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Abstract—The design and implementation of a scan matching
based map building method is described in this paper. The brand
new LMS-100 laser rangefinder was used and evaluated for point
measurement and metric map building. The official driver of the
rangefinder was migrated to Linux in order to be integrated
into the applied software framework. The measurement results
were compared to data obtained by the widely used LMS-200
device. Both sensors were mounted on a commercially available
PowerBot differentially driven mobile robot. It is shown that for
indoor robotic applications, the LMS-100 is similarly well-usable
to the LMS-200 with significant advantages in compactness and
power consumption. Furthermore, from a map-building point of
view, the LMS-100 performs better in dense environments with
obstacles having complex reflective surfaces.

I. INTRODUCTION

In this paper, we use a SICK Laser Measurement System
100 (LMS-100) laser rangefinder for indoor map building with
the help of the Mobile Robot Programming Toolkit (MRPT)
software framework [19].

For autonomous mobile robots it is fundamental to build the
map of the environment based on sensory data, in order to
localize the robot with respect to the surrounding objects. The
built map can serve as the base of navigation, planning or other
operations to solve complex tasks. If we are using a distance
measuring sensor, the gathered data can be incorporated into the
metric map without performing further feature extraction tasks.
A comprehensive review of this field can be found in S. Thrun’s
book [17].

Building the model of the environment is a challenging task,
especially if one wants to execute it in real-time, namely as fast
as the range measurement becomes available.

S. Thrun et al. suggested a real-time fast scan matching
approach with the help of expectation-maximization (EM) and
probabilistic framework, in an iterative way. It also has a back-
ward correction step to deal with accumulative scan matching
errors in loop closing [16]. F. Lu and E. Millios suggested an
example for consistent pose estimation (CPE) technique [7].
They constructed a network of pose relation to reach the globally
consistent map, but for a manageable computation time the
algorithm keeps last N pose in the network during the opera-
tion. Gutmann and Schegel made a comparative work on scan
matching algorithms for indoor environment [10]. Their paper
examines line segmentation, a histogram correlation and a point-
point correspondence algorithm, respectively. They suggested a

combination of these algorithms for coherent map building, but
they did not give information about the time complexity of the
combined system.

We used the scan matching approach for localization and map
building, known as Scan matching based SLAM [16]. The map
is built up incrementally from the measurements taken by the
sensor and aligned by the scan matching. The algorithm seeks
to localize the raw laser scan measurement with the help of the
present map. After that, the aligned range scan is attached to
the map as an extension. Since we are dealing with raw laser
scans, the accuracy of each range scan directly affects the quality
and computational cost of the localization and map building. A
mapping algorithm using a less accurate scanner can build up a
noisy, or even worse incoherent map, which can increase the cost
of navigation on the map or make it impossible. Another way to
deal with a less accurate scanner is to build a highly accurate
sensor model, such as a probabilistic sensor model [17], which
can correct some of the weak points of the sensor. This solution
can come with some computational overhead.

Our work focuses on the quality and computation require-
ments of indoor map building with LMS-100 Laser rangefinder.
The aspect of the investigation is the following. Firstly we
enumerated the sensors and techniques applied to map building
by others. Secondly, we have taken some measurements to
verify the parameters of the scanner with respect to the factory
values, in case of indoor usage. Finally, we investigated how
accurate map can be built using this scanner, with the help of
the basic iterative closest point (ICP) algorithm [2]. Our main
considerations were quality - namely to build a map accurate
enough for precise indoor navigation - and computational cost -
processing the measurements in real-time.

Our long term aim is to develop a robotic wheelchair system,
which can help the daily life of the user. On this platform, a
serious bottleneck is the available power resource. Since the
main battery is shared between the electric actuators and the
robotics system, the power consumption needs to be considered.
If we design a system that consumes more power than what
is available with one charge during a day, we can make things
worse, e. g. at the end of the day the user can have problems with
using the wheelchair due to the flat battery. To achieve the above
mentioned goal, we selected a highly accurate laser rangefinder
with low power consumption, and a widely used scan matching
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algorithm. We investigated how can we exploit the wide field of
view, maximum measurement range, accuracy and measurement
rate of the LMS-100 sensor during the map building.Because of
the specialties of a robotic wheelchair system, we investigated
only a 2D map building task.

The structure of the paper is as follows. In Section II, we
will discuss our choice of the sensor. In Section III, the software
elements of our map building system will be introduced. Section
IV describes the used algorithms, namely scan matching based
SLAM and occupancy grids. In Section V, the experiments with
the LMS-100 Laser rangefinder are discussed. Finally, Section
VI summarizes our result about indoor map building.

