form of detailed balancing constraints is taken from [38]. According to this, a

given steady state x∗ is detailed balancing if and only if

G ·AT
k = Ak ·G (34)

where G = diag(ψ∗). It is easy to see that (34), if satisfied, implies reversibility of the obtained

reaction network. Eq. (34) encodes a maximum of m(m−1)
2 independent equations that can be

written into the linear programming problem as

ψ∗

i y(i−1)m+j − ψ
∗

j y(j−1)m+i = 0, ∀i > j, (35)

since
[

A
(s)
k

]

ij
= y(j−1)m+i according to eq. (22).

13



4 Examples

4.1 Multiple detailed balanced realizations of a simple irreversible network

Consider the simple reaction network shown in Fig. 1 with parameters k1 = 1, k2 = 1.5. This CRN

was also used as an example in [36] in a different context. The matrices characterizing complex

composition and graph structure are

Y =

[

0 3 2

3 0 1

]

, Ak =







−1 0 0

1 −1.5 0

0 1.5 0






(36)

Thus,

M = Y · Ak =

[

3 −1.5 0

−3 1.5 0

]

. (37)

The corresponding ODE model is

ẋ1 = 3x32 − 1.5x31 (38)

ẋ2 = −3x
3
2 + 1.5x31 (39)

It’s easy to compute that e.g. x∗ = [1.6725 1.3275]T is a steady state for the system (38)-(39).

The corresponding values of the monomials are ψ∗ = ψ(x∗) = [2.3393 4.6786 3.7134]T . Clearly,

the realization shown in Fig. 1 cannot be complex balanced or detailed balanced, since it is not

weakly reversible.

In the first step, let us define the objective function as

h(y) =
1

2

9
∑

i=1

yi (40)

which is the L1-norm of the reaction rate coefficient vector (note that the diagonal elements of Ak

with a negative sign contain the sum of the reaction rate coefficients in the corresponding column).

Minimizing the objective function h in (40) subject to the conditions (25), (28) and (35) gives the

detailed balance solution

yopt =
[

1 1 0 0.5 0.5 0 0 0 0
]T

, (41)
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that corresponds to the following realization

Y ′ = Y, A′

k =







−1 0.5 0

1 −0.5 0

0 0 0






(42)

The detailed balance condition at the steady state can be checked as

1 · (x∗2)
3 = 0.5 · (x∗1)

3 = 2.3393. (43)

which is a reversible, deficiency 0 realization. Therefore, by applying the Deficiency zero theorem,

the dynamics of the initial irreversible network is also stable with a known entropy-like Lyapunov

function.

In the second step, let us maximize h in (40). The obtained realization is now given by

Y ′′ = Y, A′′

k =







−1.5 0 0.9449

0 −1.5 1.8899

1.5 1.5 −2.8348






(44)

The deficiency of the network in this case is 1. The detailed balance property is fulfilled in this

case as

1.5 · (x∗2)
3 = 0.9449 · (x∗1)

2x∗2 = 3.5088, (45)

1.5 · (x∗1)
3 = 1.8899 · (x∗1)

2x∗2 = 7.0179. (46)

The reaction digraphs of the above computed detailed balanced realizations can be seen in Fig. 2

a) and b), respectively.

The motivation for trying to minimize and maximize the L1 norm of the reaction rate coefficients

to get potentially different detailed balanced realizations came from [12] and [11]. We remark that

the exact conditions under which the sparsest solution of an underdetermined set of linear equations

is the minimal L1 norm solution are not fulfilled in our case, but the two obtained solutions are

structurally different, and our purpose here was only to illustrate that different detailed balanced

realizations of the same (very simple) kinetic system may exist.

It’s worth mentioning that the detailed balancing constraints described in section 3.3 can easily

be combined with the computation of dense and sparse realizations (see [35, 36]). However, the

problem in this case becomes NP-hard. A dense detailed balanced realization can be seen in Fig.
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2 c) that is determined by the following matrices:

Y ′′′ = Y, A′′′

k =







−1.0333 0.4667 0.0630

0.9333 −0.5667 0.1260

0.1000 0.1000 −0.1890






(47)

The detailed balancing condition is met in this case, too, since

0.9333 · (x∗2)
3 = 0.4667 · (x∗1)

3 = 2.1833 (48)

0.1 · (x∗2)
3 = 0.063 · (x∗1)

2x∗2 = 0.2339 (49)

0.1 · (x∗1)
3 = 0.126 · (x∗1)

2x∗2 = 0.4679 (50)

The average running time of the LP based methods (using the linprog command) was 0.06 second,

while the MILP based algorithm (using the freely available GLPK solver) found the dense realization

in 1.04 second in the MATLAB computation environment on a notebook computer with an 1.66

GHz Intel Atom N280 Processor.

