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Abstract

Weak reversibility is a crucial structural property of chemical reaction networks with
mass action kinetics, because it has major implications related to the existence, uniqueness
and stability of equilibrium points and to the boundedness of solutions. In this paper, we
present two new algorithms to find dynamically equivalent weakly reversible realizations
of a given chemical reaction network. They are based on linear programming (LP) and
thus have polynomial time-complexity. Hence, these algorithms can deal with large-scale
biochemical reaction networks, too. Furthermore, one of the methods is able to deal with
linearly conjugate networks.

Keywords: chemical reaction networks, weak reversibility, dynamical equivalence, linear con-
jugacy, optimization

1 Introduction

The analysis of the structural properties and dynamical behaviour of biologically motivated
kinetic systems is a quickly developing field. While determining the exact parameters in such
a network can be difficult due to the complexity of the described system or imperfect data,
it is known that there are several important properties that only depend on the structure of
the model. Moreover, the reaction graph structure corresponding to a given kinetic dynamics
is generally non-unique. These facts motivate us to construct algorithms that can compute
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kinetic systems with preferred structures (e.g. weakly reversible, minimal or maximal number
of reactions, etc) that may provide useful information about the dynamical behaviour of the
system.

By chemical reaction networks (CRNs), we mean deterministic kinetic systems obeying the
mass action law. Being smooth nonlinear systems, all important qualitative phenomena in
nonlinear dynamics (such as stable/unstable equilibria, limit cycles or even chaos) may appear in
their dynamical behaviour [1, 2]. This kinetic system form is widely used to describe nonnegative
models in the fields of (bio)chemistry, population and epidemic dynamics and economy as well
[3, 4].

The phenomena of macro-equivalence or dynamical equivalence [5] describes the fact that
several reaction networks having different structure and/or parameters can produce the same
dynamical behaviour. Computation of dynamically equivalent structures with certain properties
is detailed in [6, 7, 8, 9] where a mixed integer linear programming (MILP)-based solution
framework has been proposed. The solution of an MILP problem is generally NP-hard. Hence,
solving such optimization problems can be computationally very expensive which seriously limits
the size of the treatable networks. One may overcome this problem by tracing back the original
MILP problem to simple linear programming (LP), if possible. This approach is followed in
[10], where LP-based methods are presented to compute dynamically equivalent realizations
containing minimal and maximal number of reactions.

Roughly speaking, weak reversibility means that all components of the reaction graph are
strongly connected components. This property has a crucial role in the theory of CRNs, since it
connects structural properties of the reaction graph to qualitative features of the dynamical be-
haviour of the reaction network which is especially useful in the deficiency zero and deficiency one
cases. As it is formulated in the Deficiency Zero Theorem [11] for a CRN having zero deficiency
and a weakly reversible structure, there exists precisely one asymptotically stable equilibrium
point in each stoichiometric compatibility class. According to the Boundedness conjecture for
which no counterexamples have been found, the solutions of any weakly reversible CRN are
bounded. The conjecture was proved in [12] for the single linkage class case. Moreover, there
exist important general results about the existence of equilibrium points in weakly reversible
reaction networks [13, 14]. Several MILP-based algorithms dealing with the computation of
weakly reversible realizations of reaction networks were presented in [15, 16, 17]. However, these
methods do not scale up very well with the size of the network due to the integer variables in
the optimization.

Linear conjugacy can be considered as an extension of dynamical equivalence where a di-
agonal state transformation having strictly positive values is applied between the solutions of
linearly conjugate CRNs [18]. This means that the trajectories of the networks can be related by
a linear transformation. Two linearly conjugate networks can have different deficiency values,
therefore, linear conjugacy gives us additional degrees of freeedom to computationally find a



reaction network having similar dynamical behaviour than the original studied one, but with a
more advantageous (smaller) deficiency value. In [15, 16] MILP-based methods are presented
to compute weakly reversible, linearly conjugate realizations. These methods are further devel-
oped in [17] to be able to find weakly reversible linearly conjugate CRN structures with minimal
deficiency. Again, the computational complexity of the MILP problem often seriously restricts
the problem size if reasonable time limits are concerned. Therefore, the aim of this paper is to
present purely LP-based methods for computing dynamically equivalent and linearly conjugate
weakly reversible CRN structures that can cope with large networks possibly containing several
hundreds of complexes and reactions.

The structure of the paper is the following. In Section 2, the basic tools and notations are
described for modelling CRNs. In Section 3 the existing computational methods for determining
weakly reversible realizations are shortly reviewed and Section 4 contains the detailed description
of the new methods. In Section 5, the computational results corresponding to the proposed
methods are presented, while Section 6 contains the summary and conclusions of the work.

2 Basic concepts and notions related to CRNs

In this Section, the structural and dynamical description of CRNs are introduced based on
[6, 7, 8]. Besides the notations, some important properties are also recalled related to the scope
of the current work.

