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Abstract

A numerical procedure for finding the sparsest and densest realization of a given reaction

network is proposed in this paper. The problem is formulated and solved in the framework

of mixed integer linear programming (MILP) where the continuous optimization variables are

the nonnegative reaction rate coefficients, and the corresponding integer variables ensure the

finding of the realization with the minimal or maximal number of reactions. The mass-action

kinetics is expressed in the form of linear constraints adjoining the optimization problem. More

complex realization problems can also be solved using the proposed framework by modifying

the objective function and/or the constraints appropriately.

Keywords: reaction kinetic systems, mass action kinetics, mixed integer linear programming

AMS classification: 80A30 chemical kinetics

1 Introduction

Reaction kinetic systems form a special class of positive systems with smooth nonlinearities where

advantageous dynamic properties, such as global stability may be ensured thanks to the special

structure of the system model. In the classical case, these systems are described by a set of ordi-

nary differential equations (ODEs) with polynomial right-hand sides [36]. Beside the description of

classical chemical reactions, reaction kinetic systems are the main building blocks of highly inter-

connected biochemical systems with complex behavior such as metabolic or cell signalling pathways

[34].

One of the most significant results in the study of the dynamical properties of chemical reaction

systems is described in [14, 15], where (among other important results) the global stability of so-

called ’deficiency zero’ reaction networks is proved with a given Lyapunov function. It is important

to remark that the deficiency zero property is a structural feature of a certain class of reaction

networks, therefore their stability does not depend on the system parameters. These concepts were

revisited, extended and put into a control theoretic framework in [33]. Conditions for the local

controllability and observability of chemical systems were given in [11] and [12], respectively. The

relationship between the chemical network structure and the possibility of multiple equilibria is

investigated in [5] from and algebraic and in [6, 8] from a graph-theoretic point of view. It was

shown in [27] that reversible mass-action reaction networks with linearly independent reaction pairs

possess a local dissipative-Hamiltonian structure in a neighborhood of any equilibrium point.

Several authors studied the possibilities of dimension reduction for large chemical networks. In

[13], the characterization of nonnegative linear lumping schemes is given that preserves the kinetic
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structure of the original system. The method of invariant manifold (MIM) is proposed in [18] and

[19] for the reduced description of kinetic equations.

The so-called inverse problem of reaction kinetics (i.e. the characterization of those polynomial

differential equations which are kinetic) was solved in [23]. It is known from the "fundamental

dogma of chemical kinetics" that different reaction networks can produce the same kinetic differential

equations [32]. Naturally, this property has an important impact on the identifiability of reaction

rate constants [7].

Mixed integer optimization techniques have been widely and successfully used in the field of

process analysis and synthesis [17], [29], [28]. Other application fields include Clar number calcu-

lation in chemistry [21, 31], vehicle routing, airline crew scheduling, production planning, etc. The

techniques for transforming propositional logic into linear inequalities with integer and continuous

variables have been worked out in e.g. [4], [28] and [35]. Based on this theoretical background, [30]

presents a modelling framework for discrete optimization problems that relies on a logic represen-

tation in which mixed-integer logic is represented through disjunctions, and integer logic through

propositions. Furthermore, [3] proposes a framework for modeling and controlling models of dy-

namical systems described by interacting physical laws, logical rules, and operating constraints.

The aim of this paper is to propose a numerical procedure for determining equivalent representa-

tions (i.e. reaction networks with possibly different structure and/or reaction rate coefficients from

the original one but still leading to the same kinetic differential equations) called realizations of a

given set of reaction kinetic differential equations with the minimal and maximal possible number of

reactions. Chemical reactions are understood in a wide generalized sense in the paper (like, e.g. in

[15] or [14]), because the constraints of (component) mass conservation are not taken into account.

The structure of the paper is the following. Section 2 contains the most important definitions

and tools in the field of reaction networks and mixed integer linear programming used later in the

paper. The main contribution can be found in section 3 where the realization problem is solved using

the MILP framework. Illustrative examples showing the operation of the method are presented in

section 4. Finally, section 5 contains the most important conclusions.

