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Nonlinear input-affine systems in quasi-polynomial (QP) and Lotka-Valte
(LV) forms are investigated in this paper. It is shown that both the global
stability analysis with an entropy-like Lyapunov function candidate and the lo-
cal quadratic stability region determination can be performed by solving lin-
ear matrix inequalities (LMIs). The invariance transformations preseyime
form of the description are also described and their use for stability analysis
is discussed. It is also shown that zero dynamics analysis can be peddry
solving LMIs but the design of globally stabilizing feedback controllers leads
to a bilinear matrix inequality (BMI) problem.

1 Introduction

The class of quasi-polynomial (QP) systems plays an increasingly impootanh the modelling of dynam-
ical systems since the majority of smooth nonlinear systems occurring in preatidee easily transformed to
QP form [12]. The QP and LV description forms are shown to be invatiader certain nonlinear state trans-
formations, therefore this nonlinear system class can be split into equieatdasses with the same dynamical
properties.

At the same time, the stability properties of QP systems have been intensivegdstecently [5], [10], and
a simple but physically motivated Lyapunov function candidate has also fre@osed. Furthermore, some
computationally effective numerical methods have been developed latdlg/ltvaus to practically perform the
stability analysis of QP systems [8].

However, almost all of the literature on QP and LV systems and their stabilifyepties are only about
their representation and analysis, while a systematic explosion of their tthrgtooetical properties is missing.
Therefore, this paper aims to give a short overview about QP systahtBeinpossible use in nonlinear systems
and control theory.

2 Basic notions

2.1 QPandLV systems
Let [IV]; ; denote the element at thieh row and;j-th column of a matri¥?’. Quasi-polynomial (QP) systems
are systems of ODEs of the following form

m n
yz:yz (ll—'_z[M]z’]Hy][gB]],k) , 1=1,...,n. (1)
j=1 k=1
wherey € int(R7), M € R™™, B € R™*" [, € R,i=1,...,n. Furthermore] = [I; ... I,,]*. Without the
loss of generality we can assume that R@k= n andm > n (see [12]).

It is important to note that QP systems agtonomous systenis systems and control theoretical point of
view.

Let us denote thenonomialf (1) as

“ Bl .
zj:Hy]E ]J’k, j=1,...,m. (2)
k=1



Letz = [21 22 ... z,]7. It can be easily calculated that the time derivatives of the monomials forntka-o
\olterra (LV) system i.e.

ZiZZi()\i+Z[A]i,j‘zj)a i=1...,m 3)
j=1

whereA = B- M € R™*™ A= B -l € R™! \; = [\;, andz; > 0,i=1,..., m.
Let us denote the equilibrium point of interest of (3) with

=12 2 . 2] e int(RT)
We note that the matriX of an LV system originating from a QP system is often rank deficient sireauimber
of monomials is larger than the number of QP variables in many cases. It is tigile/ systems form a proper
subset of QP systems wifB being the unit matrix of sizer x m.

It is often useful to represent (3) in itLOMogeneoukrm. This form can be obtained by introducing a new
variablez,, 1, such that,,+; = 0 andz,,+1(0) = 1. Using the new variable, (3) can be written as

m+1
Zi = 2z Z[E]i’jzj , t=1,....m+1 (4)
7j=1
with
A A
- [ A 0] (5)

2.2 Rewriting non-QP systems into QP form

A set of nonlinear ODEs can be embedded to QP form if the non-QP elementwutiplicative functionsf
appearing in the QP-terms and a QP-type ODE can be found such ithatsolution of it [11].

The embedding is performed by introducingnew auxiliary variabler for each non-QP functiorf which
is in the simplest case = f. One can differentiate this algebraic equation in order to arrive at a riel i©®
QP-form that completes the embedded QP-ODE model.

Itis important to note that the embedding is not unique, because we casecthemnew variables in a different,
more complicated way as comparedite- f.