4.2 Finding complex balanced realization of a kinetic polynomial system

The following polynomial system is given:

ẋ1 = x23 − x1x2 + x3x4 − 2x1x
2

2x3

ẋ2 = x2
3
− x1x2 + 2x3x4 − 4x1x

2

2
x3

ẋ3 = −2x2
3
+ x1x2 − x1x

2

2
x3 + 2x3

4
(51)

ẋ4 = x1x2 − x3x4 + 4x1x
2

2x3 − 3x34

It can be seen that (51) is essentially nonnegative and kinetic. After running Algorithm 1, we

obtain an initial network with 19 complexes and 16 reactions that is visible in Fig. 3, where the

numbering of complexes (in rectangles) is the following:

1 : 2X3, 2 : X3 +X4, 3 : X1 + 2X3, 4 : X2 + 2X3,

5 : X3, 6 : X1 +X3 +X4, 7 : X2 +X3 +X4,

8 : X1 +X2, 9 : X1 + 2X2 +X3, 10 : X1, 11 : X2,

12 : X1 +X2 +X4, 13 : X1 +X2 +X3, 14 : 2X2 +X3,

15 : X1 + 2X2, 16 : X1 + 2X2 +X3 +X4,

17 : 3X4, 18 : X3 + 3X4, 19 : 2X4 (52)
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The objective function that was minimized was also the sum of reaction rate coefficients, i.e.

h(y) =
1

2

361
∑

i=1

yi (53)

The constraints were given by eqs. (25), (28) and (32). The joint running time of Algorithm 1 and

the solution of the LP problem with 361 variables was 0.45 second on the same hardware/software

environment as in the previous example. The obtained complex balanced and thus weakly reversible

realization of the initial CRN is visible in Fig. 4. The isolated complexes (i.e. the ones with no

incoming and no outgoing directed edges) are naturally omitted from the realization. It can be

checked that the deficiency of the complex balanced realization is 0 (in sharp contrast with the

deficiency of 12 of the initial network in Fig. 3). Therefore, the autonomous system (51) has well-

characterizable equilibrium points in the positive orthant that are stable with a known entropy-like

Lyapunov function [15].

An attempt to find a detailed balanced realization using the constraints described in section

3.3 is unsuccessful in this case. After checking the feasibility condition given in Theorem 2.1, we

can deduce that such detailed balanced realization does not exist with the complex set listed in eq.

(52).

5 Conclusions

Polynomial-time methods were proposed in this paper for the computation of complex balanced and

detailed balanced realizations of kinetic systems. The input of the methods is a given kinetic poly-

nomial system (or an initial CRN) together with an arbitrary steady state point. The algorithms

are based on standard linear programming where the characteristics of mass action dynamics are

represented in the form of linear constraints. If solvable, the methods provide sufficient conditions

for the existence of reversible or weakly reversible realizations in the cases of detailed balance or

complex balance, respectively. The existence of such realizations usually guarantee strong stability

properties for the underlying ODEs [5]. If a kinetic polynomial system is given, then a key step of

the proposed methods is the algorithm described in [25] for generating an initial realization. The

methods can be easily combined with the computation of dense and sparse realizations [36, 35].

The efficiency of the methods was demonstrated on numerical examples.
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[36] G. Szederkényi, K. M. Hangos, and T. Péni. Maximal and minimal realizations of reaction

kinetic systems: Computation and properties. MATCH Commun. Math. Comput. Chem.,

65(2):309–332, 2011.
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Figures

Figure 1: Simple deficiency 1 reaction network
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Figure 2: Dynamically equivalent detailed balanced realizations of the CRN shown in Fig. 1. a)

deficiency zero realization; b), c) deficiency one realizations
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Figure 3: Reaction network realizing eq. (51) obtained using Algorithm 1. Only those reaction

rate coefficients are indicated that are different from 1.

24



Figure 4: Complex balanced realization of the CRN shown in Fig. 3. All reaction rate coefficients

are 1.
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Figure captions

• Fig. 1: Simple deficiency 1 reaction network

• Fig. 2: Dynamically equivalent detailed balanced realizations of the CRN shown in Fig. 1.

a) deficiency zero realization; b), c) deficiency one realizations

• Fig. 3: Reaction network realizing eq. (51) obtained usingAlgorithm 1. Only those reaction

rate coefficients are indicated that are different from 1.

• Fig. 4: Complex balanced realization of the CRN shown in Fig. 3. All reaction rate coeffi-

cients are 1.
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