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Abstract: This paper extends former results about the networked reference tracking control of
a pressurizer in a pressurized water nuclear power plant. An L2-gain based method is used in
a deterministic framework to compute the maximum allowable transmit intervals (MATIs) for
the actually implemented dynamic inversion based controller that still guarantee the required
performance. Furthermore, a stochastic linear quadratic regulator with a state estimator is also
designed that can take packet losses into consideration. It is shown through the comparison
that both methods are applicable for networked control but the LQ controller combined with a
Kalman filter has better output variance properties.
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1. INTRODUCTION

The requirement for the continuous improvement of pro-
cess safety and effectivity often necessitates the dynamic
analysis and /or re-design of certain subsystems in complex
plants. The need for continuous development is partic-
ularly true for such a safety-critical application like a
nuclear power plant. In many cases, the most advantageous
and most economical way to substantially improve sys-
tem dynamics is the detailed modelling and model-based
advanced feedback design for the affected components of
the system Hangos and Cameron [2001], Szederkényi et al.
[2008].

One example for such a procedure is the successful mod-
elling, identification and dynamic inversion based con-
troller design for stabilizing the primary circuit pressure
at the Paks Nuclear Power Plant in Hungary in 2004-2005
(see, e.g. Szabd et al. [2005], Varga et al. [2008]). This
controller implementation largely contributed to the pos-
sibility that the average thermal power of the plant units
could be increased by 1-2%. The implemented controller
is a redundant networked control system (a redundant
NCS), where the measurement results and the control
commands are transferred to the computing units and
actuators through an Ethernet network. The controller
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was originally designed in continuous time and then it was
discretized using an appropriate sampling interval.

The modeling and parameter estimation procedure for the
whole primary circuit has been described in Fazekas et al.
[2007, 2008]. The same procedure for the pressurizer which
is a subsystem of the primary circuit has been presented
in Varga et al. [2006].

In recent years, significant and well-usable theoretical
results appeared in the field of dynamic analysis (Nesic
and Teel [2004b,a], Tabbara et al. [2007]) and controller
design (Sinopoli et al. [2003, 2005]) of NCSs. Since many
of these important results appeared only after the actual
design of the pressurizer controller, the posterior analysis
of the implemented control system and its comparison with
other possible alternatives is definitely of interest.

The basic analysis for the pressurizer together with the
implemented dynamic inversion based controller in the
framework of Tabbara et al. [2007] has been performed
in Szederkényi et al. [2008]. The aim of this paper is to
extend these results and compare them in simulations to a
networked LQ-servo design where the state estimator is a
specially computed Kalman-filter (Sinopoli et al. [2005]).

2. BASIC NOTIONS
2.1 Dynamic inversion based control

In this section, the summary of the dynamic inversion
based controller design is shown based on Szabd et al.
[2005]. A more detailed desrciption of the design can be
found in Szederkényi et al. [2008].

It is known that if an LTI system is invertible, then
the maximal (A,B)-invariant subspace (V*) contained in
kerC, induces a decomposition of the linear system into:



&1 = A11x1 + Ar2x2 + Biu (1)
o = As1x1 + Agoxo (2)
z = 011‘1, (3)

where ImB = ImB; and x; € V*+ , see Basile and Marro
[1973], Wonham [1985].

By applying the feedback w = Fjx; + Fhxo + v, with
F = [Fy F»]" that renders V* (A + BF, B) invariant, we
can obtain the system:

1 = Ajix1 + Biv, z=Cizy. (4)

The required input to track a desired output signal z4 is
given by the dynamic system

ng =A22nq + A21¢(zq) (5)
ug =Fang + M(zq), (6)

provided that this input is applied to the original system
started from the appropriate initial conditions.

In practice it seldom happens that the required initial
conditions can be set precisely, therefore, there will be
an error in the whole state. To close the loop, a suitable
linear dynamical system of the tracking error is added to
the linearizing control input. By examining the ”open—
loop” equations (5) one can observe that it is possible to
introduce an ”outer—loop” by applying an error feedback,
that modifies the equations (6) that define the control
input. This idea is shown by the dotted line part of Figure
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Fig. 1. Inversion based tracking

Based on this structure, an advanced (e.g. H,) controller
can be designed in order to minimize the influence of the
disturbances on the performance of the tracking error.

