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Abstract: The reaction kinetic realizations of nonnegative polynomial systems are studied in
this paper. It is brie�y reviewed that a wide class of positive systems can be written in or simply
transformed to kinetic form. Based on the structure of kinetic realizations, valuable information
can be obtained about the dynamical properties of the investigated systems using the results
of chemical reaction network theory (CRNT). Since the realizations of a given system can have
many di�erent structures, mixed integer linear programming is used to generate the ones with
required properties (i.e. the minimal/maximal number of reactions or complexes).
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1. INTRODUCTION

Positive (nonnegative) systems are characterized by the
property that all state variables remain positive (nonneg-
ative) if the trajectories start in the positive (nonnegative)
orthant. Thus, positive systems play an important role in
�elds such as chemistry, economy, population dynamics or
even in transportation modeling where the state variables
of the models are often physically constrained to be non-
negative (Farina and Rinaldi, 2000).

Chemical Reaction Networks (CRNs) form a wide class
of positive (or nonnegative) systems attracting signi�cant
attention not only among chemists but in numerous other
�elds such as physics, or even pure and applied mathe-
matics where nonlinear dynamical systems are considered
(Érdi and Tóth, 1989). Beside pure chemical reactions,
CRNs are often used to model the dynamics of intracellular
processes, metabolic or cell signalling pathways. The in-
creasing interest towards reaction networks in the systems
and control community is clearly shown by recent tutorial
and survey papers (Sontag, 2001; Chellaboina et al., 2009).

One of the most important results in the analysis of CRNs
was the de�nition of de�ciency which is a nonnegative
integer depending on the number of complexes and the
properties of interconnections in the reaction graph (i.e.
it is a purely structural property) (Feinberg, 1987). The
de�ciency zero property for a su�ciently reversible (more
precisely: "weakly reversible") reaction network guaran-
tees the global stability of the solutions of the system with
a known Lyapunov function (Feinberg, 1987). In (Otero-
Muras et al., 2008), an important link has been created
between the structural properties of reaction networks
and the possibility of dissipative-Hamiltonian description
known from modern control theory.

It is known from the so-called "fundamental dogma of
chemical kinetics" that reaction networks with di�erent
graph structures and even with di�erent sets of complexes
might generate identical dynamical system models (i.e.
sets of di�erential equations). This means that CRNs
with structurally very di�erent reaction mechanisms can
show exactly the same behaviour in the state space that
is usually the space of chemical specie concentrations.
However, many strong analysis results of chemical reaction
network theory (CRNT) depend on the graph structure
of the studied CRN. There is a clear need therefore to
de�ne and search for distinguished structures among the
possible alternatives. The integration of logical expressions
into mixed integer programming problems (Bemporad and
Morari, 1999) has opened the possibility to formulate the
computation of certain reaction structures with advanta-
geous properties as optimization problems (Szederkényi,
2010b).

During the analysis of CRNs, the reaction structure is
assumed to be given (at least partially) in vast majority
of the cases. For the dynamic analysis of nonnegative
polynomial systems, we will go in the opposite direction:
the ODEs of the (not necessarily chemically originated)
nonnegative system are given, and such kinetic reaction
structures are searched for, that can be useful for determin-
ing important dynamical properties of the original system
using the tools of CRNT.

2. BASIC NOTIONS

2.1 Positive (nonnegative) systems

The concepts and basic results in this subsection are
mostly taken from (Chellaboina et al., 2009). A function



f = [f1 . . . fn]T : [0,∞)n → Rn is called essentially
nonnegative if, for all i = 1, . . . , n, fi(x) ≥ 0 for all
x ∈ [0,∞)n, whenever xi = 0. In the linear case, when
f(x) = Ax the necessary and su�cient condition for
essential nonnegativity is that the o�-diagonal entries of A
are nonnegative (such a matrix is often called a Metzler-
matrix ).

Consider an autonomous nonlinear system

ẋ = f(x), x(0) = x0 (1)

where f : X → Rn is locally Lipschitz, X is an open subset
of Rn and x0 ∈ X . Suppose that the nonnegative orthant
[0,∞)n = R̄n+ ⊂ X . Then the nonnegative orthant is
invariant for the dynamics (1) if and only if f is essentially
nonnegative.