2.3 Linear and bilinear matrix inequalities
A (nonstrict) linear matrix inequality (LMI) is an inequality of the form

m
F(z)=Fo+ Y x:iF; >0, (6)
=1
wherexz € R™ is the variable andv; € R™"*", i = 0,...,m are given symmetric matrices. The inequality
symbol in (6) stands for the positive semidefiniteness'of).

One of the most important properties of LMIs is the fact, that they form aeononstraint on the variables
i.e. the sefx | F(x) > 0} is convex. LMIs have been playing an increasingly important role in the diedgti-
mization and control theory since a wide variety of different problems (tinad convex quadratic inequalities,
matrix norm inequalities, convex constraints etc.) can be written as LMIs &nd #re computationally stable
and effective (polynomial time) algorithms for their solution [2], [16].

A bilinear matrix inequality (BMl)s a diagonal block composed @fmatrix inequalities of the following form

p p p
Gh+ > oG+ > ) mpr Ky <0, @)
k=1 k=1 j=1
1=1,...,q

wherex € RP? is the decision variable to be determined &g k = 0,...,p, i = 1,...,¢ andK;j, k,j=
1,...,p,1=1,...,q are symmetric, quadratic matrices.

The main properties of BMIs are that they are non-convex which makes their solution numerically much
more complicated than that of linear matrix inequalities), and their solution is KiPfha]. However, there
exist practically applicable and effective algorithms for BMI solution [214)].



3 Stability analysis of QP and LV systems

3.1 Global stability with the entropy-like Lyapunov function

Most often, the following, so-called “"entropy-like" Lyapunov functicandidate is used for examining the
global stability of QP systems

m o
S ICRERE 8
V(z) ;c <z z; —z nZ;‘> (8)
wherec; >0, i =1,...,m.
It can be easily shown th&t is nonincreasing (i.e. the equilibriuai andy* is globally stable with Lyapunov
functionV) if and only if the following linear matrix inequality

ATC+CA <0 9

can be solved for a positive definite diagonal ma@ixc R™*™. In this case, the; coefficients in (8) are the
diagonal elements af (see, e.g. [7] or [20]) and the matrikis calleddiagonally stabilizablg1] or admissible
[5].

We note that the solvability of the LMI (9) and thus the existence and normisicrg nature of the Lyapunov
function (8) is not a necessary condition for the global stability of (1)weleer, this Lyapunov function is used
most frequently for QP systems because it's existence can be tested raliyperieven symbolically [15].

We remark that the numerical solution of (9) can be of different difficuépehding on the rank od. If A
is of full rank, then there are several possibilities to check the feasibildysatve (9). One of the most popular
tools is the LMI Control Toolbox for the Matlab computing software environnjéh If A is rank deficient
(which is the general case if the number of monomials is greater than the nafr®Brvariables) then the only
applicable numerical method known by the authors is described in [8].

3.2 Local quadratic stability

As it was mentioned in the previous section, the diagonal stabilizability of argti@dhatrix is a very special
property, so let us consider the more frequent case when there isgameiaolution for (9). Then one naturally
tries to find a quadratic Lyapunov function candidate that is valid locally in swghborhood of an equilibrium
point.

In order to obtain a more comfortable notation for this, let us perform adowates shift on the LV-equations,
i.e.z = z — z*. Then the LV-equations in the transformed coordinates have the form

i=(X+2%-A a (10)

where
X =diag(z1,...,zm), Z* =diagz],...,z2),) (11)

r m
and the equilibrium value of moves to the origin. Let the quadratic Lyapunov function candidate b give
the following form:

V(z) = 2" Px (12)
whereP is a positive definite symmetric matrix of size x m. The time derivative o/ is given by
V =2"Pi+ 4" Pz = (13)
2T P(X + 7% Az + 2T AT (X + Z%)Px = (14)
2T {P(X +Z)A+ AT(X + Z*)P}ax = (15)
" {PXA+PZ*A+ A"XP+ A" Z*P}a (16)

The non-increasing nature of the quadratic Lyapunov function in a herlood\ of the origin is equivalent
to the validity of the following LMI

PXA+PZ* A+ ATXP+ ATZ*P <0 (17)
whereX = diag(x1, ..., z,) andzy,..., .7 € N.
Therefore the quadratic stability region can be estimated by first solvinddd P with X = 0, i.e.
ATZ*P 4+ PZ*A <0 (18)

and then finding a convex neighborhoodofhere (17) is valid.



