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Nonlinear input-affine systems in quasi-polynomial (QP) and Lotka-Volterra
(LV) forms are investigated in this paper. It is shown that both the global
stability analysis with an entropy-like Lyapunov function candidate and the lo-
cal quadratic stability region determination can be performed by solving lin-
ear matrix inequalities (LMIs). The invariance transformations preserving the
form of the description are also described and their use for stability analysis
is discussed. It is also shown that zero dynamics analysis can be performed by
solving LMIs but the design of globally stabilizing feedback controllers leads
to a bilinear matrix inequality (BMI) problem.

1 Introduction

The class of quasi-polynomial (QP) systems plays an increasingly importantrole in the modelling of dynam-
ical systems since the majority of smooth nonlinear systems occurring in practicecan be easily transformed to
QP form [12]. The QP and LV description forms are shown to be invariantunder certain nonlinear state trans-
formations, therefore this nonlinear system class can be split into equivalence classes with the same dynamical
properties.

At the same time, the stability properties of QP systems have been intensively studied recently [5], [10], and
a simple but physically motivated Lyapunov function candidate has also beenproposed. Furthermore, some
computationally effective numerical methods have been developed lately, that allow us to practically perform the
stability analysis of QP systems [8].

However, almost all of the literature on QP and LV systems and their stability properties are only about
their representation and analysis, while a systematic explosion of their control theoretical properties is missing.
Therefore, this paper aims to give a short overview about QP systems and their possible use in nonlinear systems
and control theory.

2 Basic notions

2.1 QP and LV systems
Let [W ]i,j denote the element at thei-th row andj-th column of a matrixW . Quasi-polynomial (QP) systems

are systems of ODEs of the following form

ẏi = yi



li +
m∑

j=1

[M ]i,j

n∏

k=1

y
[B]j,k

k



 , i = 1, . . . , n. (1)

wherey ∈ int(Rn
+), M ∈ R

n×m, B ∈ R
m×n, li ∈ R, i = 1, . . . , n. Furthermore,l = [l1 . . . ln]T . Without the

loss of generality we can assume that Rank(B) = n andm ≥ n (see [12]).
It is important to note that QP systems areautonomous systemsin systems and control theoretical point of

view.
Let us denote themonomialsof (1) as

zj =
n∏

k=1

y
[B]j,k

k , j = 1, . . . , m. (2)



Let z = [z1 z2 . . . zm]T . It can be easily calculated that the time derivatives of the monomials form a Lotka-
Volterra (LV) system i.e.

żi = zi(λi +
m∑

j=1

[A]i,j · zj), i = 1, . . . , m (3)

whereA = B · M ∈ R
m×m, λ = B · l ∈ R

m×1, λi = [λ]i, andzi > 0, i=1,. . . , m.
Let us denote the equilibrium point of interest of (3) with

z∗ = [z∗1 z∗2 . . . z∗m]T ∈ int(Rm
+ )

We note that the matrixA of an LV system originating from a QP system is often rank deficient since the number
of monomials is larger than the number of QP variables in many cases. It is visiblethat LV systems form a proper
subset of QP systems withB being the unit matrix of sizem × m.

It is often useful to represent (3) in itshomogeneousform. This form can be obtained by introducing a new
variablezm+1, such thaṫzm+1 = 0 andzm+1(0) = 1. Using the new variable, (3) can be written as

żi = zi





m+1∑

j=1

[E]i,jzj



 , i = 1, . . . , m + 1 (4)

with

E =

[
A λ

0 0

]

(5)

2.2 Rewriting non-QP systems into QP form
A set of nonlinear ODEs can be embedded to QP form if the non-QP elements are multiplicative functionsf

appearing in the QP-terms and a QP-type ODE can be found such thatf is a solution of it [11].
The embedding is performed by introducing anew auxiliary variablex for each non-QP functionf which

is in the simplest casex = f . One can differentiate this algebraic equation in order to arrive at a new ODE in
QP-form that completes the embedded QP-ODE model.