2.1 Chemical Reaction Networks

The set S = {Xi, . . . , Xn} represents the n chemical species contained in a given CRN. The
concentrations of the species denoted by xi = [Xi], i = 1, . . . , n form the state vector x ∈ Rn of
the system. The whole system obeys the mass action law and, therefore, all the values of the
states are nonnegative [3]. Chemical complexes are formally represented as nonnegative linear
combinations of the species:

Cj =
n∑
i=1

αi,jXi for j = 1, . . . ,m, (1)

where m is the number of the complexes in the network, and αi,j for i = 1, . . . , n, are the
nonnegative integer stoichiometric coefficients of the jth complex. An elementary reaction step,
where the source complex Cj =

∑n
i=1 αi,jXi is transformed into the product complex Cl =∑n

i=1 βi,lXi is denoted by
Cj → Cl (2)

The reaction rate corresponding to reaction (2) can be written according to the mass action
law as:

ρj,l(x) = kj,l

n∏
i=1

x
αi,j

i , (3)



where kj,l > 0 is the reaction rate coefficient.
If for any i 6= l both reactions Ci → Cl and Cl → Ci are present in the network, they are

handled as separate elementary reactions. It is also required from the above model class that
Ci 6= Cj for i 6= j, i, j = 1, . . . ,m, and self-reactions (i.e. loop edges) of the form Ci → Ci are
not allowed for i = 1, . . . ,m.

2.2 Graph representation

A CRN can be represented as a weighted, directed graph D = (Vd, Ed) consisting of a finite
nonempty set Vd of vertices and a finite set Ed containing ordered pairs of distinct vertices called
directed edges. The complexes are represented by the vertices, i.e. Vd = {C1, . . . Cm}, and the
edges stand for the reactions: (Cj , Cl) ∈ Ed if complex Cj is transformed to Cl in one of the
reactions in the network. The weight of the edge (Cj , Cl) is the reaction rate coefficient kj,l. By
the structure of a CRN we mean the unweighted directed graph of the reaction network.

2.3 ODE-based description

From the several different possibilities, we will use the following factorization of the right hand
side of the kinetic ODEs describing the dynamics of the concentrations (see, e.g. [19, 6]):

ẋ = Y ·Ak · ψ(x) (4)

where x ∈ Rn is the vector of specie concentrations. Y ∈ Rn×m is the complex composition
matrix in which the jth column contains the stoichiometric coefficients of complex Cj , i.e.
Yi,j = αi,j . The vector mapping ψ = [ψ1 . . . ψm]T ∈ Rn → Rm is defined as:

ψj(x) =
n∏
i=1

x
Yi,j

i , j = 1, . . . ,m (5)

Matrix Ak describes the reaction graph as follows:

[Ak]i,j =
{
kj,i, if i 6= j and reaction Cj → Ci is present in the CRN
0, if i 6= j and Cj → Ci is not present in the CRN

(6)

Moreover, the non-positive diagonal elements of Ak are given by

[Ak]i,i = −
m∑

l = 1
l 6= i

[Ak]l,i. (7)

Hence, Ak is a Metzler-type column conservation matrix (that is actually the negative transpose
of the Laplacian matrix of the reaction graph), often called the Kirchhoff matrix of the CRN.



2.4 Dynamical equivalence and linear conjugacy of reaction networks

A set of polynomial ODEs is called kinetic, if it can be written in the form (4), where Y
contains pairwise different columns of nonnegative integers, eq.(5) holds, and Ak is a Kirchhoff
matrix. Necessary and sufficient conditions of the kinetic property for polynomial systems with
a constructive proof were first given in [20] (see also [21]). Let us introduce the matrix M for
the monomial coefficients of the model (4), i.e.

M = Y ·Ak. (8)

Using the above notation, (4) can be written as

ẋ = M · ψ(x). (9)

It is known that the factorization (8) is generally not unique (even if Y is fixed), therefore
the CRNs defined by the pairs (Y (1), A

(1)
k ) and (Y (2), A

(2)
k ) are called dynamically equivalent

realizations of the kinetic system in eq. (9) (or that of each other) if Y (i) are valid complex
composition matrices (a complex composition matrix is called valid if it contains nonnegative
integer elements and there are no identical columns in it), A(i)

k are Kirchhoff for i = 1, . . . , 2,
and

Y (1) ·A(1)
k = Y (2) ·A(2)

k = M. (10)

It is known from the literature that the kinetic property of a system of ODEs is generally
preserved up to the re-ordering and positive scaling of the state variables [22]. Therefore, in [18]
the notion of linear conjugacy was introduced, where two CRNs are called linearly conjugate
if (in the case of appropriate initial conditions) there is a positive linear diagonal mapping
between the solutions of the corresponding kinetic ODEs. Linear conjugacy is the extension
of dynamical equivalence and it is also clear that the qualitative properties of the solutions
(number and stability of equilibirum points, persistence/extinction of species, dimensions of
invariant spaces etc.) of two linearly conjugate CRNs are always the same.