3.3 Global stability and local Hamiltonian description

Based on [17], an interesting special case of quadratic stability is degtise. If theP matrix in (12)
defining the quadratic Lyapunov function is diagonal, then the LV systerbeavritten locally as a Hamiltonian
system with dissipation as it is defined e.g. in [4]. In the autonomous case/fiesysclass is defined by the
equations

i = (J(x) — R(x))H (), (19)

wherez € R", H : R” — R is the Hamiltonian function/(x) is ann x n skew symmetric matrix (i.e.
JT(x) = —J(x)), the energy conserving part of the system, d&d) = R”(z) is the so called dissipation
matrix. H, denotes the gradient &{ (row vector).

The time derivative of the Hamiltonian function is

H = Hay(2)(J(2) — R(x))Hy () = (20)
Ha(x)J (2)H (x) —Ho(2)R(a)H, (). (21)
0

It is visible from (21) that ify” R(z)y > 0, Vy € R” (i.e. R is positive semidefinite), then the Hamiltonian
function is nonincreasing in time. Of course, this property might be satisbéeglobally, but only in some
neighborhood of the equilibrium point.

Assume thatP in (12) is a diagonal matrix with positive elements in the diagonal. Let us multiply the le
hand side of (17) by?~! from the left andP~" = P~! from the right. This operation does not change the
definiteness of the left hand side and gives

XAP '+ 72 AP  + PIATX 4+ P1AT Z* =
(X +Z29)AP7 '+ P71 AT (X + 29T <0 (22)
Consider a quadratic Hamiltonian function

1
H(z) = Q(plx? + Poxs + Pl (23)

where the coefficients; > 0,7 = 1,...m are the diagonal elements Bf Furthermore, let us use the notation
W(z)=(X+2)-A-P* (24)
Using (24) the original LV model (3) can be written as
& =W(x) - Hy () (25)
Therefore the matriceg and R in (19) are the following
1

J(x) = 5(W(x) = W (2)) (26)
~R(z) = 5 (W) + W (x) (@7)

and the positive definiteness condition Bns equivalent to the feasibility of the LMI (22).

It is well-known that a Hamiltonian description of this kind leads to a simple andaetegplution of many
nonlinear analysis and control problems. Note that the diagonality cortstrain can be easily handled in the
numerical solution of LMI problems (see, e.g. [16]).

3.3.1 Asimple example
Let us consider the LV system characterized by the following matrices

—05 0.1 1.9
A[ 1.8 —1.5}’ /\{—5.7} (28)

The equilibrium of the above system is at
2 =[4 1)7.



— - boundary of the LMI feasibility set
o8k — boundary of the quadratic stability region
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Figure 1: LMI feasibility set and quadratic stability region for the system (28

Let us choose the following weighting matrix

=[34]

It's easy to see that is diagonally stabilizable witli”, since the eigenvalues df’ C' + C A are strictly negative
(—0.4384, —4.5616). From this, it's clear that the system (28) is globally stable with the logarithmapugov-
function

V(z) =2(z; —4—4In %) + (2 — 1 —In(z0)) (29)
On the other hand, it’'s easy to check that the LMI
Z*AP '+ P71ATZ* <0 (30)
(whereZ* = diag(z*)) has also a diagonal solution
a2 (20
e=[i]

which is identical toC'. This means that the system (28) has a local dissipative Hamiltonian destoptice
form (25) with the quadratic Hamiltonian function (which is also a quadratipuyav function)

1
H(w) = 51+ 23 (31)

wherer = z — z*, andHI (z) = P - x. Possible corner points of the convex set where
—R(z) < 0Oare
c1 = (—1.53, 0), ¢ = (510, 0)
c3 = (0, —0.99), ¢4 = (0, 0.62) (32)

Note that an estimate for the actual quadratic stability region can be the lmgrstet of (31) that is inside the
polygon defined by the corner points in (32) (see Figure 1).