II. SENSOR SELECTION AND DESCRIPTION

A. Selection of the sensor modality

An ultra sonic sonar is cheap compared to a laser rangefinder,
but it has limited measurement range and wide emitted beam.
The reflection quality of the ultrasonic sensor is sensitive to the
type of the material and roughness of the reflecting surface, thus
in many cases the non-reflection is more plausible. Maximum
range and resolution is typically smaller with one order of
magnitude than in the case of laser rangefinders. Although as an
additional sensor, it is a useful solution for collision avoidance,
detecting objects that are located outside the field of view of
the main sensor, e.g. camera, laser range finder. F. J. Toledo et
al. worked with ultra sonic sensor for map building and used
neural network to present sonar measurement in a local map.
The global map is made by the integration of these local maps
[18].

Infrared (IR) sensors are also popular sensor modalities in
robotics, e.g. Hokuyo PBS-03JN. This sensor has very low
weight, approx. 500g, it has low power consumption and good
tolerance for supply voltage disturbances. It also has relatively
small angular resolution and a wide field of view. The weak
point of the sensor is the measurement frequency, which is
typically 5-7Hz. A comparison test between an LMS-200 and
a Hokuyo PBS-03JN can be found in the paper of M. Alwan
et al. [1]. Map building with this type of sensor modality has
been given less attention in the past ten years due to the good
performance and decreasing cost of laser scanners. Recently
some authors have proposed working on map building with IR
sensor, e.g. in [13].

Extracting information from a camera picture and building a
map from it is computationally expensive compared to the laser
range scan process. A stereo camera can reduce the complexity
of the problem, but the required computation power is still
high. Map building and localization with camera image is called
Visual-SLAM, but these approaches consider mostly landmark
based maps, where the map does not contain the model of the
environment between the landmarks. A combination of camera
image and laser range scan can be found in the paper of Paul M.
Newman et al. [14]. They used camera image for loop closing
detection and a 3D laser scanner for acquiring the geometric
shape of the outdoor environment. The proposed algorithm
aligns these scans with help of a scan matching algorithm.

As we considered the disadvantages of these sensors, we
selected laser range scanners for indoor map building.

B. Selection of the laser rangefinder
LMS-200 is a widely used laser scanner for mobile robotics.

It can operate in millimeter and centimeter mode with 100◦ and
180◦ field of view, respectively. The angular resolution of
the scanner is 0.25◦, 0.5◦ and 1◦ with 18.9Hz, 38.5Hz and
77Hz scan rate, respectively. It has 4.5kg weight and consumes
830mA at 24V supply voltage. It requires quite stable supply
voltage, only 15% difference is tolerated. It has an RS-232
data interface for communication; it can communicate up to
500Kbaud/s with a special equipment. A comprehensive char-
acterization work on LMS-200 can be found in Cang Ye and J.
Borenstein’s paper [20]. For map building this sensor is used in
many cases, e.g. in [16], [10].

Hokuyo URG-04LX is the smallest laser rangefinder on the
market. It weighs only 0.16kg and has 4 meters measurement
range and 240◦ field of view with 0.36◦ angular resolution.
The scan rate is 10Hz, which is slow compared to other measure-
ment equipments. It has RS-232 and USB data interface, USB
can operate at 12mbit/s. Kyeong-Hwan Lee and Reza Ehsani
made a comparison of Hokukyo URG-04LX and LMS-200 laser
rangefinders [12]. Okubo et al. made a detailed characterization
work on Hokukyo URG-04LX LRF [3], using the same test
framework, which is used for LMS-200 in Ye and Borenstein’s
paper [20]. The above facts and the weight and power consump-
tion make that scanner a proper candidate for measurement sen-
sor in our system. Although some results suggest that the four
meters measurement range could be a problem even in indoor
environment, e.g. in long corridors, for further information we
recommend the paper of Rainer Kümmerle et al. [6].

LMS-100 is a brand new laser rangefinder from Sick GmbH,
released in January 2009. Compared to the older member of
the LMS family this scanner has shorter maximal measurement
range, namely 20 meters but the field of view (FOV) is wider
with 90◦. This 270◦ FOV can be measured with 0.25◦ and
0.5◦ angular resolution at 50Hz. It weights only 1.1kg and con-
sumes 350mA at 24V supply voltage. The scanner is very tol-
erant to power disturbances, it can operate with supply voltage
between 10.8V and 24V. For data interface RS-232, CAN bus
and Ethernet is available. It is capable of TCP/IP communication
through its Ethernet port, thus the available bandwidth is enough
for data transfer at 50Hz. We have not found any published paper
about LMS-100 metric map building or even map building, but
we think that these sensor parameters (scan rate, field of view,
etc) can give accurate map building and localization in scan
matching SLAM.