It is important to note that the embedding is not unique, because we can choose the new variables in a different,
more complicated way as compared tox = f .

2.3 Linear and bilinear matrix inequalities
A (nonstrict) linear matrix inequality (LMI) is an inequality of the form

F (x) = F0 +
m∑

i=1

xiFi ≥ 0, (6)

wherex ∈ R
m is the variable andFi ∈ R

n×n, i = 0, . . . , m are given symmetric matrices. The inequality
symbol in (6) stands for the positive semidefiniteness ofF (x).

One of the most important properties of LMIs is the fact, that they form a convex constraint on the variables
i.e. the set{x | F (x) ≥ 0} is convex. LMIs have been playing an increasingly important role in the fieldof opti-
mization and control theory since a wide variety of different problems (linear and convex quadratic inequalities,
matrix norm inequalities, convex constraints etc.) can be written as LMIs and there are computationally stable
and effective (polynomial time) algorithms for their solution [2], [16].

A bilinear matrix inequality (BMI)is a diagonal block composed ofq matrix inequalities of the following form

Gi
0 +

p
∑

k=1

xkG
i
k +

p
∑

k=1

p
∑

j=1

xkxjK
i
kj ≤ 0, (7)

i = 1, . . . , q

wherex ∈ R
p is the decision variable to be determined andGi

k, k = 0, . . . , p, i = 1, . . . , q andKi
kj , k, j =

1, . . . , p, i = 1, . . . , q are symmetric, quadratic matrices.
The main properties of BMIs are that they are non-convex inx (which makes their solution numerically much

more complicated than that of linear matrix inequalities), and their solution is NP-hard [13]. However, there
exist practically applicable and effective algorithms for BMI solution [21],[14].



3 Stability analysis of QP and LV systems

3.1 Global stability with the entropy-like Lyapunov function
Most often, the following, so-called "entropy-like" Lyapunov function candidate is used for examining the

global stability of QP systems

V (z) =

m∑

i=1

ci

(

zi − z∗i − z∗i ln
zi

z∗i

)

(8)

whereci > 0, i = 1, . . . , m.
It can be easily shown thatV is nonincreasing (i.e. the equilibriumz∗ andy∗ is globally stable with Lyapunov

functionV ) if and only if the following linear matrix inequality

AT C + CA ≤ 0 (9)

can be solved for a positive definite diagonal matrixC ∈ R
m×m. In this case, theci coefficients in (8) are the

diagonal elements ofC (see, e.g. [7] or [20]) and the matrixA is calleddiagonally stabilizable[1] or admissible
[5].

We note that the solvability of the LMI (9) and thus the existence and nonincreasing nature of the Lyapunov
function (8) is not a necessary condition for the global stability of (1). However, this Lyapunov function is used
most frequently for QP systems because it’s existence can be tested numerically or even symbolically [15].

We remark that the numerical solution of (9) can be of different difficulty depending on the rank ofA. If A

is of full rank, then there are several possibilities to check the feasibility and solve (9). One of the most popular
tools is the LMI Control Toolbox for the Matlab computing software environment [6]. If A is rank deficient
(which is the general case if the number of monomials is greater than the numberof QP variables) then the only
applicable numerical method known by the authors is described in [8].

3.2 Local quadratic stability
As it was mentioned in the previous section, the diagonal stabilizability of a quadratic matrix is a very special

property, so let us consider the more frequent case when there is no diagonal solution for (9). Then one naturally
tries to find a quadratic Lyapunov function candidate that is valid locally in someneighborhood of an equilibrium
point.