4 Transformations of QP and LV systems

4.1 Variable scaling

It is clear that under the scaling of differential variables both the QP amdl\thform is preserved. Let us
assume that (1) has an equilibrium pajfitin the positive orthant. Then with the following variable scaling

yi=% i=1....n (33)
Y;

the new equilibriumis att 1 ... 1]7 € R™.



4.2 The quasi-monomial transformation
The quasi-monomial transformation (QMT) of (1) is defined as

yQZHy][cC]i,k7 izl?"'an (34)
k=1

whereC is an invertiblen x n matrix. The transformed system preserves the QP form and its matricaseme g
by

B'=BC,M'=C'M,I'=C71 (35)
The QP systems connected by QM transformations form equivalencel@®nig’'s equivalence classes or
BECs), where the product8 - M and B - [ are invariants of the class [11]. It can be seen from (3) the QP

systems belonging to the same BEC can be transformed into the same Lotkaa\@jstem. It is shown e.g. in
[3] that the inverse of (34) is characterized by the invers€ dfe.

Yi = H y/][gcil]ik, 1=1,...,n (36)
k=1

4.3 The time-reparametrization transformation
4.3.1 The generic case

LetQ=1[Q; ... Q,]7 € R™ Itis shown e.g. in [5] that the following reparametrization of time
dt = [ y*dt' (37)
k=1

transforms the original QP system (1) into the following (also QP) form

dyi T Bl
@TZME:MﬂmII%bﬂz:lpum (38)
Jj=1 k=1

whereM € R<(m+1) B c Rim+1)xn gng

[M]i,j:[M]i,j; izl,...,n;jzl,...,m (39)
[Mligns1 =1, i=1,...,n (40)
and
[B}Z’JZ[B]Z‘J‘—FQJ', 1=1,....m;7=1,...,n (42)
[B}m-l-l,j = Qj, ] = 1, oy (42)

It can be seen that the number of monomials is increased by one and Léstero in the transformed system.
4.3.2 A special (non-generic) case

A special case of the time-reparametrization or new time transformation owbers the following relation
holds:

Q' =—b,, 1<j<m, (43)
J

whereb; is an arbitrary row of the matri¥ of the original system (1). From Egs. (41)-(42) we can see that in
this case thg-th row of B is a zero vector. This means that the number of monomials in the transformethsys
(38) remains the same as in the original QP system (1) and a nohaerctor that is equal to thgth column

of M appears in the transformed system (for an example, see [5]).



4.3.3 The properties of the time-reparametrization transformatim

It is shown e.g. in [18] that the transformation (37) has the following impogerperties.
e The set of monomialg,, . . ., p,,1 for the reparametrized system can be written up in terms of the original

monomials:
‘ T8 B0
Q i ket )
pJ:HykkHyk Jk:Hyk Ik k’ 3:1,...,m
k=1 k=1 k=1

and
n
Q
Pm+1 = H Y *
k=1

or using a shorter notation:

pj=r-25, j=1,...,m

Pm+1 =T

where
n
Q
r=]Tw" -
k=1

e The transformation leaves the equilibrium points of the original QP systemanged.
e Local and global stability is invariant under the transformation.

4.3.4 Using time-reparametrization for proving global stability

The time-reparametrization transformation adds extra degrees of freedimd a Lyapunov function of the
form (8) for proving global stability of the system. As it is shown in [18], thebal stability analysis of a QP
system with the Lyapunov function (8) and using time-reparametrizatioriresgtihe feasibility check of the
following set of matrix inequalities

—-C < 0 (44)
AT.C+C-A <0 (45)

whered = B - M is the LV coefficient matrix of the reparametrized system. It can be seen(88)-(42) that
(44)-(45) is a BMI, where the unknowns are the coefficients of theoupav function contained i’ and the
parameter vectdn of the time-reparametrization transformation.