2 Basic notions

2.1 Mass action reaction networks

The original physical picture underlying the reaction kinetic system class is a closed system under

isothermal and isobaric conditions, where chemical species Xi, i = 1, ..., n take part in r chemical
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reactions. The system is perfectly stirred, i.e. concentrated parameter in the simplest case. The

concentrations xi, i = 1, ..., n form the state vector the elements of which are non-negative by

nature. For the sake of simplicity, physico-chemical properties of the system are assumed to be

constant.

The origin of mass action law lies in the molecular collision picture of chemical reactions. Here

the reaction occurs when either two reactant molecules collide, or a reactant molecule collides with

an inactive (e.g. solvent) molecule. Clearly, the probability of having a reaction is proportional to

the probability of collisions, that is proportional to the concentration of the reactant(s).

2.1.1 Chemical reactions obeying the mass action law

A straightforward generalization of the above molecular collision picture is when we allow to have

multi-molecule collisions to obtain elementary reaction steps in the following form [20]:

n
∑

i=1

αijXi →
n

∑

i=1

βijXi, j = 1, ..., r (1)

where αij is the so-called stoichiometric coefficient of component Xi in the jth reaction, i.e. the

number of colliding Xi molecules, and βiℓ is the stoichiometric coefficient of the product Xℓ. The

linear combinations of the species in eq. (1), namely
∑n

i=1 αijXi and
∑n

i=1 βijXi for j = 1, . . . , r are

called the complexes and are denoted by C1, C2, . . . , Cm. Note that the stoichiometric coefficients

are always non-negative integers in classical reaction kinetic systems.

According to the extended molecular picture, the reaction rate of the above reactions can be

described as

ρj = kj

n
∏

i=1

[Xi]
αij = kj

n
∏

i=1

x
αij

i , j = 1, ..., r (2)

where [Xi] = xi is the concentration of the component Xi, and kj > 0 is the reaction rate constant

of the jth reaction, that is always positive.

If the reactions Ci → Cj and Cj → Ci take place at the same time in a reaction network for

some i, j then this pair of reactions is called a reversible reaction (but it will be treated as two

separate elementary reactions).

2.2 Graph representation of mass-action systems

Similarly to [14], we can assign the following directed graph (see, e.g. [2]) to the reaction network

(1) in a straightforward way. The directed graph D = (Vd, Ed) of a reaction network consists of
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a finite nonempty set Vd of vertices and a finite set Ed of ordered pairs of distinct vertices called

directed edges. The vertices correspond to the complexes, i.e. Vd = {C1, C2, . . . Cm}, while the

directed edges represent the reactions, i.e. (Ci, Cj) ∈ Ed if complex Ci is transformed to Cj in the

reaction network. The reaction rates kj for j = 1, . . . , r in (2) are assigned as positive weights to the

corresponding directed edges in the graph. A walk in the reaction graph is an alternating sequence

W = C1E1C2E2 . . . Ck−1Ek−1CkEk where Ci ∈ Vd, Ei ∈ Ed for i = 1, . . . , k. W is a directed path

if all the vertices in it are distinct. P is called a directed cycle if the vertices C1, C2, . . . , Ck−1 are

distinct, k ≥ 3 and C1 = Ck. A set of complexes {C1, C2, . . . , Ck} is a linkage class of a reaction

network if the complexes of the set are linked to each other in the reaction graph but not to any

other complex [15].

2.3 Differential equations of mass-action systems

There are several possibilities to represent the dynamic equations of mass action systems (see, e.g.

[14], [19], or [7]). The most advantageous form for our purposes is the one that is used e.g. in

Lecture 4 of [14], i.e.