In order to obtain a more comfortable notation for this, let us perform a coordinates shift on the LV-equations,
i.e. x = z − z∗. Then the LV-equations in the transformed coordinates have the form

ẋ = (X + Z∗) · A · x, (10)

where
X = diag(x1, . . . , xm), Z∗ = diag(z∗1 , . . . , z

∗

m) (11)

and the equilibrium value ofx moves to the origin. Let the quadratic Lyapunov function candidate be given in
the following form:

V (x) = xT Px (12)

whereP is a positive definite symmetric matrix of sizem × m. The time derivative ofV is given by

V̇ = xT Pẋ + ẋT Px = (13)

xT P (X + Z∗)Ax + xT AT (X + Z∗)Px = (14)

xT
{
P (X + Z∗)A + AT (X + Z∗)P

}
x = (15)

xT
{
PXA + PZ∗A + AT XP + AT Z∗P

}
x (16)

The non-increasing nature of the quadratic Lyapunov function in a neighborhoodN of the origin is equivalent
to the validity of the following LMI

PXA + PZ∗A + AT XP + AT Z∗P ≤ 0 (17)

whereX = diag(x1, . . . , xm) and[x1, . . . , xm]T ∈ N .
Therefore the quadratic stability region can be estimated by first solving (17) for P with X = 0, i.e.

AT Z∗P + PZ∗A ≤ 0 (18)

and then finding a convex neighborhood of0 where (17) is valid.



3.3 Global stability and local Hamiltonian description

Based on [17], an interesting special case of quadratic stability is discussed here. If theP matrix in (12)
defining the quadratic Lyapunov function is diagonal, then the LV system can be written locally as a Hamiltonian
system with dissipation as it is defined e.g. in [4]. In the autonomous case this system class is defined by the
equations

ẋ = (J(x) − R(x))HT
x (x), (19)

wherex ∈ R
n, H : R

n 7→ R is the Hamiltonian function,J(x) is ann × n skew symmetric matrix (i.e.
JT (x) = −J(x)), the energy conserving part of the system, andR(x) = RT (x) is the so called dissipation
matrix.Hx denotes the gradient ofH (row vector).

The time derivative of the Hamiltonian function is

Ḣ = Hx(x)(J(x) − R(x))HT
x (x) = (20)

Hx(x)J(x)HT
x (x)

︸ ︷︷ ︸

0

−Hx(x)R(x)HT
x (x). (21)

It is visible from (21) that ifyT R(x)y ≥ 0, ∀y ∈ R
n (i.e. R is positive semidefinite), then the Hamiltonian

function is nonincreasing in time. Of course, this property might be satisfied not globally, but only in some
neighborhood of the equilibrium point.

Assume thatP in (12) is a diagonal matrix with positive elements in the diagonal. Let us multiply the left
hand side of (17) byP−1 from the left andP−T = P−1 from the right. This operation does not change the
definiteness of the left hand side and gives

XAP−1 + Z∗AP−1 + P−1AT X + P−1AT Z∗ =

(X + Z∗)AP−1 + P−1AT (X + Z∗)T < 0 (22)

Consider a quadratic Hamiltonian function

H(x) =
1

2
(p1x

2
1 + p2x

2
2 + · · · + pmx2

m) (23)

where the coefficientspi > 0, i = 1, . . .m are the diagonal elements ofP . Furthermore, let us use the notation

W (x) = (X + Z∗) · A · P−1 (24)

Using (24) the original LV model (3) can be written as

ẋ = W (x) · HT
x (x) (25)

Therefore the matricesJ andR in (19) are the following

J(x) =
1

2
(W (x) − W T (x)) (26)

−R(x) =
1

2
(W (x) + W T (x)) (27)

and the positive definiteness condition onR is equivalent to the feasibility of the LMI (22).
It is well-known that a Hamiltonian description of this kind leads to a simple and elegant solution of many

nonlinear analysis and control problems. Note that the diagonality constraint on P can be easily handled in the
numerical solution of LMI problems (see, e.g. [16]).