2.5 Weak reversibility

The existence of a dynamically equivalent or linearly conjugate weakly reversible CRN realization
can be useful in the analysis of the qualitative dynamical properties of the system [15]. From a
graph-theoretic point of view, weak reversibility holds if and only if all components (i.e. linkage
classes) of the reaction graph are strongly connected components (i.e. if there exists a directed
path between nodes Ci and Cj then there exists a directed path from Cj to Ci). Additionally, it
is known that a CRN with a Kirchhoff matrix Ak is weakly reversible if and only if there exists
a strictly positive vector in the kernel of Ak [15], i.e.

Ak · b = 0 (11)

bj > 0, j = 1, . . . ,m (12)



where b = [b1 . . . bm]T .
For simplicity, we introduce the following notions. A Kirchhoff matrix is called weakly

reversible if the corresponding reaction graph is weakly reversible. A vector p ∈ Rn is called
strictly positive if it is elementwise strictly positive, i.e. pi > 0 for i = 1, . . . , n. Two n × n
matrices A and B are called structurally equal if the following is fulfilled: Aij 6= 0 if and only
if Bij 6= 0 for i, j = 1, . . . , n. (Therefore, two structurally equal Kirchhoff matrices encode the
same unweighted reaction graph structure.)

It can be seen that eq. (11) itself is a nonlinear constraint if both Ak and b are unknowns.
In order to formulate it as set of linear constraints, we can introduce a scaled Kirchhoff matrix
Ãk as follows:

[Ãk]i,j = [Ak]i,j · bj , i, j,= 1, . . . ,m (13)

Now, Ak corresponds to a weakly reversible CRN if and only if 1(m) = [1 1 . . . 1]T ∈ Rm is an
element of ker(Ãk). Moreover, it is trivial that Ãk is weakly reversible if and only if the original
Kirchhoff matrix Ak is also a weakly reversible one. Based on these facts, the linear constraint
set for weak reversibility can be formulated as follows:

m∑
i=1

[Ãk]i,j = 0, j = 1, . . . ,m
m∑
i=1

[Ãk]j,i = 0, j = 1, . . . ,m

[Ãk]i,j ≥ 0, i, j = 1, . . . ,m, i 6= j,

(14)

where Ak and Ãk are structurally equal.

3 Known methods for computing weakly reversible CRN struc-
tures with optimization

In this Section we will shortly review two different existing MILP-based methods to find dy-
namically equivalent weakly reversible realizations of a CRN.

3.1 One-step MILP procedure to compute weakly reversible realizations with
additional preferred structural properties

First, we briefly recall the part ensuring the structural equality of Ak and Ãk of the algorithm
presented in [16]. In that paper, a set of boolean decision variables are introduced and used as
follows:

[Ak]i,j > ε↔ [Ã]i,j > ε, i, j = 1, . . . ,m, i 6= j, (15)

where ↔ means the ‘if and only if’ relation from classical binary logic and ε is a small fixed
positive threshold value to distinguish between practically zero and nonzero edge weights in



the reaction network. This logical condition can be expressed in the form of equivalent linear
constraints (for the general framework, see e.g. [23]):

0 ≤ [Ak]i,j − εδi,j , i, j = 1, . . . ,m, i 6= j,

0 ≤ −[Ak]i,j + UB · δi,j , i, j = 1, . . . ,m, i 6= j. (16)

0 ≤ [Ãk]i,j − εδi,j , i, j = 1, . . . ,m, i 6= j

0 ≤ −[Ãk]i,j + UB · δi,j , i, j = 1, . . . ,m, i 6= j,

where δi,j , i, j = 1, . . . ,m, i 6= j are boolean decision variables and UB is the upper bound for
the elements of Ak and Ãk. Due to the introduction of the δ variables, the resulting problem
could be solved in the framework of MILP, making the handling of larger networks difficult. On
the other hand, these boolean variables can be used to keep track of the presence of individual
reactions, and by minimizing or maximizing the sum

∑m
i,j=1 δi,j , a sparse or dense realization

(containing the maximal or minimal number of reactions, respectively) can be obtained [6].

3.2 Graph-theory inspired, iterative procedure to find dense weakly reversible
realizations

In [9] a completely different, graph-theory motivated method is presented (only for the case
of dynamical equivalence) which leads to an iterative MILP-based algorithm. The algorithm
requires Y and M as inputs, and computes an initial dense realization for them. Afterwards, it
determines all the edges in the network that connect different strong components. In the next
step, by solving an MILP problem a valid dense realization is determined without these edges
(if it exists). These steps are repeated until the reaction graph of the resulting CRN is found to
be weakly reversible. The algorithm ends with failure if there does not exist any dynamically
equivalent realization that does not contain the directed edges to be excluded. In the original
publication, an MILP problem is solved in each iteration step. Fortunately, as it is described in
[10], the MILP problem for the computation of dense reaction structures can be safely replaced
with a purely LP-based algorithm. This enables us to significantly speed up the solution process
of the original method published in [9]. Therefore, we implemented and used the LP-based
modified version of this graph-theory inspired algorithm for the present paper to compare its
performance to our new methods. This algorithm will be shortly called the graph-based method
in the paper.