ẋ = Y · Ak · ψ(x) (3)

where x ∈ R
n is the concentration vector of the species, Y ∈ R

n×m stores the stoichiometric

composition of the complexes, Ak ∈ R
m×m contains the information corresponding to the weighted

directed graph of the reaction network, and ψ : R
n 7→ R

m is a monomial-type vector mapping

defined by

ψj(x) =

n
∏

i=1

x
yij

i , j = 1, . . . ,m (4)

where yij = [Y ]ij. The exact structure of Y and Ak is the following. The ith column of Y contains

the composition of complex Ci, i.e. Yji is the stoichiometric coefficient of Ci corresponding to the

specie Xj . Ak is a column conservation matrix (i.e. the sum of the elements in each column is zero)

defined as

[Ak]ij =

{

−
∑m

l=1 kil, if i = j

kji, if i 6= j
(5)

In other words, the diagonal elements [Ak]ii contain the negative sum of the weights of the edges

starting from the node Ci, while the off-diagonal elements [Ak]ij , i 6= j contain the weights of the

directed edges (Cj , Ci) coming into Ci. Based on the above properties, it is appropriate to call Ak

the Kirchhoff matrix of a reaction network.
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To handle the exchange of materials between the environment and the reaction network, the

so-called "zero-complex" can be introduced and used which is a special complex with the all stoi-

chiometric coefficients zero i.e., it is represented by a zero vector in the Y matrix (for the details,

see, e.g. [14] or [5]).

We can associate an n-dimensional vector with each reaction in the following way. For the

reaction Ci → Cj , the corresponding reaction vector denoted by ek is given by

ek = [Y ]·,j − [Y ]·,i (6)

where [Y ]·,i denotes the ith column of Y . Any convention can be used for the numbering of the

reaction vectors (e.g. the indices i and j in (6) can be treated as digits in a decimal system). The

rank of a reaction network denoted by s is defined as the rank of the vector set {e1, e2 . . . , er} where

r is the number of reactions. The deficiency δ of a reaction network is defined as [14, 15]

δ = m− l − s (7)

where m is the number of complexes in the network, l is the number of linkage classes and s is the

rank of the reaction network. The deficiency is a very useful tool for studying the dynamical prop-

erties of reaction networks and for establishing parameter-independent global stability conditions

[15, 16].

A reaction network is called reversible, if each of its reactions is a reversible reaction. A reaction

network is called weakly reversible, if each complex in the reaction graph lies on at least one directed

cycle (i.e. if complex Cj is reachable from complex Ci on a directed path in the reaction graph,

then Ci is reachable from Cj on a directed path).

Using the notation

M = Y · Ak, (8)

equation (3) can be written in the compact form

ẋ = M · ψ(x) (9)

Example 2.1. Consider the reaction network the graph of which is shown in Fig. 1 with the

parameters:

k1 = 1, k2 = 1.1, k3 = 1, k4 = 1, k5 = 1.1, k6 = 0.1, k7 = 3, k8 = 1
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Let us number the complexes as

C1 = X1 + X2, C2 = X1 + 2X2, C3 = 2X2, C4 = 2X1 + 3X2

Then the matrices of the description (3) are the following:

Y =

[

1 1 0 2

1 2 2 3

]

(10)

Ak =













−2 1.1 0 0

1 −2.3 3 1

1 0.1 −3 1

0 1.1 0 −2













(11)

M = Y Ak =

[

−1 1 3 −3

2 0 0 −2

]

(12)

2.4 Mixed integer linear programming (MILP) and propositional calculus

A mixed integer linear program is the maximization or minimization of a linear function subject

to linear constraints. A mixed integer linear program with k variables (denoted by y ∈ R
k) and p

constraints can be written as [26]:

minimize cT y

subject to:

A1y = b1

A2y ≤ b2 (13)

li ≤ yi ≤ ui for i = 1, . . . , k

yj is integer for j ∈ I, I ⊆ {1, . . . , k}

where c ∈ R
k, A1 ∈ R

p1×k, A2 ∈ R
p2×k, and p1 + p2 = p.

If all the variables can be real, then (13) is a simple linear programming problem that can be

solved in polynomial time. However, if any of the variables is integer, then the problem becomes

NP-hard. In spite of this, there exist a number of free (e.g. YALMIP [24] or the GNU Linear Pro-

gramming Kit [25]) and commercial (such as CPLEX or TOMLAB [22]) solvers that can efficiently

handle many practical problems.
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As it has been mentioned in the Introduction, literals in propositional calculus can be trans-

formed into linear inequalities. The notations of the following summary are mostly from [3]. A

statement, such as x ≤ 0 that can have a truth value of "T" (true) or "F" false is called a literal

and will be denoted by Si. In Boolean algebra, literals can be combined into compound statements

using the following connectives: "∧" (and), "∨" (or), "∼" (not), "→" (implies), "↔" (if and only

if), "⊕" (exclusive or). The truth table for the previously listed connectives is given in Table 1.