2.2 Nonlinear systems described by mass action kinetics

The overview in this subsection is largely based on (Szed-
erkényi, 2010b). A CRN obeying the mass action law is
a closed system under isothermal and isobaric conditions,
where chemical speciesXi, i = 1, ..., n take part in r chem-
ical reactions. The concentrations of the species denoted
by xi, (i = 1, ..., n) form the state vector, i.e. xi = [Xi].
The elementary reaction steps have the following form:

n∑
i=1

αijXi →
n∑
i=1

βijXi, j = 1, ..., r (2)

where αij is the so-called stoichiometric coe�cient of com-
ponentXi in the jth reaction, and βi` is the stoichiometric
coe�cient of the product X`. The linear combinations of
the species in eq. (2), namely

∑n
i=1 αijXi and

∑n
i=1 βijXi

for j = 1, . . . , r are called the complexes and are denoted
by C1, C2, . . . , Cm. Note that the stoichiometric coe�-
cients are always nonnegative integers in classical reaction
kinetic systems. The reaction rates of the individual reac-
tions can be described as

ρj = kj

n∏
i=1

[Xi]
αij = kj

n∏
i=1

x
αij

i , j = 1, ..., r (3)

where kj > 0 is the reaction rate constant of the jth
reaction.

If the reactions Ci → Cj and Cj → Ci take place at the
same time in a reaction network for some i, j then this pair
of reactions is called a reversible reaction (but it will be
treated as two separate elementary reactions).

Similarly to (Feinberg, 1979), we can assign the following
directed graph (see, e.g. (Bang-Jensen and Gutin, 2001))
to the reaction network (2) in a straightforward way. The
directed graph D = (Vd, Ed) of a reaction network consists
of a �nite nonempty set Vd of vertices and a �nite set
Ed of ordered pairs of distinct vertices called directed
edges. The vertices correspond to the complexes, i.e. Vd =
{C1, C2, . . . Cm}, while the directed edges represent the
reactions, i.e. (Ci, Cj) ∈ Ed if complex Ci is transformed to
Cj in the reaction network. The reaction rate coe�cients
kj for j = 1, . . . , r in (3) are assigned as positive weights to
the corresponding directed edges in the graph. Where it is
more convenient, the notation k′ij will be used for denoting
the reaction rate coe�cient corresponding to the reaction
Ci → Cj . A set of complexes {C1, C2, . . . , Ck} is a linkage
class of a reaction network if the complexes of the set are

linked to each other in the reaction graph but not to any
other complex (Feinberg, 1987).

There are several possibilities to represent the dynamic
equations of mass action systems (see, e.g. Feinberg
(1979)). The most advantageous form for our purposes is
the one that is used e.g. in Lecture 4 of Feinberg (1979),
i.e.

ẋ = Y ·Ak · ψ(x) (4)
where x ∈ Rn is the concentration vector of the species,
Y ∈ Rn×m stores the stoichiometric composition of the
complexes, Ak ∈ Rm×m contains the information corre-
sponding to the weighted directed graph of the reaction
network, and ψ : Rn 7→ Rm is a monomial-type vector
mapping de�ned by

ψj(x) =

n∏
i=1

x
yij
i , j = 1, . . . ,m (5)

where yij = [Y ]ij . The exact structure of Y and Ak is the
following. The ith column of Y contains the composition
of complex Ci, i.e. Yji is the stoichiometric coe�cient
of Ci corresponding to the specie Xj . Ak is a column
conservation matrix (i.e. the sum of the elements in each
column is zero) de�ned as

[Ak]ij =

−
m∑
l=1

k′il, if i = j

k′ji, if i 6= j

(6)

In other words, the diagonal elements [Ak]ii contain the
negative sum of the weights of the edges starting from
the node Ci, while the o�-diagonal elements [Ak]ij , i 6= j
contain the weights of the directed edges (Cj , Ci) coming
into Ci. Based on the above properties, it is appropriate
to call Ak the Kirchho� matrix of a reaction network.

To handle the exchange of materials between the envi-
ronment and the reaction network, the so-called "zero-
complex" can be introduced and used which is a special
complex where all stoichiometric coe�cients are zero i.e.,
it is represented by a zero vector in the Y matrix Feinberg
(1979).