3.3.1 A simple example
Let us consider the LV system characterized by the following matrices

A =

[
−0.5 0.1

1.8 −1.5

]

, λ =

[
1.9
−5.7

]

(28)

The equilibrium of the above system is at
z∗ = [4 1]T .
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Figure 1: LMI feasibility set and quadratic stability region for the system (28)

Let us choose the following weighting matrix

C =

[
2 0
0 1

]

It’s easy to see thatA is diagonally stabilizable withC, since the eigenvalues ofAT C +CA are strictly negative
(−0.4384, −4.5616). From this, it’s clear that the system (28) is globally stable with the logarithmic Lyapunov-
function

V (z) = 2(z1 − 4 − 4 ln
z1

4
) + (z2 − 1 − ln(z2)) (29)

On the other hand, it’s easy to check that the LMI

Z∗AP−1 + P−1AT Z∗ < 0 (30)

(whereZ∗ = diag(z∗)) has also a diagonal solution

P−1 =

[
2 0
0 1

]

which is identical toC. This means that the system (28) has a local dissipative Hamiltonian description of the
form (25) with the quadratic Hamiltonian function (which is also a quadratic Lyapunov function)

H(x) =
1

2
x2

1 + x2
2 (31)

wherex = z − z∗, andHT
x (x) = P · x. Possible corner points of the convex set where

−R(x) < 0 are

c1 = (−1.53, 0), c2 = (510, 0)

c3 = (0, −0.99), c4 = (0, 0.62) (32)

Note that an estimate for the actual quadratic stability region can be the largestlevel set of (31) that is inside the
polygon defined by the corner points in (32) (see Figure 1).

4 Transformations of QP and LV systems

4.1 Variable scaling
It is clear that under the scaling of differential variables both the QP and the LV form is preserved. Let us

assume that (1) has an equilibrium pointy∗ in the positive orthant. Then with the following variable scaling

y′i =
yi

y∗i
, i = 1, . . . , n (33)

the new equilibrium is at[1 1 . . . 1]T ∈ R
n.



4.2 The quasi-monomial transformation

The quasi-monomial transformation (QMT) of (1) is defined as

y′i =
n∏

k=1

y
[C]i,k
k , i = 1, . . . , n (34)

whereC is an invertiblen×n matrix. The transformed system preserves the QP form and its matrices are given
by

B′ = BC, M ′ = C−1M, l′ = C−1l (35)

The QP systems connected by QM transformations form equivalence classes (Brenig’s equivalence classes or
BECs), where the productsB · M andB · l are invariants of the class [11]. It can be seen from (3) the QP
systems belonging to the same BEC can be transformed into the same Lotka-Volterra system. It is shown e.g. in
[3] that the inverse of (34) is characterized by the inverse ofC, i.e.

yi =

n∏

k=1

y′
[C−1]ik
k , i = 1, . . . , n (36)

4.3 The time-reparametrization transformation

4.3.1 The generic case

Let Ω = [Ω1 . . . Ωn]T ∈ R
n. It is shown e.g. in [5] that the following reparametrization of time

dt =
n∏

k=1

y
Ωk

k dt′ (37)

transforms the original QP system (1) into the following (also QP) form

dyi

dt′
= yi

m+1∑

j=1

[M̃ ]i,j

n∏

k=1

y
[B̃]j,k

k , i = 1, . . . , n (38)

whereM̃ ∈ R
n×(m+1), B̃ ∈ R

(m+1)×n and

[M̃ ]i,j = [M ]i,j , i = 1, . . . , n; j = 1, . . . , m (39)

[M̃ ]i,m+1 = li, i = 1, . . . , n (40)

and

[B̃]i,j = [B]i,j + Ωj , i = 1, . . . , m; j = 1, . . . , n (41)

[B̃]m+1,j = Ωj , j = 1, . . . , n. (42)

It can be seen that the number of monomials is increased by one and vectorL̃ is zero in the transformed system.