A propositional logic problem, where a statement S1 must be proved to be true given a set

of compound statements containing literals S1, . . . , Sn, can be solved by means of a linear integer

program. For this, logical variables denoted by δi (δi ∈ {0, 1}) must be associated with the literals

Si. Then the original compound statements can be translated to linear inequalities involving the

logical variables δi. A list of equivalent compound statements and linear equalities or inequalities

taken from [35] is shown in Table 2. In our case, the δi logical variables will be used for indicating

whether the corresponding computed reaction rate coefficients are different from zero or not.

3 Computing dense and sparse realizations of reaction networks

Consider the polynomial system (9). We will call the matrix M in (9) admissible, if the polynomial

differential equations describe a mass-action reaction network. Conditions for this were first given

in [23] but not through the properties of M . The matrix pair (Y,Ak) is called a realization of an

admissible matrix M if Y ·Ak = M , the elements of Y are non-negative integers, and Ak is a column

conservation matrix with non-positive diagonal and non-negative off-diagonal elements. This way,

we can define the alternative realizations of a reaction network, since M is computable from the

structure and parameters of a given reaction system.

The starting point for the forthcoming calculations is that a reaction network is given with

its reaction graph or equivalently with its realization (Y,Ak) and we want to compute its sparsest

or densest realization denoted by (Y s, As
k) and (Y d, Ad

k), respectively. Furthermore, we make the

restriction that the complexes in the newly found realizations form a subset of the original complexes,

i.e. col(Y s) ⊆ col(Y ) and col(Y d) ⊆ col(Y ). In principle, the alternative realizations may contain

such complexes that do not appear in the original reaction network, but we won’t elaborate on

this case. It is assumed that a maximal possible set of complexes for the reaction network is given

in advance. We remark, that obviously, the sparsest or densest realization may not be unique

(parametrically and/or structurally), but here our goal is to find one possible solution.

8



3.1 Representation of mass action kinetics as linear equality constraints

For the computations, let us represent the Kirchhoff matrix of a reaction network containing m

complexes as

Ak =













−a11 a12 . . . a1m

a21 −a22 . . . a2m

...
...

am1 am2 . . . −amm













(14)

Keeping in mind the properties of Ak, the negative sign in (14) for the diagonal elements aii for

i = 1, . . . ,m will allow us to set a uniform nonnegativity (or identically tractable lower and upper

bound) constraint for all aij in the later computations.

Let us denote the ith row and ith column of a matrix W by [W ]i,· and [W ]·,i, respectively. Using

(14), the individual linear equations of the matrix equation (8) can be written as

−y11a11 + y12a21 + · · · + y1mam1 = [M ]11 (15)

...

−yn1a11 + yn2a21 + · · · + ynmam1 = [M ]n1 (16)

y11a12 − y12a22 + · · · + y1mam2 = [M ]12 (17)

...

yn1a12 − yn2a22 + · · · + ynmam2 = [M ]n2 (18)

...

y11a1m + y12a2m + · · · − y1mamm = [M ]1m (19)

...

yn1a1m + yn2a2m + · · · − ynmamm = [M ]nm (20)

The property that Ak is a column conservation matrix can also be expressed in the form of linear
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equations:

−a11 + a21 + a31 + a41 = 0 (21)

a12 − a22 + a32 + a42 = 0 (22)

...

a1m + a2m + · · · − amm = 0 (23)

Equations (15)-(23) can be written in the following more compact form:













Ȳ 1 0 0 . . . 0

0 Ȳ 2 0 . . . 0
...

0 0 0 . . . Ȳ m

























[Ak]·,1
[Ak]·,2

...

[Ak]·,m













=















[

M̄
]

·,1
[

M̄
]

·,2
...