We can associate an n-dimensional vector with each reac-
tion in the following way. For the reaction Ci → Cj , the
corresponding reaction vector denoted by hk is given by

hk = [Y ]·,j − [Y ]·,i (7)

where [Y ]·,i denotes the ith column of Y . Similarly to
reaction rate coe�cients, whenever it is more practical, h′ij
denotes the reaction vector corresponding to the reaction
Ci → Cj .

The rank of a reaction network denoted by s is de�ned as
the rank of the vector set {h1, h2 . . . , hr} where r is the
number of reactions.

The de�ciency d of a reaction network is de�ned as
(Feinberg, 1979, 1987)

d = m− l − s (8)

wherem is the number of complexes in the network, l is the
number of linkage classes and s is the rank of the reaction
network.

A reaction network is called reversible, if each of its reac-
tions is a reversible reaction. A reaction network is called



weakly reversible, if each complex in the reaction graph lies
on at least one directed cycle (i.e. if complex Cj is reach-
able from complex Ci on a directed path in the reaction
graph, then Ci is reachable from Cj on a directed path).
An important point of the well-known De�ciency Zero
Theorem (Feinberg, 1987) says that the ODEs of a weakly
reversible de�ciency zero CRN are globally stable with
a known logarithmic Lyapunov function for all positive
values of the reaction rate coe�cients. Therefore (among
other realization problems) it is of interest whether we can
�nd a weakly reversible de�ciency zero kinetic realization
of a nonnegative polynomial system.

Using the notation M = Y · Ak, eq. (4) can be written in
the compact form

ẋ = M · ψ(x) (9)
The invariance of the nonnegative orthant for CRN dy-
namics is shown e.g. in (Chellaboina et al., 2009).

2.3 Mixed integer linear programming

A special subset of optimization problems is the class
of Mixed Integer Linear Programs (MILPs) where the
objective function and the constraints are linear functions
of the decision variables. A mixed integer linear program
with k variables (denoted by w ∈ Rk) and p constraints
can be written as (Nemhauser and Wolsey, 1988):

minimize cTw
subject to:
A1w = b1
A2w ≤ b2 (10)
li ≤ wi ≤ ui for i = 1, . . . , k

wj is integer for j ∈ I, I ⊆ {1, . . . , k}
where c ∈ Rk, A1 ∈ Rp1×k, A2 ∈ Rp2×k, and p1 + p2 = p.

If all the variables can be real, then (10) is a simple linear
programming problem that can be solved in polynomial
time. However, if any of the variables is integer, then
the problem becomes NP-hard. In spite of this, there
exist a number of free (e.g. YALMIP or the GNU Linear
Programming Kit) and commercial (such as CPLEX or
TOMLAB) solvers that can e�ciently handle many prac-
tical problems.

A propositional logic problem, where a statement denoted
by S must be proved to be true given a set of compound
statements containing so-called literals S1, . . . , Sn, can be
solved by means of a linear integer program. For this,
logical variables denoted by δi (δi ∈ {0, 1}) must be as-
sociated with the literals Si. Then the original compound
statements can be translated to linear inequalities involv-
ing the logical variables δi (Raman and Grossmann, 1994;
Bemporad and Morari, 1999). This theoretical background
will be used in the following section to compute di�erent
kinetic realizations of polynomial systems in section 3.2.

3. REALIZATION OF NONLINEAR SYSTEMS IN
REACTION KINETIC FORM

3.1 Kinetic realizability of positive (nonnegative) polynomial
systems

An autonomous polynomial nonlinear system of the form
(1) is called kinetically realizable or simply kinetic, if a

mass action reaction mechanism given by eq. (4) can be
associated to it that exactly realizes its dynamics, i.e.
f(x) = Y · Ak · ψ(x) where ψ contains the monomials,
matrix Y has nonnegative integer elements and Ak is a
valid Kirchho� matrix (see section 2.2 for its properties).
In such a case, the pair (Y,Ak) will be called a realization
of the system (9) (note that Y contains all information
about the composition of the monomials in ψ in the case
of mass-action dynamics). As it is expected from linear
algebra, the same polynomial system may have many para-
metrically and/or structurally di�erent realizations, and
this is particularly true for kinetic systems coming from
application domains other than chemistry. The problem
of kinetic realizability of polynomial vector �elds was �rst
examined and solved in (Hárs and Tóth, 1981) where the
constructive proof contains a realization algorithm that
produces the directed graph of a possible associated mass
action mechanism. According to (Hárs and Tóth, 1981),
the necessary and su�cient condition for kinetic realiz-
ability is that all coordinates functions of the right hand
side of (1) must have the form

fi(x) = −xigi(x) + hi(x), i = 1, . . . , n (11)

where gi and hi are polynomials with nonnegative coe�-
cients.