4 New results on the computation of weakly reversible CRN
structures

In this Section, we first present a theoretical result, then two new algorithms are introduced to
compute weakly reversible realizations of CRNs. The first method can be applied to compute



dynamically equivalent CRNs, while the second one can be used in the linearly conjugate case
as well.

4.1 The dense weakly reversible realization forms a super-structure for a
fixed complex set

It was shown in [6] that the dense realization is a unique superstructure containing all mathe-
matically possible reactions, i.e for a given complex set, it contains all possible other realization
structures as sub-graphs of the dense one. In the following, we will prove that a dense and
weakly reversible realization contains all possible weakly reversible realizations if the complex
set is fixed.

Theorem 1. Consider a kinetic system Σ : ẋ = M · ψ(x). Suppose that (Y,Ak) is a weakly
reversible dynamically equivalent realization of Σ that contains the maximal number of nonzero
elements in Ak. Then, for any weakly reversible Kirchhoff matrix A′k for which Y ·Ak = Y ·A′k
the following holds: [A′k]i,j > 0 implies [Ak]i,j > 0 for any i 6= j.

Proof. (by contradiction) Consider a weakly reversible Kirchhoff matrix A′k for which Y ·Ak =
Y · A′k. Suppose that there exists 1 ≤ i, j ≤ m, i 6= j for which [A′k]i,j > 0, but [Ak]i,j = 0. Let
us define the matrix Ãk as

Ãk = Ak +A′k
2 (17)

Clearly, Y ·Ak = Y · Ãk, and [Ãk]i,j > 0. It follows from the weak reversibility of Ak that there
exists a strictly positive vector p ∈ Rm such that Ak · p = 0. Similarly, there exists a strictly
positive vector p′ in the kernel of A′k, too. Let us define the following scaled Kirchhoff matrices:
Āk = Ak · diag(p), Ā′k = A′k · diag(p′). Then Āk and Ā′k are Kirchhoff, and they are structurally
equal to Ak and A′k, respectively. Moreover, Āk · 1(m) = Ā′k · 1(m) = 0, where 1(m) denotes
the m dimensional column vector composed of ones. Let Âk = Āk + Ā′k. Then Âk is a weakly
reversible Kirchhoff matrix, since Âk · 1(m) = (Āk + Ā′k) · 1(m) = 0. It is also clear that Âk is
structurally equal to Ãk. This implies that Ãk is a weakly reversible Kirchhoff matrix containing
more non-zero off-diagonal elements than Ak, which is a contradiction.

To briefly illustrate the above theorem, consider a kinetic system Σ : ẋ = M · ψ(x) charac-
terized by the following matrices:

Y =
[

1 2 1 1
2 1 3 1

]
, M =

[
0 −2 0 2
−3 2 −2 0

]
(18)

This kinetic system was studied before in [18] and in [9]. A possible dense weakly reversible



realization (Y,A(1)
k ) of Σ is given by the Kirchhoff matrix:

A
(1)
k =


−3.2 1.8 0.1 0

0 −2 0 2
0.1 0.1 −1.05 0
3.1 0.1 0.95 −2

 . (19)

On the other hand, the following Kirchhoff matrix encodes a complex balanced and thus weakly
reversible realization (Y,A(2)

k ) of Σ (see [9]):

A
(2)
k =


−3 1.5 0 0

0 −2 0 2
0 0.25 −1 0
3 0.25 1 −2

 . (20)

Finally, a sparse weakly reversible realization containing only 5 reactions (Y,A(3)
k ) is defined by:

A
(3)
k =


−3.2 2 2 0

0 −2 0 2
0.1 0 −2 0
3.1 0 0 −2

 . (21)

It can be easily checked that all (Y,A(1)
k ), (Y,A(2)

k ) and (Y,A(3)
k ) are dynamically equivalent

weakly reversible realizations of Σ. The reaction graph structures of the three realizations are
depicted in Fig. 1. It is clearly visible from the figure that the unweighted reaction graphs of
(Y,A(2)

k ) and (Y,A(3)
k ) are indeed proper subgraphs of the unweighted reaction graph of (Y,A(1)

k ).

4.2 LP-based method to compute weakly reversible, dynamically equivalent
realization

In this subsection, an LP-based method is introduced which is able to compute a weakly re-
versible, dynamically equivalent realization for a given CRN. In a standard LP problem, a linear
function of the real-valued optimization variables is minimized (or maximized) with respect
to linear equality and inequality constraints. It is known that LP problems can be solved in
polynomial time. Well-known solution approaches e.g. the simplex algorithm or interior-point
methods are available in current software tools.