2.2 Deterministic performance analysis of networked
control systems

The concepts and results summarized in this section are
taken from Nesic and Teel [2004a] and Tabbara et al.
[2007]. The basic configuration of a networked control
system can be seen in Fig. 2, where z, and z. are the
states of the plant and the controller, respectively, y € R"
is the plant output, u € RP is the controller output, while
y € R" and @ € RP are the most recently transmitted plant
and controller output values through the network. e is the
error caused by network transmission that is defined as

_ (9@ —y(®)
“0= | o)~ uio) @)
Individual actuators and sensors connected to the net-
works are called nodes. We assume that node data are
transmitted at time instants {to,t1,...,t;} where i € N.
The transmission time instants satisfy € < t;41 —t; < 7

for j > 0 where ¢,7 > 0. The upper interval bound 7 is
called the mazimum allowable transfer interval (MATTI).

Using the notation x = [z} zI]" € R", the dynamic

equations of a networked control system with disturbance
vector w € R™ between the transmission instants can be
written as

x':f(t,ac,e,w), te [ti—lyti] (8)
e=g(t,z,e,w), t€ [ti—1,t;] 9)

The discontinuous change of e during transmission in-
stants can be modeled as a jump system

e(th) = (I — (i, &(t:)))e(ti) (10)

eth) = AG, Ui, é(t:))e(ti), (t:)) (11)
where é is the decision vector of the network scheduler, ¥
is the scheduling function and A is the decision update
function. More details about the dynamics (10)-(11) in
the case of different scheduling protocols can be found in
Tabbara et al. [2007]. A key feature of network scheduling
protocols from the point of view of closed loop stability is
the so-called persistently exciting (PE) property. Accord-
ing to the definition, a protocol is uniformly PE in time
T if it regularly visits every network node within a fixed
period of time T'.

In the LTT or linearized case Eqgs. (8)-(9) will be used in
the form

T =®112+ Proe (12)
é= o1 + Poge (13)

where ®;; are constant matrices of appropriate dimen-
sions. Let us introduce the following notations. A" denotes
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Fig. 2. Networked control system

the set of positive semidefinite symmetric n x n matrices
with positive entries. For z,y € R", x X y < z; <
y; for ¢+ = 1,...,n. For an n-dimensional vector z, T
= [|z1],...,|7n]]T. The following theorem from Tabbara
et al. [2007] will serve as a theoretical basis for our forth-
coming calculations in section 4.3.

Theorem 1: Suppose that the NCS scheduling protocol of
(8)-(11) is uniformly persistently exciting in time 7' and
the following assumptions hold

(1) There exist @ € A} and a continuous output of the
form g(z,w) = G(z) + w so that the error dynamics
(9) satisfies

g(t,x,e,w) = Qe+ y(x, w) (14)

for all (z,e,w), for t € (¢;,t;41), and for all ¢ € N.

(2) (8) is £, stable from (e,w) to G(x) with gain ~ for
some p € [1, 00].

(3) the MATI satisfies 7 € (¢,7%), € € (0,7"), where

™ =In(v)/(|Q|T), (15)
and v is the solution of
v(|Q +4T) = AT VT —2|Q[ = 0. (16)



Then the NCS is £,-stable from w to (G(x), e) with linear
gain.

Using Theorem 1, a sharp and practically usable estima-
tion can be obtained for the acceptable upper bound of the
MATT such that the £, stability of the closed loop system
is preserved.

2.3 LQG control over communication network

For comparative purposes a discrete-time LQG control
has also been designed for the presented control problem.
Since the communication channel can only guarantee the
maximal transfer time (MATI-7), the time ¢ that is
actually needed at a particular time instant k for a
measurement packet to reach the controller can vary in
time. A classical sampled controller can be implemented
only if ¢ < Ts, where T is the sampling time. This is
equivalent to requiring that 7 < T,. For the discrete-
time controller to be applicable even if this condition does
not hold, we implemented the modified version of the
classical LQG controller. For this, suppose the length of
the transfer period varies randomly and the probability
of t, <« Ts is known (The < is defined practically e.g.
by tr < 0.017%). The case of t;, < Ts means that the
measurement is received on time and can therefore be used
to compute the next control action. If ¢, < Ts does not
hold (possibly ¢, > Ts) we apply the following policy: the
controller runs without the fresh measurement and the late
packet will be dropped. This is equivalent to considering
the measurement delay as a simple packet loss, which can
be easily handled by the methods presented in Sinopoli
et al. [2003],Sinopoli et al. [2005].