The very short description of the realization algorithm
presented in (Hárs and Tóth, 1981) is the following. Let
us write the polynomial coordinate functions of the right
hand side of a kinetic system (1) as

fi(x) =

ri∑
j=1

mij

n∏
k=1

xbjk (12)

where ri is the number of monomial terms in fi. Let us
denote the transpose of the ith standard basis vector in
Rn as ei and let Bj = [bj1 . . . bjn].

Algorithm 1 by Hárs and Tóth (1981)
For each i = 1, . . . , n and for each j = 1, . . . , ri
do:

(1) Cj = Bj + sign(mij) · ei
(2) Add the following reaction to the

graph of the realization
n∑
k=1

bjkXk −→
n∑
k=1

cjkXk

with reaction rate coe�cient |mij |,
where Cj = [cj1 . . . cjn].

Roughly speaking, condition (11) means that kinetic sys-
tems cannot contain negative cross-e�ects. From this, it
is easy to see that all nonnegative linear systems are
kinetic, since a linear system characterized by a Metzler
matrix where only the diagonal elements can have negative
coe�cients is obviously in the form of (11). Moreover,
classical Lotka-Volterra systems (that are known to be
nonnegative) with the equations

ẋi = xi(bi +

n∑
j=1

aijxj), i = 1, . . . , n (13)

with aij , bi ∈ R are always kinetic according to the condi-
tion (11). However, there are many essentially nonnegative
polynomial systems that are not directly kinetic, since



some of the monomials in fi that do not contain xi have
negative coe�cients. Such an example is shown in the
following equations

ẋ1 = −x1x2 + x22 − 4x2 + 4 (14)

ẋ2 = x22 + x21 − 2x1 + 2

To circumvent this problem, one possible way is to embed
(14) into the LV class shown in (13), that can be done
algorithmically (Hernández-Bermejo and Fairén, 1995).
However, this solution usually results in the signi�cant
dimension increase of the state space (i.e. in the increase
of species in the corresponding kinetic realization). If the
equations and the possible initial conditions guarantee
that all state variables remain strictly positive throughout
the solutions, then a more advantageous method is a sim-
ple state-dependent time-rescaling (see, e.g Szederkényi
et al. (2005)) of the equations in the following way

dt =

n∏
i=1

xidt
′ (15)

Applying (15), the equations of the original system (14)
are written as

x′1 = −x21x22 + x1x
3
2 − 4x1x

2
2 + 4x1x2 (16)

x′2 = x1x
3
2 + x31x2 − 2x21x2 + 2x1x2

where x′i = dxi

dt′ . It is easy to see that eq. (16) is kinetic.
The reaction network obtained by using Algorithm 1
can be seen in Fig. 1 where the reaction rate coe�cients
are written close to the arrows representing reactions. It
is important to emphasize that as a result of the time-
rescaling, the number of state variables (species) and that
of the monomials (complexes) remain the same as in the
original system. Moreover, such a time-rescaling preserves
the important qualitative properties of the system and
the solutions, since t′ is a strictly monotonously increasing
continuous and invertible function of t.

As we can see later in section 4, Algorithm 1 usually
produces a redundant reaction structure with more reac-
tions and/or complexes than the minimal number needed
for the kinetic representation of the studied polynomial
system. Therefore, mixed integer linear programming will
be applied as a useful tool to select required structures
from the possible reaction graphs.

Fig. 1. Reaction network realizing eq. (16)

3.2 Computing realizations of kinetic systems with given
properties using mixed integer programming

This subsection summarizes the basic principles for deter-
mining certain realizations of kinetic systems using MILP,
the details can be found in (Szederkényi, 2010b).