III. SOFTWARE ENVIRONMENT

Mobile Robot Programming Toolkit (MRPT) is a cross-
platform C++ library, which has several popular robotics re-
lated algorithms implemented such as Kalman Filter, Particle
Filters, ICP variants, motion models, and so on. The robotics
department at the University of Malaga and the community is
continuously developing this framework. For this paper, we used
the ICP-SLAM program. This program uses the classical ICP
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[2] algorithm and produces an occupancy grid that is built from
the corrected odometry and laser range scans.

SopasCommunication is a simple framework designed by
Sick GmbH [8] to maintain the communication with SICK
devices using the SOPAS communication architecture. The
framework offers basic functionality to invoke device methods,
subscribe to device events, read variables from the device and
write variables to the device. Originally, the SopasCommuni-
cation is depending on the .NET framework, so in order to
make it compatible with our software system, we had to migrate
it to Linux. This work resulted in a simple driver for LMS-
100 on Linux based on the original interface. The main issue
was to compile the SopasCommunication program on Linux.
By achieving that, we could easily read out the current scan
measurements using standard TCP/IP connection. The LMS-
100 operated on 50Hz measurement frequency and 270◦ field
of view with 0.5◦ angular resolution. To transmit this data
the required bandwidth (without any envelopes and headers) is
0.826 Mbit/sec. Transmitting that amount of data with TCP/IP
packages is not a bottleneck nowadays.

Fig. 1. Block diagram of our system

Our modular system (see Figure 1.) operates as follows: each
LMS-100 range measurement is acquired through the Linux ver-
sion of SopasCommunication that is integrated into a module,
called Sensory data. This module is running on the onboard
computer of the PowerBot. The raw odometry and the range
scan in MPRT terminology is called Action and Observation,
respectively. These data are handled in a TCP/IP based Pub-
lish/Subscribe modular system. Actions and Observations are
published on the network, the SLAM module takes them and
runs the scan matching algorithm on the corresponding data.
This module produces the map and a corrected position of the
robot, and finally publishes them on the network for further
processing, e.g. log recording, path planning, visualization, and
so on. For simulation Log Player can be used, the output of this
module is identical with the output of the Sensory Data module.

IV. ALGORITHMIC TOOLS FOR MAP BUILDING

We used a widely known metric map representation called
Occupancy grid [5]. This type of map models the operating
environment. This is achieved in the following way: it dis-
cretizes the continuous environment into an equally sized cell
field where each cell can be in two possible states free or
occupied. The inputs of the occupancy map algorithm are a

laser range scan and a pose where this scan has been taken. The
algorithm updates the corresponding cells where the laser beam
has been reflected, increasing the probability of being occupied
as well as decreasing this probability between the position of the
scanner and the reflection point. It is an implementer’s choice or
system dependent parameter to determine how many cell update
iterations can alternate the corresponding cell’s state.

The quality of the laser range scan is directly related to the
quality of the map. The incorrect range scans can accumulate
into a false obstacle, which can increase the computation of path
planning and navigating costs as well. In that case, the robot has
to initiate avoiding trajectory, or even worse, making a complete
detour if the false obstacle is blocking the crossing way.

On the other hand, false negative scenario is also possible.
This is the case when the sensor returns with maximum mea-
surement value due to the missing reflected beam and this is
presented in the map as a free area, which is much worse
compared to false obstacles.

The third aspect of laser scan quality becomes important
when the laser scans are used for odometry correcting or for
odomerty itself. With scan matching algorithms, one can get a
corrected odometry measurement, but using a robust, local min-
ima free variant can be very costly in the sense of computation
time.

Incrementally building a map of the environment, while the
robot continuously localizes itself with respect to that map is
usually a challenging problem. This problem is called Simul-
taneous Localization And Map building (SLAM) [4]. For our
work, we used a variant of scan matching SLAM [16], [15].

Scan matching is a technique, originating from computer
vision, which can find the transformation between two-point
sets in N dimensions. Since the laser scans are 2D point sets,
this approach is useful for mobile robot localization, movement
detection and map building. In a localization task, one can use
the computed motion as an odometry, which is measured by an
external sensor of the robot. Accurate pose tracking is crucial
for SLAM, even in scan matching SLAM where no multi-
hypothesis tracking is available. However, there are several
extensions for that problem [9], [6], but we will not consider
it because of the computation overhead and the online running
requirement. In a map building scenario, the first point set is the
current scan measurement, and the second point set is a specific
part of the currently built map, which part is selected with the
help of the latest pose estimation of the robot and the reported
odomerty.