The system investigated in papers Sinopoli et al. [2003]
and Sinopoli et al. [2005] can be given by the following
discrete-time difference equations:

Tyl = Axy, + v Buy, + wg
(17)

where x,ug, yr are the state, input and output, as be-
fore and xg, wy, vy are Gaussian, uncorrelated, white, zero
mean random variables with covariance Py, ), Ry, respec-
tively. The actual measurement is 7 - yx, where v, € {0,1}
is a random variable with P(y, = 1) = 7. (In view of our
network configuration, 7 is the probability of receiving the
k-th packet on time.) The covariance Ry is time varying,
because it depends on the random packet loss: Ry = v R+
(1 — v)o?I, where ¢ — oo is taken to model the loss of
information. By introducing an other random variable v
with v, € {0,1} and P(v, = 1) = v it is possible to model
a packet loss at the actuator side, which means in our case
that the control input does not arrive to the actuators on
time. The LQG controller is constructed to minimize the
cost function

yr = Cxp + v

Joo = E Zx{ka + VkuzUuk | Zoo
k=0

(18)

where Z;, = {y*,7*, 71} denotes all available informa-
tion and ylC - {yka oo 7y0}’ f}/k = {’}/ka v a’YO}a vl =
{Vk-1,...,}. By Sinopoli et al. [2005] the optimal con-
trol policy can be computed as follows:

Uy = Lo, Lo = —(B"SecB+U) 'BTS A

Seo = ATS A+ W + 7AT S BLo

Tk = Tpp—1 + Kk (yp — Cogp—1)

Ki = Pep—1CT (CPye1 CT + R)

-1 = AZgp_1p—1 + Bug—1

Pyjim1 = APy 1 AT 4+ Q (19)
where Py _; = Fy, Zo)—1 = 0. In Sinopoli et al. [2003] and
Sinopoli et al. [2005] there are methods for determining the
minimal probability of successful packet delivery required
for the stability to be guaranteed. Since the pressurizer
subsystem examined in the paper is open loop stable, the
packet loss does not cause instability. The effect of network

unreliability can be detected only in degradation of the
performance, which is examined later via simulations.

3. SYSTEM DESCRIPTION
3.1 Task and operating principles of the pressurizer

The task of the pressurizer is to keep the primary circuit
pressure within a predefined range. The pressurizer is a
vertical tank and inside this tank there is hot water at
a temperature of about 325°C and steam above. If the
primary circuit pressure decreases, electric heaters switch
on automatically in the pressurizer (see Fig. 3) Due to
the heating more steam will evaporate and this leads to a
pressure increase.

Using the old outdated pressurizer controller that applied
a hystheresis-based switching algorithm, the primary cir-
cuit pressure was oscillating in an approximately 1 bar
interval during normal operation. The high peaks of these
oscillations prevented the possibility of operating the units
at a slightly higher thermal power (because of safety lim-
its). As a result of equipment modernization, the heat-
ing energy of the electric heaters can now be set in a
continuous range of 0-360 kW and new pressure sensors
were installed with a significantly lower measurement er-
ror. These changes made possible the design of a more
advanced controller that can stabilize the pressure in a
much narrower range.

The manipulable input variable of the model is directly
proportional to the instantaneous electrical heating power.
Furthermore, there is an approximately constant water
in- and outlet to and from the tank. The time-varying
temperature of the inflowing water will be treated as a
disturbance in the model. The controlled and measured
output is the pressure in the tank (see Fig. 3).

8.2 System model

The physical modelling of the primary circuit dynamics
(including the pressurizer) has been carried out following
the principles of Hangos and Cameron [2001] and is
described in greater detail in Fazekas et al. [2007]. The
variables and constants appearing in the model are listed
in Table 1. The state-space model of the pressurizer model
is given by

&= Azr + Bu+ Ed (20)
where the state vector x, the input u and the external
disturbance vector d are



X1 Xz

Xs Xa

Fig. 3. Simplified structure of the pressurizer

T water temperature °C
Tw tank wall temperature °C
cp specific heat of water kg+c
U internal energy of water J
Uw internal energy of the wall J

m mass flow rate of inlet water %
Tr inlet water temperature °C
M mass of water kg
Cpw heat capacity of the wall %

power of one electric heater W

w, environmental heat loss
Table 1. Variables and constants of the pres-
surizer model

z =T Tw]", vwel0,4], d=[T; W;]*

The actually measured pressure is a nonlinear static func-
tion of the water temperature in the following form

T e?(T)
p=hT)= 55
where o(T) = co + a1T + coT? + ¢3T3 with constants
co, - --,c3. Therefore the output equation can be written

as
Yy = [1 O]x, Tr1 = hil(p)
The matrices of the model are

(21)

m KW KW

M  c,M c¢,M
A= K P ’}(W (22)
Cow Cow
WuE % 0
B=|¢M |, E= 0 1
0 Cow

4. CONTROL SYSTEM ANALYSIS

The main control goal is to stabilize the pressure at a
prescribed reference value (typically around 123-124 bars
which is equivalent to approximately 327 °C in terms of
temperature). Moreover, the controller’s additional task is
to suppress the effect of measurement noise and that of
the time-varying disturbances (W;, T7).