[

M̄
]

·,m















(24)

where the zeros denote zero matrix blocks of size (n+ 1) ×m and

Ȳ i =

[

[Y ]·,1 [Y ]·,2 . . . [Y ]·,i−1 − [Y ]·,i [Y ]·,i+1 . . . [Y ]·,m
1 1 . . . 1 −1 1 . . . 1

]

∈ R
(n+1)×m, (25)

M̄ =

[

M

0 . . . 0

]

∈ R
(n+1)×m (26)

3.2 Constructing the optimization problem

It is visible from (24) that the optimization variable will contain the reaction rate coefficients, i.e.

the elements of Ak as the matrix Y is known and fixed by the problem statement. For the sake of

simplicity, let us use the notation

z =













z(1)

z(2)

...

z(m)













=













[Ak]·,1
[Ak]·,2

...

[Ak]·,m













(27)

where obviously, z(i) ∈ R
m, i = 1, . . . ,m.

When we seek the sparsest realization of the original reaction network (Ak, Y ) then we are

searching for the sparsest solution of (24), i.e. the one containing the maximal number of zeros (or
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the minimal number of zeros, if the densest realization is to be computed). For this, let us associate

logical variables δ(i)j with the continuous variables z(i)
j for i, j = 1, . . . ,m. Then the optimization

variable previously denoted by y is

y =

[

z

δ

]

. (28)

Following from the problem statement and construction, the lower bound for the continuous variables

is zero. For the solvability of the MILP problem, also an upper bound is introduced for z, i.e.

0 ≤ zi ≤ ui, ui > 0, i = 1, . . . ,m2 (29)

To minimize (or maximize) the number of nonzeros in the continuous solution part z, the following

compound statement have to be translated to linear inequalities

δi = 1 ↔ zi > 0, i = 1, . . . ,m2 (30)

To be able to numerically distinguish between practically zero and nonzero solutions, (30) is modified

to

δi = 1 ↔ zi > ǫ, i = 1, . . . ,m2 (31)

where 0 < ǫ ≪ 1 (i.e. solutions below ǫ are treated as zero). Taking into consideration (29), the

linear inequalities corresponding to (31) are

0 ≤ zi − ǫδi, i = 1, . . . ,m2 (32)

0 ≤ −zi + uiδi, i = 1, . . . ,m2 (33)
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Now, the MILP problem for finding the sparsest realization can be constructed as

minimize
2m2

∑

m2+1

yi (34)

subject to:












Ȳ 1 0 0 . . . 0

0 Ȳ 2 0 . . . 0
...

0 0 0 . . . Ȳ m

























y1

y2

...

ym2













=















[

M̄
]

·,1
[

M̄
]

·,2
...

[

M̄
]

·,m















(35)

0 ≤ yi ≤ ui for i = 1, . . . ,m2 (36)

0 ≤ yi − ǫyi+m2 , i = 1, . . . ,m2 (37)

0 ≤ −yi + uiyi+m2 , i = 1, . . . ,m2 (38)

yj is integer for j = m2 + 1, . . . , 2m2 (39)

In the case when the densest realization is searched for, the optimization task (34) is simply changed

to

minimize



−

2m2

∑

m2+1

yi



 (40)

Remark 1. By setting the lower and upper bounds for yi differently from what is given in (36),

the presence or omission of certain reactions can be forced during the optimization.

Remark 2. The block-diagonal structure of the coefficient matrix in (35) and the independence

of the inequalities (36)-(38) allow us to partition the optimization variable y to m partitions and

thus to solve the m resulting MILP subproblems paralelly which is a significant advantage from a

computational point of view [1].

Remark 3. The block-diagonal structure mentioned in the previous remark makes it possible to

combine different objective functions for different source complexes (since column i of Ak contains

the rate coefficients corresponding to the reactions starting from complex Ci). E.g., the number of

reactions starting from certain complexes can be minimized while it can be maximized for other

complexes.

Remark 4. We note that the sparsest solution of certain sets of underdetermined linear equa-

tions can be obtained in polynomial time using linear programming (LP) [10, 9]. However, the

applicability conditions of this LP solution are not fulfilled for many reaction networks.