4.4 The logarithmic transformation

The logarithmic coordinates transformation is most often used for studyirsgtiog equilibrium points of QP
systems. The transformation is defined as

g =In(y;), i=1,...,n (46)
It is easy to calculate that the differential equations in the transformediocates system can be written as

%:lJrA-z:lJrAexp(B‘@) (47)

In the case of homogeneous LV systems (4) the transformed equatignsitd Z = In(z) have the following
special form
dz

pri E - exp(2) (48)

Now the structure of the equilibrium points can be studied by examining the lkefr#/.



4.5 The family of LV systems having the same phase portrait

Consider ann-dimensional LV-system in the homogeneous form (4) where the varialdescaled so that the
equilibrium pointz*isin1=[11 ... 1]7 € R™. Letk € R™ such tha_", k; = 1. Let us define the following
linear change of coordinates (see [9]):

z=z—(k'2)1 (49)

The time-derivative of is given by

% = (E - 1(kTE)) exp(z) exp(k! 2) (50)

Let us define the following time-reparametrization transformation
dt’ = dt - exp(k” 2) (51)

Since
dt’ T
i exp(k” z), (52)

we can see that is a strictly monotonously increasing and therefore invertible function afsing (51), the

model (50) can be rewritten as
dz _
o = (B = (k" E)) exp(2) (53)

The system (53) has the linear first integféd) = k7 z. Indeed,
KTz = (kTE — kT 1kT E)exp(z) = 0 (54)
1

The family of systems indexed ldycontainsn LV systems obtained by takingas the vectors of the canonical
basis inR™. These differential systems have the same phase portrait on any apegeladomain of the positive
orthant [9].

Example

Consider again the 2-dimensional LV system described in (28). It's matilxhomogeneous form is given by

B = 1.8 —-15 —=5.7

0 0 0

(55)

-05 0.1 1.9 ]

Fork = [1 0 0]” the transformed system (after swapping the first and third state variablec® the zero row
to the third row ofE)) is characterized by

-19 —-0.1 0.5
Ey=| 18 —15 -57 |, (56)
0 0 0
while for k& = [0 1 0]7, it is described by
—23 76 1.6
EFs=| —-1.8 57 15 |. (57)
0 0 O

It is easy to check that fdr = [0 0 1], the transformation leaves; unchanged.

5 Quasi-polynomial control systems

In order to use QP and LV systems for control studies, one first haséncxhem by introducing suitable
input terms to form so-called input-affine QP control systems.



5.1 Input-affine QP control systems
An input-affine nonlinear system model

p
g o= f)+) glyu
=1
n = h(y) (58)

is in QP-form if all of the functiong, ¢ andh are quasi-polynomial functions gf Then the general form of the
state equation of an input-affine QP system model withputs is:

(59)

where
i=1,...,n, My, M, eR"™™ BeR™"

lo,l, eR", r=1,...,p.
The corresponding input-affine Lotka-Volterra model is in the form
m p m
Zj =z (Ao]- +> (Aol Zk) +) 7 (Arj +> [Adjn- Zk) Uy (60)
k=1 r=1 k=1

where
j=1...,m, AQ,ATERmxm, Ao, Adr ER™ r=1,...,p.

and the parameters can be obtained from the input-affine QP systemmahedollowing way

Ay = B-M,
X = B-l
A, = B-M, (61)

A = B-l r=1,...,p

5.2 Zero dynamics analysis

Let us consider a SISO input-affine QP-model in the form of Eq. (59) with1 and with the simplest output
n = y; — w* for somei andw* > 0, i.e. we want to keep the system’s output at a positive constant value.
Moreover, let us assume that the relative degree of the system eqeadsidf; (y) = ¢:(y) = H?zl y]” i.e.
the input function is of quasi-monomial type. Then the output zeroing in@ivén in the form

Loh(y)  TTj—yv;”

It is seen that the output zeroing input above is in QP-forify(if) is in QP-form.

In order to obtain the zero dynamics, one has to substitute the input (62)gtateeequation (59) to obtain an
autonomousystem model. It is easy to compute that tbsulting zero dynamics system model will remain in
QP-form with an output zeroing input in QP-formherefore the stability analysis of the zero dynamics can be
investigated using the methods described earlier in Section 3.