4.1 Controller description

Using the theory described in section 2.1, the brief sum-
mary of the controller design method is the following. The

state-space equations of the open loop system (20) can be
rewritten as

(23)

Ty = a1 + axre — EwW, (24)
where Qi5 = Aij; Bu = Bl, ET = E11 and EW = E22
in (22). Let 2] denote the reference value for z; (i.e.
zq = 7). Furthermore, let us denote the nominal (mean)
values for the time-varying disturbances by 77 ,, and W ;,,
respectively.

1 = a1121 + a1ox2 + Byu + ErTr

Note that the system equations (23)-(24) are already in
the form of egs. (1)-(2) with extra disturbance terms. The
dynamic equation of the inversion controller is given by

1 = agen + a1z] — Ew W, (25)
The input u is expressed as u = u” + v, where
1 . :
u = B—(:E’{ —anw —aen — ErTr,), (26)
u

and v is a new input term for additional feedback.

The state variables of the tracking error system are defined
as

S1=x1— ], S2a=x2—1N (27)
Substituting (26) into (23) gives
i1 = ay(v1 — a}) + ara(z2 — 1) + Brd (28)

where dlzTI —T7,,. For the tracking error dynamics, we
get

51 = a1151 + a1282 + Epdy + Byv
$2 = a2181 + a22s2 — Ewds
where do=W; — W, ,,.

Taking into consideration that x; is the measured state
variable, we can shape the error dynamics with a dynamic
(or static) controller of the general form

é: Mclf + Mc251
v=Mc3§ + Mcasa,
for details, see Szabé et al. [2005].

4.2 Controller implementation

The hardware environment of the controller implementa-
tion is a distributed digital system. The functional units
of the system are connected through an Ethernet network.
The pressure is measured by a high precision instrument
located in a hermetically sealed area. The data are trans-
ferred to a Siemens S300 control unit using the Profibus PA
protocol. The pressure measurement loop has a redundant
architecture. The S300 controller checks the status of the
pressure measurements and transfers them to other nodes
of the network. It can also check signal values during
tests. The endpoints of the system are Wago intelligent
controllers that actually operate the electric heaters and
valves. These devices, located at different points of the
power plant, are the real physical actuators in the system.
The three controllers work cooperatively: their states are
shared with each other and with the central computer
system. They are also able to work in reduced mode
independently in case of certain failures.



4.8 Computation of the MATI in an L2-gain framework

For the simplification of the forthcoming calculations, we
will use the following assumptions for the analysis.

Al The time-varying disturbances 77 and W, are con-
stant. This assumption approximates reality quite
well if we consider a few minutes to approximately
one hour of system operation, because the change of
these disturbances is usually rather slow compared to
the system dynamics.

A2 The nominal values of disturbances (17, Wi,) are
constant.

A3 Zero order hold is assumed on the input.

A4 The temperature reference z] is (at least piecewise)
constant.

A5 Pressure measurement noise is not taken into consid-
eration during the analysis.

A6 Similarly to the examples in Tabbara et al. [2007], all
the network induced errors are grouped to the output,

ie. e =g(t) —y(t).

The analyzed dynamic inversion based controller uses a
static error feedback, therefore the controller equations
(25), (26) and (32) can be summarized in the following
simple state-space model containing only one state vari-
able (denoted by x3):

@3 = Acxz + Beirx1 + (Be1 — Bea)x] + BeaWy
Ye = Deygxy + CCCES + (Dcl - Dc4)33’£ + DCQTI,n
where A., B.;, C. and D,; are the controller parameters,
and z7 is the temperature in the pressurizer. The actual
system input can be computed as
u=y.+e (33)

Using (33), the equations of the closed loop system can be
written as

1 = (all + Bch4)Cl31 + a12x2 + ByCexs + E7Tr

+By(De1 — Dea)a’y + BuDeaTr .y + Bue (34)

To = a21x1 + a2z + Ew W, (35)
@3 = Beaw1 + Acwz + (Ber — Bea)x] + BesTr n (36)
)