4.3.2 A special (non-generic) case

A special case of the time-reparametrization or new time transformation occurswhen the following relation
holds:

ΩT = −bj , 1 ≤ j ≤ m, (43)

wherebj is an arbitrary row of the matrixB of the original system (1). From Eqs. (41)-(42) we can see that in
this case thej-th row of B̃ is a zero vector. This means that the number of monomials in the transformed system
(38) remains the same as in the original QP system (1) and a nonzeroL̃ vector that is equal to thej-th column
of M appears in the transformed system (for an example, see [5]).



4.3.3 The properties of the time-reparametrization transformation

It is shown e.g. in [18] that the transformation (37) has the following importantproperties.
• The set of monomialsp1, . . . , pm+1 for the reparametrized system can be written up in terms of the original

monomials:

pj =
n∏

k=1

y
Ωk

k ·
n∏

k=1

y
[B]j,k

k =
n∏

k=1

y
[B]j,k+Ωk

k , j = 1, . . . , m

and

pm+1 =
n∏

k=1

y
Ωk

k

or using a shorter notation:

pj = r · zj , j = 1, . . . , m

pm+1 = r

where

r =
n∏

k=1

y
Ωk

k .

• The transformation leaves the equilibrium points of the original QP system unchanged.

• Local and global stability is invariant under the transformation.

4.3.4 Using time-reparametrization for proving global stability

The time-reparametrization transformation adds extra degrees of freedomto find a Lyapunov function of the
form (8) for proving global stability of the system. As it is shown in [18], theglobal stability analysis of a QP
system with the Lyapunov function (8) and using time-reparametrization requires the feasibility check of the
following set of matrix inequalities

−C < 0 (44)

ÃT · C + C · Ã ≤ 0 (45)

whereÃ = B̃ · M̃ is the LV coefficient matrix of the reparametrized system. It can be seen from (39)-(42) that
(44)-(45) is a BMI, where the unknowns are the coefficients of the Lyapunov function contained inC and the
parameter vectorΩ of the time-reparametrization transformation.

4.4 The logarithmic transformation

The logarithmic coordinates transformation is most often used for studying theset of equilibrium points of QP
systems. The transformation is defined as

ȳi = ln(yi), i = 1, . . . , n (46)

It is easy to calculate that the differential equations in the transformed coordinates system can be written as

dȳ

dt
= l + A · z = l + A · exp(B · ȳ) (47)

In the case of homogeneous LV systems (4) the transformed equations (47) with z̄ = ln(z) have the following
special form

dz̄

dt
= E · exp(z̄) (48)

Now the structure of the equilibrium points can be studied by examining the kernel of E.



4.5 The family of LV systems having the same phase portrait

Consider anm-dimensional LV-system in the homogeneous form (4) where the variablesare scaled so that the
equilibrium pointz∗ is in 1=[1 1 . . . 1]T ∈ R

m. Letk ∈ R
m such that

∑m
i=1 ki = 1. Let us define the following

linear change of coordinates (see [9]):
z̄ = z − (kT z)1 (49)

The time-derivative of̄z is given by

dz̄

dt
= (E − 1(kT E)) exp(z̄) exp(kT z) (50)

Let us define the following time-reparametrization transformation

dt′ = dt · exp(kT z) (51)

Since
dt′

dt
= exp(kT z), (52)

we can see thatt′ is a strictly monotonously increasing and therefore invertible function oft. Using (51), the
model (50) can be rewritten as

dz̄

dt′
= (E − 1(kT E)) exp(z̄) (53)

The system (53) has the linear first integralI(z̄) = kT z̄. Indeed,

kT ˙̄z = (kT E − kT 1kT
︸︷︷︸

1

E) exp(z̄) = 0 (54)

The family of systems indexed byk containsm LV systems obtained by takingk as the vectors of the canonical
basis inRm. These differential systems have the same phase portrait on any open bounded domain of the positive
orthant [9].