The above result can be easily generalized to the case of output fusictiqnasi-monomial form.



Table 1: Variables and parameters of the bioreactor model

X biomass concentration (9]
S substrate concentration 4]
F inlet feed flow rate 7]
V volume 4 []
Sr substrate feed concentration 10 [9]
Y yield coefficient 05 -
Imaz, Kinetic parameter 1 [3]
K, kinetic parameter 0.03 [¢]
K, kinetic parameter 05 [4]

5.2.1 A simple fermentation example
Consider a simple fermentation process with non-monotonous reaction kitietids described by the non-
QP input-affine state-space model

X = M(S)X—¥

. u8X | (Sp—S)F

UL L (63)
u(S) 5

Hmax m,

where the inlet feed flow rate denoted Byis the manipulated input. The variables and parameters of the model
together with their units and parameter values are given in Table 1.

The investigated equilibrium point of the system is where the outlet biomassdtewi.e. biomass production
per unit time) is maximal:

5 - 1 —2K, +2/K} + SEK Ky + SpK,
o= 2 SpKs+1
Xo = (Sr—S)Y (65)

(64)

By introducing a new differential variablg = m in addition toX and S, the original system (63)
can be represented in QP-form characterized by the following matrices:

Lomag 0 0 0 0 0 0
Mo_[ 0 —lme g 0 0 0 0]
0 0 0 2lmaz Ko 0 Hmez
Y Y
0 00 0 0 0 0
M, = 0 0 % 0 0 0 0
122825 0 0 0 2B2 o -3¢
[0 1 1]
1 01 0 -3
0 -1 0
B=|1 2 2 lo=10 Lh=|-¢%
0o 21
1 1 2 0 0
0 0 1

The quasi-monomials in the QP system model are:
Sz, Xz, S7', $*x7* Sz, SXZ* Z

Let us choose input of the system to be the input flowrdteand the output to be the centered substrate-
concentration:
n=25-.=5p



The output zeroing input can be easily computed:
MmazSOV

F=-"""" X7 66
Y (Sr — So) (66)
If the above equations are substituted into the QP-form, one gets the follaeiaglynamics
. ,u,m(wSo SOMma;v )
X=X — X 67
<K2SS+SO+K1 Y(SF—SO)(K253+50+K1) ( )

with QP matriced\/,, B, andi, being the following ones:

S l’l‘maz
M. = [ _Y(SF*SO)E)K258+SO+K1) } = [ —0.1640 ]7

(68)
mazS
B.=[1], L= ghtaig | =[08022],
Hence, the only monomial of the zero dynamicsXis Note thatthe number of quasi-monomials has been
drastically reduced.
In order to study the local stability of the zero dynamics, we first computedigenvalue (i.e. the value) of

the Jacobian of the zero dynamics at the equilibrium pdinthat is -0.8022. It is easy to see from (68) that if
the conditionSr > Sy holds, then any positiv€’ satisfies the LMI (9). Therefore the global stability of the zero

dynamics is proved through the QP description. This result is in goodragraevith [19] where the stability of
the zero dynamics was proved through nonlinear coordinates-trarations.

5.3 Stabilizing controller design
The output zeroing input (62) can be viewed as a nonlinear static staleafgeacting on the QP-form state
equation (59). If the state feedback is in QP-form then the closed-lagipraywill also be in QP-form and its
stability can be conveniently investigated by using LMI (9) if the feedbackmaters are known and fixed.
Therefore, one can formulategéobally stabilizing state feedbaclesign problem for QP systems as follows.
Consider arbitrary quasi-polynomial inputs in the form:

,
i=1
whereg; = Gi(y1,-..,yn), ¢ = 1,...,7 are arbitrary quasi-monomial functions of the state variables of (59) and

k; is ap dimensional constant gain vector. The closed loop system will also be ggpgrswith matrices