Ye = Deaw1 + Cews + (Der — Dea)x] + De2Ty (37
Observe, that we have a LTI closed loop system model.
Therefore, from Eqs. (34)-(36), matrices ®1; and P15 in
(12) are obtained as

a11 + BuDes a12 ByCe
Py = as aze 0 ) (38)
Bea 0 Ac
By
Pra=| 0 (39)
0

Let us denote the ith row of ®1; by ®¢;. Using assump-
tions A1-A4, the time derivative of e can be written as
é=—Yc =—Decgt1 — Cez =
—Des®}yx — Ce®3y 2 — DeaBue — Dea EpTy —
DeyBuy(De1 — Dea)x] — DeaBuDe2 Tt —
Ce(Be1 — Bea)z] — CeBesWi (40)
From (40), matrices ®21 and P22 of (13) are the following

Py = —Deg @], — Co®3, (41)

$22 = —DcaBu (42)
The controller parameters were the following

Ae = —0.0029, Bei = 0.0029, Bes = —0.0020,
By = 0.011, Co = —2.1031, D¢y = 2.11, (43)

Beo = —0.007, Bey = —7.58

Using the model of the closed loop system (34)-(37), the
model parameters and the controller parameters (43), the
matrices ®q11, P12, Po1 and P are easy to compute (see
Szederkényi et al. [2008] for the details).

Since the system is SISO, the number of network links can
chosen to be one, i.e. T = 1.

The L5 gain between the error e and the output § = @91
is 7 = 9.595- 1073, For the estimation of 7*, first we solve
Eq. (16) that yields z = 1.499. The norm of ®45 is easy to
compute and thus: |®9s| = |Q| = 9.5902- 1073,

From these results and by solving (16), we obtain the
following estimate for the MATT: 7* = 42.27 s. This proves,
that the present sampling time of 10 s is a safe value from
the point of view of Lo stability even if there are some
network induced delays that do not violate 7*.

4.4 Simulation results and comparison

To compare the obtained results, 24 hours of system
operation have been examined on simulations in Mat-
lab/Simulink. The time function of the disturbance T7 is
shown in Fig. 4, while W;,ss was constant. The reference
value for the pressure was 124 bars. White measurement
noise was assumed on the output with a variance of 0.01.
The noisy pressure measurements were converted to tem-
perature using the same spline functions as in the real
implementation. The sampling time of the controller was
10 s with zero order hold on the input. The effect of
various transmit intervals for the dynamic inversion based
controller have been compared to different probabilities of
packet losses in the case of the networked LQ controller.
Fig. 5 shows the pressure values in the case of the dynamic
inversion controller for 10s, 40s delay and 100s transmit
intervals, respectively. The output variances for these three
cases were 0.0053, 0.0063 and 0.0093.

T

me h)

Fig. 4. Time function of disturbance 77

The discrete-time LQG controller presented in subsection
2.3 has been designed with the following parameters:

W = diag([107° 107 107%]); U =10
Py=10"31y; Q=0.114

R = diag([1072 107% 1078)); (44)



time [h]

Fig. 5. Pressure in the controlled system with dynamic
inversion based controller: a) 10s TI, b) 40s TI, c)
100s TT

The probability 4 of successful measurement packet de-
livery has been chosen to be 1 (no network delay), 0.25
(only every 4-th packet arrives averagely), 0.1 (9 are failed
averagely form 10 consecutive transmissions). To obtain
the discrete time model required by the LQG controller,
the system (22) was centered around the reference state
and the nominal disturbance values (17 ,, Wi ) and then
it was discretized with sampling time 75 = 10s. The
simulation results can be seen in figure 6. The output
variances in the three different cases were 0.0044, 0.0056,
0.0065, respectively.

124

ressure [bar]
o
I
=
2

time [h]

Fig. 6. Pressure in the system controlled by the discrete-
time LQ controller with a) ¥ = 1, b) 5§ = 0.25, ¢)
¥=0.1

The disturbance rejection properties of the two controllers
are similar. It is also visible from the results that in the
case of the dynamic inversion based controller, the output
has significantly greater variance than that of the LQ con-
troller, if the MATT is bigger than the standard sampling
interval. However, it must be taken into consideration that
the LQ design explicitely takes into account the output
noise characteristics. Moreover, the initial overshoot of the
response (that is also of concern because of strict upper
pressure limits) tends to be much bigger in the case of the
LQ controller which is an expectable fact from practice.

5. CONCLUSIONS

The properties of two control design approaches for a
nuclear power plant pressurizer system have been analyzed
and compared in this paper. The MATI for the actu-
ally implemented dynamic inversion based controller was
computed and a network based LQ controller have been
designed and tested in simulations for the same system.

Simulation results show that the variance properties of the
output are better in the case of the LQ controller, if the
operating conditions are similar.
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