We chose a basic scan matching algorithm, which is intro-
duced by Besl et al. [2]. This algorithm iteratively minimizes
the following cost function in such a way that it changes the
parameters of a 2D rigid transformation, namely rotation and
translation.

Nd∑
i=1

minj ||mj − T (p; di)||2

Where the i sweeps through each individual range scan in
the current range measurement d that has Nd range scans. The
minimization part seeks to find a corresponding map point mj ,
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which is the closest to range measurement, which is transformed
with T . The output of the algorithm is a parameter vector
p = [δx, δy, δθ] called corrected odometry. That p vector aligns
the current scan to the map, thus completes the localization task.
Once the corrected odometry becomes available, the current
measurement can be attached to the map in order to finish the
map building part.

Finding the globally minimizing p vector is not guaranteed,
only a local minimum [2]. This is a point where the problem of
accurate raw range scan comes into relation with the quality of
localization and map building. If the algorithm stops in a local
minimum, the motion estimation can be less accurate. As long
as we put each position-corrected measurement next to each
other, the error related to local minima could accumulate. The
constructed map can be ambiguous or even worse, incoherent.
A laser rangefinder with high scan rate and angular resolution
can produce reliable data for scan matching based algorithms.

V. EXPERIMENTS

In this section, we describe the results of our measurements.
The point measurements are to validate the main parameters of
the sensor. The map building experiments are to show the real
usability of this equipment, compared to other possible sensors.
All of the measurements were taken inside the building of the
Faculty of Information Technology at Pázmány Péter University.
Our experiments have been carried out on a PowerBot robot,
which is a commercial robot produced by Mobile Robot Inc.
[11]. For data acquiring we mounted an LMS-100 on the top
of the PowerBot robot. In this setup we can utilize the full
270◦ field of view of the scanner. As the aim of our project
is indoor map building, we examined the parameters of the
sensor in normal indoor environment. We tried to create an
experimental setup which reproduces the main aspects of indoor
usage. We collected the datasets in a room lit up with normal
halogen lights, at normal light intensity (600-800lx) and stan-
dard indoor temperature (20-22◦C). The measurements were
taken after about 20 minutes of settling time, except one which
aimed at the determining of the settling time. The LMS-100
sensor operated with 270◦ FOV, 0.5◦ angular resolution, with
50Hz scan rate. The LMS-100 has several built-in data filters
implemented in the firmware, none of them were used during
the experiments.

A. Point measurements
The full set of measurements contain 20000 individual laser

scans. According to the scanning rate of the sensor, this means
approximately 6.5 minutes of measurement time. We made three
types of point measurements: the first was in short range, to
verify the statistical deviation of the sensor depending on the
direction of the beam. The reflector was a white paper, the
average distance between the sensor and the reflector was about
0.4 meter. We sampled the field of view (FOV) in all 10◦,
so the resulting vector has 28 elements, each representing the
deviation in the selected direction. As we can see on Figure 2.,
the standard deviation was similar on the sides, but noticeably
lower in some specific directions, namely around 120, 160 and
180 degrees. At the front beam (at 135◦), the standard deviation

Fig. 2. Record of standard deviations in selected directions from 0◦ to
270◦, with 10◦ steps. The front beam is at 135◦. In some specific directions
the standard deviation is notably lower than in other directions.

Fig. 3. Distance measurements by the LMS-100 sensor at distance 5.0 m.
The reflecting surface is a black coloured surface (upper figure) and a shiny
metal plate (lower figure). After a short transient the LMS-100 sensor can
measure the distance with great accuracy.

was in the similar range than on the sides. The measured values
of the deviations were lower than it had been specified in the
manual of the sensor: this can be caused by the good reflecting
target and the static environment. But we have to notice also
that in the sensor’s manual there is no information about the
direction-depending standard deviation.

The second test was executed in order to determine the
settling time of the sensor. After switching on the rangefinder,
without waiting the warm-up time of the sensor it can cause
noticeable error in the measured ranges. The experiment was the
following: approximately 12 hours before the test, the sensor
was shut off and stored at 20-22◦C. After switching it on, the
measurement recording started immediately. The test was run-
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Fig. 4. Distance measurements by the LMS-100 sensor at distance 19.5 m.
The reflecting surface is a black coloured surface (upper figure) and a shiny
metal plate (lower figure). Near the maximal range the sensor is still accurate
and has low measurement noise.

ning for 1 hour (180000 individual measurements). The results
of the test can be seen in Figure 5. When examining the figure,
we found that the settling time of the sensor is approximately
30000 scans, which means about 10 minutes, regarding the
applied scan rate.