12



4 Examples

The following examples were computed using the MILP solver of the YALMIP toolbox [24] under

the MATLAB R© computational environment.

Example 4.1. Consider again the simple reaction network of Example 2.1. Using the method

described in section 3, the densest and sparsest realizations are shown in Figs 2 and 3, respectively.

The Kirchhoff-matrix of the sparsest realization is

As
k =













−2 1 0 0

1 −2 3 1

1 0 −3 1

0 1 0 −2













, (41)

while the densest realization is characterized by

Ad
k =













−1.7 1.1 0.966 0.3

0.1 −2.3 0.1 0.1

1.3 0.1 −2.033 1.3

0.3 1.1 0.966 −1.7













, (42)

Furthermore Y s = Y d = Y . It is easy to check that Y s · As
k = Y d · Ad

k = M . The deficiency of all

three networks is 1, since m = 4, l = 1 and s = 2 in every case. Furthermore, each realization has

the weak reversibility property.

Example 4.2. In this example, the starting point is the reaction network described in [7] as Fig.

6 in section 6. The network is replotted in Fig. 4. For the sake of simplicity, let us choose all the

reaction rate coefficients to be 1 in the network. The Y and Ak matrices of the original reaction

system are

Y =













0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 2 1

0 0 1 0 0 0 1 2 1 0 0

0 0 0 1 0 2 1 0 0 0 1













, (43)
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Ak =















































−4 1 1 1 1 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 0 0 0

1 0 0 −1 0 0 0 0 0 0 0

1 0 0 0 −7 1 0 1 0 1 0

0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 −1 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 −1 0

0 0 0 0 1 0 0 0 0 0 0















































(44)

The first column of zeros in Y denotes the zero complex.

Here, only the sparsest realization is computed. The structure and parameters of the sparsest

realization are shown in Fig. 5. The Kirchhoff matrix of the network is

As
k =















































−3 1 1 1 1 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0

1 0 0 0 −7 1 0 1 0 1 0

0 0 0 0 0 −1 0 0 0 0 0

1 0 0 0 4 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0















































(45)

The coefficient matrix of the differential equations is given by

M = Y Ak = Y As
k =













1 0 0 0 −7 1 0 1 0 1 0

1 −1 0 0 4 0 0 0 0 −2 0

1 0 −1 0 4 0 0 −2 0 0 0

1 0 0 −1 4 −2 0 0 0 0 0













(46)
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It is visible that the sparse realization contains 12 reactions. Two complexes from the original 11,

namely X1 + X3 and X1 + X2 can be left out of the network since the corresponding columns and

rows in As
k contain zeroes. It is easy to compute that the deficiencies of the orignal structure in

Fig. 4 and that of the sparsest realization in Fig. 5 are δ1 = 6 (m1 = 11, l1 = 1, s1 = 4) and δ2 = 4

(m2 = 9, l2 = 1, s2 = 4), respectively. It is interesting to compare that the equivalent simplified

realization on the right hand side of Fig. 6. in [7] contains 8 complexes, but 14 reactions and has

a deficiency of 3. This shows the expectable fact that the minimization of the number of reactions

does not necessarily result in a realization that has the lowest deficiency. However, the sparsest

realization has the minimal number of parameters (i.e. reaction rate coefficients).

Example 4.3. Fig. 6 shows a simple reaction network with two linkage classes. Let the reaction

rate coefficients be 1 for each reaction again. The deficiency of the network is 4 (m = 8, l = 2,

s = 2). The Y and Ak matrices of the network are

Y =

[

1 0 1 3 2 1 0 1

0 1 1 1 1 2 3 3

]

(47)

Ak =

































−1 0 0 0 0 0 0 0

1 −2 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 −3 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

































(48)

Both the sparsest and densest realization have been computed for this network. Fig. 7 shows the

sparsest realization containing only 6 complexes and 4 reactions with the Kirchhoff matrix

As
k =

































−1 0 0 0 0 0 0 0

1 −1.33 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1.33 0 0 0 0 0 0

0 0 0 0 −2.5 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1.5 0 0 0

0 0 0 0 1 0 0 0

































(49)
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The deficiency of the sparse realization is 2 (m = 6, l = 2, s = 2).