Example

Consider again the 2-dimensional LV system described in (28). It’s matrixE in homogeneous form is given by

E1 =





−0.5 0.1 1.9
1.8 −1.5 −5.7
0 0 0



 (55)

For k = [1 0 0]T the transformed system (after swapping the first and third state variable to place the zero row
to the third row ofE) is characterized by

E2 =





−1.9 −0.1 0.5
1.8 −1.5 −5.7
0 0 0



 , (56)

while for k = [0 1 0]T , it is described by

E3 =





−2.3 7.6 1.6
−1.8 5.7 1.5

0 0 0



 . (57)

It is easy to check that fork = [0 0 1]T , the transformation leavesE1 unchanged.

5 Quasi-polynomial control systems

In order to use QP and LV systems for control studies, one first has to extend them by introducing suitable
input terms to form so-called input-affine QP control systems.



5.1 Input-affine QP control systems

An input-affine nonlinear system model

ẏ = f(y) +

p
∑

i=1

gi(y)ui

η = h(y) (58)

is in QP-form if all of the functionsf , g andh are quasi-polynomial functions ofy. Then the general form of the
state equation of an input-affine QP system model withp-inputs is:

ẏi = yi



l0i
+

m∑

j=1

[M0]i,j

n∏

k=1

y
[B]j,k

k



 +

(59)

+

p
∑

r=1

yi



lri
+

m∑

j=1

[Mr]i,j

n∏

k=1

y
[B]j,k

k



 ur

where
i = 1, . . . , n, M0, Mr ∈ R

n×m, B ∈ R
m×n,

l0, lr ∈ R
n, r = 1, . . . , p.

The corresponding input-affine Lotka-Volterra model is in the form

żj = zj

(

λ0j
+

m∑

k=1

[A0]j,k · zk

)

+

p
∑

r=1

zj

(

λrj
+

m∑

k=1

[Ar]j,k · zk

)

ur (60)

where
j = 1, . . . , m, A0, Ar ∈ R

m×m, λ0, λr ∈ R
m, r = 1, . . . , p.

and the parameters can be obtained from the input-affine QP system’s onesin the following way

A0 = B · M0

λ0 = B · l0
Ar = B · Mr

λr = B · lr
r = 1, . . . , p

(61)

5.2 Zero dynamics analysis

Let us consider a SISO input-affine QP-model in the form of Eq. (59) withp = 1 and with the simplest output
η = yi − w∗ for somei andw∗ > 0, i.e. we want to keep the system’s output at a positive constant value.
Moreover, let us assume that the relative degree of the system equals one andgi1(y) = gi(y) =

∏n
j=1 y

γji

j , i.e.
the input function is of quasi-monomial type. Then the output zeroing input isgiven in the form

u(t) = −
Lfh(y)

Lgh(y)
= −

fi(y)
∏n

j=1 y
γji

j

(62)

It is seen that the output zeroing input above is in QP-form iffi(y) is in QP-form.
In order to obtain the zero dynamics, one has to substitute the input (62) to thestate equation (59) to obtain an

autonomoussystem model. It is easy to compute that theresulting zero dynamics system model will remain in
QP-form with an output zeroing input in QP-form. Therefore the stability analysis of the zero dynamics can be
investigated using the methods described earlier in Section 3.

The above result can be easily generalized to the case of output functions in quasi-monomial form.



Table 1: Variables and parameters of the bioreactor model
X biomass concentration [g

l ]
S substrate concentration [g

l ]

F inlet feed flow rate [ l
h ]

V volume 4 [l]
SF substrate feed concentration 10 [g

l ]
Y yield coefficient 0.5 -
µmax, kinetic parameter 1 [ 1

h ]
K1 kinetic parameter 0.03 [g

l ]

K2 kinetic parameter 0.5 [ l
g ]

5.2.1 A simple fermentation example
Consider a simple fermentation process with non-monotonous reaction kineticsthat is described by the non-

QP input-affine state-space model

Ẋ = µ(S)X −
XF

V

Ṡ = −
µ(S)X

Y
+

(SF − S)F

V
(63)

µ(S) = µmax

S

K2S2 + S + K1

,

where the inlet feed flow rate denoted byF is the manipulated input. The variables and parameters of the model
together with their units and parameter values are given in Table 1.