Let us denote the ith column of Ak and M with zi and mi, respectively. Then (8) can be
written as

Y zi = mi, i = 1, . . . ,m (22)



It is well-known from linear algebra that all solutions for eq. (22) can be characterized as the
sum of particular solutions and the linear combinations of the solutions of the homogeneous
system, that can be written as

zi = z(p)
i +

r∑
j=1

κi,jz(h)
j , i = 1, . . . ,m (23)

where κi,j ∈ R, r is the nullity (i.e. kernel dimension) of Y , z(p)
i is a particular solution for (22),

and z(h)
j is the jth kernel base vector of Y . Since Y and M are given, z(p)

i and z(h)
j are known

for i = 1, . . . ,m and j = 1, . . . , r. Thus, the unknowns in the problem will be the coefficients
κi,j .

Recall eq. (11), namely that a CRN is weakly reversible if and only if there is a strictly
positive vector b = [b1 . . . bm]T in the kernel of the matrix Ak. Then the condition (11) is given
by

m∑
i=1

zibi = 0. (24)

Substituting (23) into (24) gives
m∑
i=1

z(p)
i bi +

m∑
i=1

r∑
j=1

biκi,jz(h)
j = 0 (25)

Let us introduce the following new variables

vi,j = biκi,j , i = 1, . . . ,m, j = 1, . . . , r (26)

Using this notation, (25) reads
m∑
i=1

z(p)
i bi +

m∑
i=1

r∑
j=1

vi,jz(h)
j = 0 (27)

that is now linear in the variables bi and vi,j .
We are in a lucky situation considering the sign constraints of the elements of the original

matrix Ak, since b is elementwise strictly positive (i.e. multiplying with b does not alter the
signs of the elements in Ak). Let us denote by z

(p)
i,j and z(h)

i,j the jth scalar elements of the vectors
z(p)
i and z(h)

i , respectively. Then we can set the following constraints:

z
(p)
i,k bi +

r∑
j=1

vi,jz
(h)
j,k ≥ 0, i, k = 1, . . . ,m, i 6= k (28)

z
(p)
i,i bi +

r∑
j=1

vi,jz
(h)
j,i ≤ 0, i = 1, . . . ,m. (29)

The above method will be shortly referred to as WR-LP1 in the rest of the paper. For conve-
nience and easy implementation, the steps of the WR-LP1 algorithm are summarized in Table
1, where the input data are Y and M , and the output is the Kirchhoff matrix of the com-
puted weakly reversible dynamically equivalent realization if such exists, or 0 if the problem is
infeasible.



4.3 LP-based method to compute linearly conjugate weakly reversible real-
izations

In this Section, we are going to present a new algorithm which is related to the MILP-based
method briefly summarized in Section 3.1. That method is now extended to be able to deal
with linear conjugacy and is also modified to eliminate the boolean decision variables from the
model to obtain an LP-based algorithm. Let us assume that the matrix M defined in eq. (8)
containing the monomial coefficients of a kinetic system is given. It is known from [15] that
linear conjugacy between two CRN models can be expressed by the following constraints:

M = T · Y ·Ak (30)
m∑
i=1

[Ak]i,j = 0, j = 1, . . . ,m (31)

[Ak]i,j ≥ 0, i, j = 1, . . . ,m, i 6= j, (32)

di > 0, i = 1, . . . , n, (33)

where the unknowns are the parameters of the positive diagonal transformation T = diag(d),
and the off-diagonal elements of the Kirchhoff matrix Ak. The actual Kirchhoff matrix A′k of
the CRN realization that is linearly conjugate to the original kinetic system (9) defined by M
and Y , can be computed from Ak and d using the following scaling (see [15] for the details):

A′k = Ak · diag(ψ(d)). (34)

Additionally, we use the auxiliary variable Ãk defined in (13) and constraints (14) to ensure
weak reversibility, where again, Ak and Ãk are structurally equal.

Using the fact that the off-diagonal elements of Kirchhoff matrices are non-negative, we can
enforce the structural equality of Ak and Ãk in our improved method using linear constraints
without integer variables. Similarly to the solution in [16] (the constraints of which were sum-
marized in eqs. (15)-(16)), we consider an off-diagonal element of a Kirchhoff matrix practically
nonzero if it is greater than an appropriately chosen small positive value pl such that 0 < pl � 1.
(This means that off-diagonal elements less than pl are truncated to zero in Ak and Ãk.) More-
over, the following upper bounds are assumed for the off-diagonal elements of Ak and Ãk with
pu = 1

pl
.

[Ak]i,j < pu and [Ãk]i,j < pu for i, j = 1, . . . ,m, i 6= j. (35)

Now we set the following constraints for ensuring the structural equality of Ak and A′k.

[Ak]i,j − p2
u · [Ãk]i,j ≤ 0, i, j = 1, . . . ,m, i 6= j (36)

−[Ak]i,j + p2
l · [Ãk]i,j ≤ 0, i, j = 1, . . . ,m, i 6= j (37)

Let us examine the correctness of the constraints (36)-(37). For this, we have to take into
account the upper bounds in (35), too.