Problem setup, known and unknown data The starting
point is that a kinetic polynomial system of the form (9)
is given with its parameters. This means thatM is known,
the stoichiometrix matrix Y is also known from the mono-
mials of ψ, and we would like to determine the Kirchho�
matrix Ak ∈ Rm×m that ful�ls given requirements.

The characteristics of the mass-action dynamics can be ex-
pressed in the form of the following equality and inequality
constraints:

Y ·Ak = M (17)
m∑
i=1

[Ak]ij = 0, j = 1, . . . ,m (18)

[Ak]ij ≥ 0, i, j = 1, . . . ,m, i 6= j (19)
[Ak]ii ≤ 0, i = 1, . . . ,m (20)

where the decision variables are the elements of Ak.
Clearly, constraints (18)-(20) express that we are searching
for a valid Kirchho� connection matrix. To make the forth-
coming optimization problems computationally tractable,
appropriate upper and lower bounds are introduced for the
elements of Ak as

0 ≤ [Ak]ij ≤ lij , i, j = 1, . . . ,m, i 6= j (21)
lii ≤ [Ak]ii ≤ 0, i = 1, . . . ,m. (22)

Determining realizations with the minimal/maximal num-
ber of reactions. In this problem set, we are searching
for such Ak that contains the minimal/maximal number
of nonzero o�-diagonal elements. For this, we introduce
logical variables denoted by δ and construct the following
compound statements

δij = 1↔ [Ak]ij > ε, i, j = 1, . . . ,m, i 6= j (23)

where the symbol "↔" represents "if and only if", and
0 < ε � 1 (i.e. elements of Ak below ε are treated as
zero). Taking into consideration (21), statement (23) can
be translated to the following linear inequalities (see, e.g.
Bemporad and Morari (1999))

0 ≤ [Ak]ij − εδij , i, j = 1, . . . ,m, i 6= j (24)
0 ≤ −[Ak]ij + lijδij , i, j = 1, . . . ,m, i 6= j (25)

Now we are able to compute the realization containing
the minimal/maximal number of reactions by minimiz-
ing/maximizing the objective function

C1(δ) =

m∑
i, j = 1
i 6= j

δij (26)

Computing realizations with the minimal/maximal number
of complexes. To minimize/maximize the number of
non-isolated complexes in the reaction graph, instead of
(23), the following statement can be introduced

δi = 1↔
m∑

j1=1

Ak(i, j1) +

m∑
j2=1

Ak(j2, i) > ε, i = 1, . . . ,m (27)

that can also be translated into appropriate linear equal-
ities. The objective function to be minimized/maximized
is now

C2(δ) =

m∑
i=1

δi (28)



Some immediate consequences. Let us call the realiza-
tion with the minimal and maximal number of reactions
the sparse and dense realization of a given kinetic system,
respectively. Then the following facts can be proved for
a �xed parameter set of the realized ODE (Szederkényi,
2010a):

(1) The unweighted graph of any realization must be
a subgraph of the unweighted graph of the dense
realization.

(2) The graph structure of the dense realization is unique.
(3) Based on the dense realization, it can be immedi-

ately decided whether there exists a fully or weakly
reversible realization containing the same complexes
as the dense realization.

4. EXAMPLES

The �rst example in this section illustrates the �nding of
a weakly reversible de�ciency zero realization and thus
proving global stability. The goal of the second example
is to show the algorithmic determination of a reaction
structure that was proved to be minimal previously, and
in parallel, the possible e�ect of parameter change on the
structure of the sparse realization.

4.1 System stability investigation through reaction kinetic
description

The following polynomial system is given:
ẋ1 = x23 − x1x2 + x3x4 − 2x1x

2
2x3

ẋ2 = x23 − x1x2 + 2x3x4 − 4x1x
2
2x3

ẋ3 = −2x23 + x1x2 − x1x22x3 + 2x34 (29)

ẋ4 = x1x2 − x3x4 + 4x1x
2
2x3 − 3x34

It can be seen that (29) is essentially nonnegative and
kinetic. After running Algorithm 1, we obtain a network
with 19 complexes and 16 reactions that is visible in Fig.
2, where the numbering of complexes (in rectangles) is the
following:

1 : 2X3, 2 : X3 +X4, 3 : X1 + 2X3, 4 : X2 + 2X3,

5 : X3, 6 : X1 +X3 +X4, 7 : X2 +X3 +X4,

8 : X1 +X2, 9 : X1 + 2X2 +X3, 10 : X1, 11 : X2,

12 : X1 +X2 +X4, 13 : X1 +X2 +X3, 14 : 2X2 +X3,

15 : X1 + 2X2, 16 : X1 + 2X2 +X3 +X4,

17 : 3X4, 18 : X3 + 3X4, 19 : 2X4 (30)

It is remarked that the CRN in Fig. 2 is not the dense
realization (since that contains even more reactions). The
sparse realization of the system shown in Fig. 2 is much
simpler as it is visible in Fig. 3. It is easy to see from
the �gure that the sparse realization is weakly reversible.
Furthermore, it can be checked that the de�ciency of the
sparse realization is 0 (in sharp contrast with the de�ciency
of 12 of the original netwok in Fig. 2). Therefore, the au-
tonomous system (29) has well-characterizable equilibrium
points in the positive orthant that are globally stable with
a known entropy-like Lyapunov function (Feinberg, 1987).

4.2 Realizations of a dynamical system with possible
bistability

Now we would like to examine the kinetic realizations of
the following dynamical system

Fig. 2. Reaction network realizing eq. (29) obtained using
Algorithm 1. Only those reaction rate coe�cients
are indicated that are di�erent from 1.

Fig. 3. Sparse realization of the CRN shown in �g. 2. All
reaction rate coe�cients are 1.

ẋ1 = p1x2 − p2x21 − p3x1x2 − p4x1
ẋ2 = p5x

2
1 − p6x2, (31)

where the parameters p1, . . . , p6 are all positive real num-
bers. Fig. 4 shows the graph of the realization that is given
by Algorithm 1.

Fig. 4. Realization of eq. (31) given by Algorithm 1

Fig. 5. A computed sparse realization of eq. (31)

The following randomly chosen parameter values were
used for the forthcoming computations: p1 = 1, p2 = 2,
p3 = 1.5, p4 = 0.7, p5 = 1.3, p6 = 2.2. The realization



Fig. 6. Dense realization of eq. (31)

Fig. 7. The "smallest" chemical reaction network with
bistability

obtained by �rst minimizing the number of complexes
and then minimizing the number of reactions is shown
in Fig. 5. It contains 6 reactions similarly to the initial
network, but the number of necessary complexes is only
5 instead of the previous 6. This clearly shows that the
structure of sparse realizations is not unique. From the
dense realization of the system shown in Fig. 6 we can
see that the complexes 2X1 + X2 and the zero complex
(0) cannot be source complexes in any realization (i.e. no
directed edge can start from them in the reaction graph).
Furthermore, the unweighted graph of Fig. 5 is indeed a
subgraph of the unweighted graph of the dense realization.
An interesting structural change can be observed if we
modify two parameter values as follows: p6 = 1

2p1, p5 = p2.
A sparse realization for this case is shown in Fig. 7.
With the above parameter change, we could generate the
chemical reaction network with possible bistability that is
proved to be minimal in (Wilhelm, 2009), where minimal
means (in decreasing order of priority): minimal number of
reactions, minimal number of complexes, minimal number
of terms in the ODEs. (Note that the particular network
shown in (Wilhelm, 2009) is mass balanced and therefore
does not use the zero complex but this is just a technical
question of initial assumptions and the two networks can
be transformed to each other algorithmically)

5. CONCLUSIONS

The kinetic realizations of nonnegative autonomous poly-
nomial systems have been studied in this paper. The main
underlying motivation is to examine dynamical properties
(stability, possibility of multiplicities, etc.) using the re-
lated results of chemical reaction network theory (CRNT).
For this, realizations with given properties are particularly
helpful that are computed using mixed integer linear pro-
gramming. The realization with the minimal number of
complexes and/or reactions (i.e. the sparse realization) is
useful in �nding a low de�ciency network structure for
which the stability results of CRNT can be successfully
applied. On the other hand, the structure of the dense
realization is unique (with a �xed parameter set), and

it shows the maximal set of possible reactions between
the complexes. These results hopefully contribute to the
exploitation of the potential of CRNT in the framework of
nonlinear systems and control theory.
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