The investigated equilibrium point of the system is where the outlet biomass flowrate (i.e. biomass production
per unit time) is maximal:

S0 =
1

2

−2K1 + 2
√

K2

1
+ S2

F K1K2 + SF K1

SF K2 + 1
(64)

X0 = (SF − S0)Y (65)

By introducing a new differential variableZ = 1
K2S2+S+K1

in addition toX andS, the original system (63)
can be represented in QP-form characterized by the following matrices:

M0 =





µmax 0 0 0 0 0 0
0 −µmax

Y
0 0 0 0 0

0 0 0 2µmaxK2

Y
0 µmax

Y
0





M1 =





0 0 0 0 0 0 0
0 0 SF

V
0 0 0 0

1−2K2SF

V
0 0 0 2K2

V
0 −SF

V





B =













0 1 1
1 0 1
0 −1 0
1 2 2
0 2 1
1 1 2
0 0 1













l0 =









0

0

0









l1 =









− 1

V

− 1

V

0









The quasi-monomials in the QP system model are:

SZ, XZ, S−1, S2XZ2, S2Z, SXZ2, Z

Let us choose input of the system to be the input flowrate,F , and the output to be the centered substrate-
concentration:

η = S − S0



The output zeroing input can be easily computed:

F =
µmaxS0V

Y (SF − S0)
XZ (66)

If the above equations are substituted into the QP-form, one gets the followingzero dynamics

Ẋ = X

(
µmaxS0

K2S
2
0 + S0 + K1

−
S0µmax

Y (SF − S0)(K2S
2
0 + S0 + K1)

X

)

(67)

with QP matricesMz, Bz andlz being the following ones:

Mz =
[

− S0µmax

Y (SF−S0)(K2S2

0
+S0+K1)

]

=
[
−0.1640

]
,

Bz =
[

1
]
, lz =

[
µmaxS0

K2S2

0
+S0+K1

]

=
[

0.8022
]
,

(68)

Hence, the only monomial of the zero dynamics isX. Note thatthe number of quasi-monomials has been
drastically reduced.

In order to study the local stability of the zero dynamics, we first computed theeigenvalue (i.e. the value) of
the Jacobian of the zero dynamics at the equilibrium pointX0 that is -0.8022. It is easy to see from (68) that if
the conditionSF > S0 holds, then any positiveC satisfies the LMI (9). Therefore the global stability of the zero
dynamics is proved through the QP description. This result is in good agreement with [19] where the stability of
the zero dynamics was proved through nonlinear coordinates-transformations.

5.3 Stabilizing controller design
The output zeroing input (62) can be viewed as a nonlinear static state feedback acting on the QP-form state

equation (59). If the state feedback is in QP-form then the closed-loop system will also be in QP-form and its
stability can be conveniently investigated by using LMI (9) if the feedback parameters are known and fixed.

Therefore, one can formulate aglobally stabilizing state feedbackdesign problem for QP systems as follows.
Consider arbitrary quasi-polynomial inputs in the form:

uj =
r∑

i=1

kij q̂i, j = 1, . . . , p (69)

whereq̂i = q̂i(y1, . . . , yn), i = 1, ..., r are arbitrary quasi-monomial functions of the state variables of (59) and
ki is ap dimensional constant gain vector. The closed loop system will also be a QP system with matrices

M̂ = M̂0 +

p
∑

j=1

r∑

i=1

kijMij , B̂,

l̂ = l̂0 +

p
∑

j=1

r∑

i=1

kij lij .

wherekij is thejth entry of theith gain vectorki. Note that the number of quasi-monomials in the closed-loop

system (i.e. the dimension of the matrices) together with the matrixB̂ may significantly change depending on
the choice of the feedback structure, i.e. on the quasi-monomial functionsq̂i.