1. If [Ak]i,j > pl and [Ãk]i,j > pl then one can see that [Ak]i,j < p2
u · [Ãk]i,j so eq. (36) is

fulfilled. Moreover, because [Ak]i,j > p2
l · [Ãk]i,j , eq. (37) holds, too.

2. If [Ak]i,j = 0 and [Ãk]i,j = 0 then eqs. (36) and (37) are trivially fulfilled.

3. If [Ak]i,j > pl and [Ãk]i,j = 0 then eq. (36) is violated.

4. Similarly, if [Ak]i,j = 0 and [Ãk]i,j > pl then eq. (37) is violated.

In summary, the linear constraint set containing only continuous variables to find weakly re-
versible linearly conjugate CRN realizations is the following: (30) stands for the linear conjugacy,
(31)-(32) encode the Kirchhoff property of Ak, and (33) ensures the positivity of the linear con-
jugacy transformation T . Constraints (14) introduce a scaled auxiliary Kirchhoff matrix Ãk

that is weakly reversible, and finally, (36)-(37) ensure the structural equality of Ak and Ãk. The
input data of the method are Y and M , and the decision variables are the matrix elements
[Ak]i,j , [Ãk]i,j for i, j = 1, . . . ,m, i 6= j, and the scaling factors dk for k = 1 . . . , n. Clearly,
the feasibility of the constraints can be checked within the framework of linear programming.
In this case, the objective function can be utilized to prescribe certain additional properties of
the solution (if it exists). For example, to obtain a sparse weakly reversible realization of the
studied kinetic system, the L1-norm of the elements of Ak can be minimized, provided that the
number of complexes in the CRN is large enough [24, 10]. Later on, we will refer to this method
as the WR-LP2 algorithm.

5 Computation results

The capabilities of the algorithms presented in the previous section is illustrated through three
examples. In the first one a dynamically equivalent weakly reversible realization does not exist
but interestingly, a linearly conjugate, weakly reversible one does exist, and both cases are
handled correctly by the applied computational method. The second example highlight a case
where the algorithms are able to show the non-existence of a dynamically equivalent weakly
reversible realization of a given CRN, as it is previously expected. Finally, the algorithms are
compared in terms of computational time. All the computations were performed on a 2.6GHz PC
in MATLAB environment, using the CRNreals [25] and YALMIP [26] toolboxes. The CLP solver
[27] was used to solve the LP problems, while the GLPK solver [28] was used to compare the
results with the previously published MILP-based method [15]. The threshold to discriminate
between zero and nonzero rate coefficients was set to 10−3.

Example 1 In this example which originally appeared in [16], a reaction network is shown
which doesn’t have a dynamically equivalent weakly reversible realization, but it has a linearly



conjugate weakly reversible one. The network is characterized by

Y =


1 2 2 2 1 2 1 2 1 1
2 2 1 0 0 0 0 0 1 0
0 0 0 0 0 1 2 2 2 1


and the Kirchhoff matrix Ak containing the following non-zero off-diagonal elements: [Ak]2,1 = 1,
[Ak]4,2 = 0.5, [Ak]5,4 = 1.5, [Ak]7,4 = 0.5, [Ak]1,7 = 0.5, [Ak]4,7 = 1. One can see that this (Y,Ak)
realization is non-reversible.

Firstly, while applying the presented WR-LP2 algorithm on the above described system, we
have fixed the T matrix as an identity. This means that instead of looking for linearly conjugate
realizations during the search, only the dynamically equivalent realizations were considered. The
algorithm found the constraint set infeasible as expected.

Then, by relaxing the fixed value of the matrix T we enabled the search for linearly conju-
gate realizations, too. Now the algorithm succeeded, determining a linearly conjugate weakly
reversible realization with the following non-zero off-diagonal elements in the matrix A

(2)
k :

[A(2)
k ]2,1 = 0.001, [A(2)

k ]4,2 = 0.005, [A(2)
k ]7,4 = 0.002, [A(2)

k ]1,7 = 0.005, [A(2)
k ]4,7 = 0.001 and

linear conjugacy matrix T = diag([ 1
0.001 ,

1
0.001 ,

1
0.004 ]). For these values, the equation for linear

conjugacy Y ·Ak = T · Y ·A(2)
k holds (see eq. (30)).

Example 2 In [2], the classical 3-dimensional kinetic Lorenz system that was described and
studied in a CRN framework. With a proper parameter set the system is able to show chaotic
behaviour. Due to the complex dynamics, we expect that this system will have neither a dy-
namically equivalent nor a linearly conjugate weakly reversible realization. In the following, it is
shown that our algorithm actually returns this result with the given complex set and parameters.