P
EY::AZQ%fZE:EEIkQA4ﬁ, B,
j=1i=1

p T
i: ZAO_'_ZZkijlij'

j=1i=1
wherek;; is thejth entry of theith gain vectoi%;. Note that the number of quasi-monomials in the closed-loop

system (i.e. the dimension of the matrices) together with the m&tninay significantly change depending on
the choice of the feedback structure, i.e. on the quasi-monomial fungtions
Furthermore, the LV coefficient matrig is also an affine function of the feedback gain parameters:

P T
A=B-M=Ag+> Y kA
j=1i=1
Then the global stability analysis of the closed loop system with unknowrbée#dyainsk;, leads to the fol-
lowing bilinear matrix inequality

D r
ATCH+ CA=AJC+CA + > > ki (ALC + CAy) < 0. (70)
j=1 i=1
The variables of the BMI are thex r k;, input-parameters and thg i = 1, .., 71 parameters of the Lyapunov
function. If the BMI above is feasible then there exists a globally stabiliziagfack with the selected structure.



5.3.1 Feedback structure design

Clearly, the general feedback structure (69) should be specializedién to reduce the number of quasi-
monomials in the closed-loop system. This can be performed by analyzirfglatitee relationship between the
guasi-monomials of the open-loop system. Further reduction can be possitigred by choosing appropriate
feedback gain values from the feasible set.

The following example illustrates the above approach to design globally stapiszitic QP feedback con-
trollers.
5.3.2 Simple numerical example

Our example is the following simpt2dimensional QP model:

i = x(1.6943z'/% — 2.1469y*/° + ;)

71
g = y(—0.14362/2 — 0.4283y"> + uy) (71)
with QP matrices
[ 1.6943 —2.1469 S [3 0 [w
M=1_0.1436 —0.4283] B_[o g] _[uQ]
The system (71) has one meaningful (i.e. positive and real in eacHinates) equilibrium point:
T 3.1214
7 B 2.8723
Uy N 0.0000
Ug 0.0000
The above equilibrium is unstable because of the Jacobian’s eigenvaluesl.6667, andAy = —0.9999.
The stabilizing feedback was searched for in the form:
uy = kl : $1/2
uy = oy’ (72)

An algorithm used for solving special BMI problems gives the followingitefer the stabilizing state feedback
problem:
ki1 = —5.8504, ko = —3.4488,

[ 165043 0
- 0 14.8135

It means that applying the feedback (72) with the above paramietensd i, the closed loop QP system

C

i = x(—4.15602Y2 — 2.1469y%/°)
g = y(—0.143621/% — 3.8771y*/®)

is globally asymptotically stable with Lyapunov function (8) with parametérs043 and14.8135. Indeed, the
system has a unique asymptotically stable equilibria in

&\ [ 0.1029
g )\ 02317
with eigenvalues\; = —0.6298 and\; = —1.0000.

6 Conclusions

Different theoretical and practical aspects of QP and LV systems watied in this paper.

Nonlinear input-affine systems in quasi-polynomial (QP) and Lotka-Vealtfty) forms are investigated in
this paper. It has been shown that both the global stability analysis with teopgdike Lyapunov function
candidate and the local quadratic stability region determination can be meddry solving linear matrix in-
equalities (LMIs). The existence of a diagonal weighting matrix for localdyatic stability has been found to



be equivalent to the existence of a local Hamiltonian description of a QP syt¥m. The invariance transfor-
mations, the quasi-monomial, time-reparametrization and logarithmic transformtitédnseserve the form of
the description are also described and their use for stability analysis isskégtu

For control studies, the original QP and LV system models have beendextdry QP and LV input terms,
respectively. It has been shown that zero dynamics analysis canfbenped by solving LMIs in case of SISO
QP systems with relative degree equals one.

It has also been shown that the globally stabilizing controller design probldnguasi-polynomial feedback
structure for QP systems having relative degree 1 leads to the feasibilithitifiear matrix inequality where
the unknowns to be determined are the parameters of the Lyapunov fuattiom closed loop system and the
constant coefficients of the monomials in the feedback law.

The proposed theoretical issues and methods and tools were demonssiagesimple illustrative examples.
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