The computed dense realization is depicted in Fig. 8. It is visible that in contrast to the previous

two cases, the densest realization consists of only one linkage class. Since most elements of Ak are

0.1 (see eq. 50), only those reaction rates are indicated in the figure that are different from this

value. In this case, the number of complexes is 8, the number of reactions is 29 and the Kirchhoff

matrix is given by

Ad
k =

































−1 0.5 0.5 0 0.1 0.1 0 0

1 −2 0.2 0 0.1 0.1 0 0

0 0.1 −1.2 0 0.1 0.1 0 0

0 1 0.1 0 0.1 0.1 0 0

0 0.1 0.1 0 −3 0.1 0 0

0 0.1 0.1 0 0.1 −1.1 0 0

0 0.1 0.1 0 1.1 0.2 0 0

0 0.1 0.1 0 1.4 0.4 0 0

































(50)

The deficiency of the dense realization is 5 (m = 8, l = 1, s = 2). It is again straightforward to

check that

M = Y Ak = Y As
k = Y Ad

k =

[

−1 4 0 0 −4 0 0 0

1 0 0 0 5 0 0 0

]

(51)

5 Conclusions

An optimization-based method has been proposed in this paper for the computation of sparse and

dense realizations of reaction networks obeying the mass-action law. Starting from an appropriate

form (3) of the kinetic equations, the mass-action kinetics can be expressed as linear constraints

with a block-diagonal structure. The computation of the densest and sparsest realizations is traced

back to a MILP problem where the optimization variables are the reaction rate coefficients and the

corresponding integer auxiliary variables.

The proposed method can be used e.g. for finding the "most identifiable" parametrization

of a complex reaction network (i.e. the one that has the minimal number of rate coefficients as

parameters to be estimated). In the author’s opinion, the presented examples raise interesting

problems worth further studying, especially about which important properties of reaction networks

can be determined directly from their differential equations.
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Tables

S1 S2 ∼ S1 S1 ∨ S2 S1 ∧ S2 S1 → S2 S1 ↔ S2 S1 ⊕ S2

T T F T T T T F

T F F T F F F T

F T T T F T F T

F F T F F T T F

Table 1: Truth table

compound statement equivalent linear equality/inequality

S1 ∨ S2 δ1 + δ2 ≥ 1

S1 ∧ S2 δ1 = 1, δ2 = 1

∼ S1 δ1 = 0

S1 → S2 δ1 − δ2 ≤ 0

S1 ↔ S2 δ1 − δ2 = 0

S1 ⊕ S2 δ1 + δ2 = 1

Table 2: Equivalent compound statements and linear equalities/inequalities
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Figures

Figure 1: Simple reaction network of Example 2.1
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Figure 2: Densest realization of the reaction network of Example 2.1
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Figure 3: Sparsest realization of the reaction network of Example 2.1
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Figure 4: Reaction network of Example 4.2. All the rate coefficients are set to 1.
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Figure 5: Sparsest realization of the reaction network of Example 4.2
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Figure 6: Reaction network of Example 4.3. All the rate coefficients are chosen to be 1.
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Figure 7: Sparsest realization of the reaction network of Example 4.3
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Figure 8: Densest realization of the reaction network of Example 4.3. Only those reaction rate

coefficients are indicated that are different from 0.1.
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Table and figure captions

• Table 1: Truth table

• Table 2: Equivalent compound statements and linear equalities/inequalities

• Fig. 1: Simple reaction network of Example 2.1

• Fig. 2: Densest realization of the reaction network of Example 2.1

• Fig. 3: Sparsest realization of the reaction network of Example 2.1

• Fig. 4: Reaction network of Example 4.2. All the rate coefficients are set to 1.

• Fig. 5: Sparsest realization of the reaction network of Example 4.2

• Fig. 6: Reaction network of Example 4.3. All the rate coefficients are chosen to be 1.

• Fig. 7: Sparsest realization of the reaction network of Example 4.3

• Fig. 8: Densest realization of the reaction network of Example 4.3. Only those reaction rate

coefficients are indicated that are different from 0.1.
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