By applying proper coordinates-shifting and an appropriate time-scaling (see [2] for the
computation details), this system can be transformed to a kinetic form. The emerging kinetic
ODEs are

ẋ1 = σx1x
2
2x3 − σx2

1x2x3 + σ(w1 − w2)x1x2x3

ẋ2 = (ρ+ c3)x2
1x2x3 + (w2 − w1ρ− w1w3)x1x2x3 − x1x

2
2x3 − x2

1x2x
2
3 + w1x1x2x

2
3 (38)

ẋ3 = x2
1x

2
2x3 − w2x

2
1x2x3 − w1x1x

2
2x3 + (w1w2 + βw3)x1x2x3 − βx1x2x̄

2
3

The system described by eq. (38) can show chaotic behaviour (with an attractor that is very
similar to the attractor of the classical non-kinetic Lorenz system) if the following parameter set
is used [2]: σ = 10, ρ = 28, β = 8/3, and W = [w1 w2 w3] = [24 25 26].

The complex composition matrix of the system is given by:

Y (l) =


1 0 2 1 2 1 1 1 2 2 2 1 2
1 1 1 2 2 0 1 2 1 0 1 2 2
1 1 1 1 1 1 2 2 2 2 0 0 2

 ,



while the non-zero off-diagonal elements of the network’s Kirchhoff matrix A(l)
k are the following:

[A(l)
k ]2,1 = 679.3324, [A(l)

k ]6,1 = 1940.3342, [A(l)
k ]13,1 = 669.3342, [A(l)

k ]11,3 = 59, [A(l)
k ]12,3 = 10,

[A(l)
k ]13,3 = 44, [A(l)

k ]10,4 = 0.5, [A(l)
k ]12,4 = 34, [A(l)

k ]13,4 = 9.5, [A(l)
k ]13,5 = 1, [A(l)

k ]8,7 = 22.6666,

[A(l)
k ]12,7 = 1.3334, [A(l)

k ]10,9 = 1.

Now the monomial coefficient matrix can be written as

M = Y (l) ·A(l)
k =


−10 0 −10 10 0 0 1 0 0 0 0 0 0
−1271 0 54 −1 0 0 24 0 −1 0 0 0 0

669.3342 0 −25 −24 1 0 −2.6667 0 0 0 0 0 0

 .
The WR-LP2 algorithm found the problem infeasible during the search for dynamically equiv-
alent and linearly conjugate weakly reversible realization. This coincides with the results of
[2], where several thousand dynamically equivalent sparse realizations were computed with an
efficient method, but none of them was weakly reversible.

Example 3 In this example containing several randomly generated CRNs, the results of the
performance comparison of the presented algorithms are summarized while dealing with large
scale networks. As it was shown, all three algorithms, namely the graph-based method, the WR-
LP1 and the WR-LP2 methods (presented in Section 3.2, Section 4.2 and 4.3, respectively)
are purely LP-based algorithms. To be able to compare the three methods, only dynamically
equivalent realizations were searched for.

All the algorithms were tested on a set of randomly generated CRNs. All the networks were
built up from 10 species but contained different number of complexes: scenarios with 9, 30,
56, 90 complexes were set up, respectively. The methodology of generating the random kinetic
systems was the following. Firstly, a kinetic polynomial system of the form (9) was generated
where the elements of M were uniformly distributed random real numbers from the interval
[10, 110]. The exponents of the monomials of ψ were chosen as uniformly distributed random
integers from the interval [0, 5]. This kinetic polynomial system was converted to a so-called
canonical CRN representation (Y,Ak) as it is described in [20]. Then the obtained random CRN
was extended with additional directed edges (if needed) to ensure that the resulting reaction
graph is weakly reversible. This step was solved as an unweighted graph augmentation task
[29, 30]. The Kirchhoff matrix of the augmented weakly reversible network is denoted by A′k.
The inputs for the realization computation algorithms were the matrices Y and M ′ = Y ·A′k.

The evaluation of the effectiveness of the algorithms - i.e. how the solution time is changing
as the size of the computational task is growing - can be found in Table 2. The columns of
the table show the size of the matrix Ak (i.e. the number of complexes in the network) which
basically determines the number of variables and constraints (depending also on the individual
method). For each problem size, 10 different random CRNs were tested. In some cases the



solver was unable to solve the problem in the given time limit (300s), these were considered as
unsuccessful solution attempts. For any method, no incorrect solutions were obtained. Only
the successful solutions were taken into account during the calculation of the average solution
times. One can find the number of successful solutions (out of the original 10 problems for each
problem size) in the corresponding rows of Table 2. In the remaining rows, the averaged solution
times and the sizes of the generated LPs can be found for each algorithm.

One can see that despite the fact that both the WR-LP1 and the WR-LP2 algorithms
solve a single LP problem, there is a significant difference between the solution times. This
is caused by the different problem structures generated by the two algorithms. Although the
number of variables and constraints is higher in the case of the WR-LP2 algorithm, the method
generates a clear and sparse structure both for the equality and inequality constraints as it can
be seen in Fig. 2, while WR-LP1 builds a nearly full coefficient matrix to describe the equality
constraints (see Fig. 3). This fact has a serious effect on the computational time of the solution
of the corresponding LP problems causing WR-LP1 not to terminate the computation within
the predefined time limit in the case of larger networks.