Furthermore, the LV coefficient matrixA is also an affine function of the feedback gain parameters:

A = B̂ · M̂ = Â0 +

p
∑

j=1

r∑

i=1

kijAij

Then the global stability analysis of the closed loop system with unknown feedback gainskij leads to the fol-
lowing bilinear matrix inequality

AT C + CA = AT
0 C + CA0 +

p
∑

j=1

r∑

i=1

kij

(
AT

ijC + CAij

)
< 0. (70)

The variables of the BMI are thep × r kij input-parameters and theci, i = 1, .., m̂ parameters of the Lyapunov
function. If the BMI above is feasible then there exists a globally stabilizing feedback with the selected structure.



5.3.1 Feedback structure design
Clearly, the general feedback structure (69) should be specialized in order to reduce the number of quasi-

monomials in the closed-loop system. This can be performed by analyzing carefully the relationship between the
quasi-monomials of the open-loop system. Further reduction can be possiblyachieved by choosing appropriate
feedback gain values from the feasible set.

The following example illustrates the above approach to design globally stabilizing static QP feedback con-
trollers.

5.3.2 Simple numerical example
Our example is the following simple2 dimensional QP model:

ẋ = x
(
1.6943x1/2 − 2.1469y4/5 + u1

)

ẏ = y
(
−0.1436x1/2 − 0.4283y4/5 + u2

) (71)

with QP matrices

M =

[
1.6943 −2.1469

−0.1436 −0.4283

]

B =

[
1
2 0
0 4

5

]

l =

[
u1

u2

]

The system (71) has one meaningful (i.e. positive and real in each coordinates) equilibrium point:







x̄

ȳ

ū1

ū2







=







3.1214
2.8723
0.0000
0.0000







The above equilibrium is unstable because of the Jacobian’s eigenvalues: λ1 = 1.6667, andλ2 = −0.9999.
The stabilizing feedback was searched for in the form:

u1 = k1 · x
1/2

u2 = k2 · y
4/5 (72)

An algorithm used for solving special BMI problems gives the following result for the stabilizing state feedback
problem:

k1 = −5.8504, k2 = −3.4488,

C =

[
16.5043 0

0 14.8135

]

It means that applying the feedback (72) with the above parametersk1 andk2 the closed loop QP system

ẋ = x
(
−4.1560x1/2 − 2.1469y4/5

)

ẏ = y
(
−0.1436x1/2 − 3.8771y4/5

)

is globally asymptotically stable with Lyapunov function (8) with parameters16.5043 and14.8135. Indeed, the
system has a unique asymptotically stable equilibria in

(
x̃

ỹ

)

=

(
0.1029
0.2317

)

with eigenvaluesλ1 = −0.6298 andλ1 = −1.0000.

6 Conclusions

Different theoretical and practical aspects of QP and LV systems were studied in this paper.
Nonlinear input-affine systems in quasi-polynomial (QP) and Lotka-Volterra (LV) forms are investigated in

this paper. It has been shown that both the global stability analysis with an entropy-like Lyapunov function
candidate and the local quadratic stability region determination can be performed by solving linear matrix in-
equalities (LMIs). The existence of a diagonal weighting matrix for local quadratic stability has been found to



be equivalent to the existence of a local Hamiltonian description of a QP or LVsystem. The invariance transfor-
mations, the quasi-monomial, time-reparametrization and logarithmic transformationsthat preserve the form of
the description are also described and their use for stability analysis is discussed.

For control studies, the original QP and LV system models have been extended by QP and LV input terms,
respectively. It has been shown that zero dynamics analysis can be performed by solving LMIs in case of SISO
QP systems with relative degree equals one.

It has also been shown that the globally stabilizing controller design problemwith quasi-polynomial feedback
structure for QP systems having relative degree 1 leads to the feasibility of abilinear matrix inequality where
the unknowns to be determined are the parameters of the Lyapunov functionof the closed loop system and the
constant coefficients of the monomials in the feedback law.

The proposed theoretical issues and methods and tools were demonstratedusing simple illustrative examples.
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