For further comparison, we mention that the MILP-based method described in [15] produced
the following results. In the case of the random networks with 9 complexes, we obtained 4
successful computation attemps (i.e. a correct solution within 300s) out of 10 attempts with an
average solution time of 0.28s. For networks containing 30 complexes, the method gave only 1
successful solution attempt out of 10 with a solution time of 3.2s. For CRNs containing more
than 30 complexes, the method did not give any correct solution within the given time limit.

6 Conclusion

We have developed and analyzed linear programming based methods to compute dynamically
equivalent weakly reversible realizations of kinetic systems. Similarly to a result published in [8],
it was shown that the dense dynamically equivalent weakly reversible realization structure of a
kinetic system contains all other possible dynamically equivalent weakly reversible structures as
proper subgraphs if the complex set is fixed. Based on the analysis of the properties of kinetic
systems, a previously published graph-theory-based method was re-implemented without integer
variables. In addition, two new computation methods were also proposed, having polynomial
time complexity, too.

The implemented methods were tested on examples taken from the literature, and then they
were compared from the point of view of computational performance on reaction networks of
increasing size. The numerical tests showed that the LP-based methods solve the problems
correctly, while avoiding the complexity issue which emerges during the solution of the former
MILP-based problems. It was also shown that the structure of the constraint set in the LP
problems has serious impact on the solution time of the problem. It clearly turned out that



one method, called WR-LP2 (the only method that is able to handle linear conjugacy as well),
outperforms the other LP-based methods in terms of computational time.

As a direction of possible future work, the proposed new methods can be developed further
to incorporate additional requirements into the search for alternative CRN structures. These
requirements can be any structural or parametrical properties which can be formulated as linear
constraints. An interesting direction would be the inclusion of certain conservation laws into
the search criteria.
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Figures

Figure 1: Possible dynamically equivalent weakly reversible reaction graph structures of the
kinetic system (18). (a) Dense weakly reversible structure defined by A(1)

k . (b) Weakly reversible
structure of a complex balanced realization given by A(2)

k . (c) Sparse weakly reversible structure
with 5 reactions defined by A(2)

k .



(a) Structure of the matrix describing the equality
constraints in the LP problem. The size of the ma-
trix is 45 × 162.

(b) Structure of the matrix describing the inequal-
ity constraints in the LP problem. The size of the
matrix is 324 × 162.

Figure 2: Structure of the constraint set in case of the WR-LP2 algorithm. Rows and columns
represent constraints and variables, respectively. The original CRN contains 2 species and 9
complexes. Non-zero elements of the matrices are marked. As one can note, the algorithm
generates sparse constraint matrices with clear structure.



(a) Structure of the matrix describing the equality
constraints in the LP problem. The size of the ma-
trix is 9 × 63.

(b) Structure of the matrix describing the inequal-
ity constraints in the LP problem. The size of the
matrix is 81 × 63.

Figure 3: Structure of the constraint set in case of the WR-LP1 algorithm. Rows and columns
represent constraints and variables, respectively. The original CRN contains 2 species and 9
complexes. Non-zero elements of the matrices are marked. It can be seen that that the equality
constraints formulate a nearly full matrix.



Tables

Ak=WR-LP1(Y ,M)
1 Ak:=0 ∈ Rm×m

2 Determine the particular and homogeneous solutions z(p)
i

for i = 1, . . .m, and z(h)
j for j = 1, . . . , r from eq. (22).

3 Check the feasibility of (25) and (28)-(29) with variables b and v
as a linear programming problem with arbitrary linear objective function.

4 If there exists a feasible solution:
5 Determine κi,j from (26).
6 Compute the values of the original variable Ak according to (23).
7 return Ak;
8 Else
9 return 0;

Table 1: Steps of the method WR-LP1 for finding weakly reversible, dynamically equivalent
realization.



Network size (m) 9 30 56 90
Graph-based

time (s) 0.04 0.77 4.26 18.98
success 10/10 10/10 10/10 10/10

# of optim. vars * 14 37 65 101
# of eq. constr. * 4 6 8 10
# of ineq. constr. * 14 37 65 101

WR-LP1
time (s) 0.001 2.04 5.98 -
success 10/10 10/10 4/10 0/10

# of optim. vars 63 780 2800 7380
# of eq. constr. 9 30 56 90
# of ineq. constr. 81 900 3136 8100

WR-LP2
time (s) 0.003 0.23 1.62 11.28
success 10/10 10/10 10/10 10/10

# of optim. vars 162 1800 6272 16200
# of eq. constr. 45 210 504 990
# of ineq. constr. 324 3600 12544 32400

Table 2: Comparison of the presented algorithms in terms of computational time while dealing
with CRNs having different sizes. WR-LP2 algorithm outperforms all the other methods. All
the compared methods are based on LPs as the constrained dense search is also implemented
with LP for the graph-based method. The size of the generated LPs also appear in the table.
*: the graph-based method calculates m2 LPs with the given size.