The third measurement set was to determine the time-
depending variation of the measured value in a static setup.
We recorded the measurements taken by the front beam at two
intended distance: 5 meters and 19.5 meters. The first value was
selected because it is in the range of a common measurement in
indoor situations, and the second because it is near the maximal
range of the sensor. We used two types of reflecting surface: a
black colored reflecting surface and a shiny metal plate. In the
case of the 5 meters distance with black surface (see Figure 3,
upper part) the results were the following: the averaged distance
was 4.9914 meters, with a standard deviation 0.0074 meter.
When using the metal plate as reflector (see Figure 3, lower
part), the corresponding values were: averaged distance was
5.0004 with a standard deviation 0.0097 meter. In both cases
after a short transient the sensor can measure the distance with
high accuracy. The error of the measurement was under 1 cm,
which is much better than we expected based on the sensor
specification.

While repeating the previous experiments with 19.5 meters
distance, we obtained the following results. Using the black col-
ored reflector (see Figure 4, upper part), the averaged distance
measurement was 19.5069 meters with a standard deviation
0.0104 meter. With metal plate reflector (see Figure 4, lower
part), the corresponding values were 19.5046 meters distance
with 0.0094 meter deviation. This means that near the maximal
measurement range, the sensor is still quite accurate and on top

of that, in our specific environment we obtained better results
than that is written in the data sheet of the sensor. To shortly
conclude the results of the point measurements, we can say that
this sensor produces really accurate and stable measurements,
which is of crucial importance in indoor mapping.

Fig. 5. Measuring the settling time of the LMS-100 sensor. One can
notice that after approximately 30000 scans (at 50Hz scan rate this means
10 minutes) the sensor can operate reliably.

B. Metric map building

Using the LMS-100 sensor data on the PowerBot robot, we
built up the map of indoor environments. The main requirement
was coherent map building in real time. Based on the exami-
nation of the sensor (in Section V-A) we are able to tune the
parameters of the ICP algorithm (discussed in Section IV) in a
way that improves the speed and quality of the map building
process. The high angular resolution, range accuracy and FOV
are great advantages when using ICP: with the proper changes
of the parameters of the algorithm we exploit these to increase
performance. In order to have comparison, we used an LMS-
200 sensor as reference. In this experiment LMS-200 is working
on 38Hz, with 180◦ FOV and 0.5◦ angular resolution. The
LMS-200 was mounted on the same PowerBot robot, thus we
can collect the data of both sensors simultaneously during the
experiment.

Fig. 6. Result of map building with LMS-200 in a dense environment
with complex reflecting surfaces. The non-reflecting beams produce significant
errors in the map, signed by the overshooting white rays.

To demonstrate the capabilities of the LMS-100, we made two
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datasets. Both of them are recorded in a typical room, with a size
of approximately 7x7 meters. The size of the used occupancy
grid cells were 4cm. The first dataset is a simple environment
with legs of chairs and tables, and with some boxes. There are no
main differences between the built maps, which means that the
two sensors can work approximately with the same performance
in this simple environment with well reflecting surfaces. In case
of the second dataset, which was recorded in a real, dense indoor
environment with a lot of various static objects, the advantage
of the LMS-100 is huge. As we can see in Figures 6 and 7, with
the LMS-100 an accurate and consistent map can be built, while
in the data recorded by the LMS-200 there are many erroneous
and incorrect scans. These errors appear as overshoots in the raw
measurement data, and thus on the map, causing many problems
as mentioned in Section IV. It can be noticed that the increased
accuracy and measurement quality of LMS-100 is notable in
real, complex environments, where the quantity and quality of
reflecting surfaces show a great diversity.

Fig. 7. Result of map building with LMS-100 in a dense environment with
complex reflecting surfaces. The map is accurate and clear, e. g. the walls
are more tighter than in the case of LMS-200, and there are no overshooting
rays.

VI. CONCLUSIONS

The implementation of a real-time map-building system for
mobile robots was described in this paper. The applied algo-
rithm is based on the scan matching SLAM method. The new
LMS-100 laser range finder was successfully embedded into
the hardware/software environment and applied for distance
measurements. The performance of LMS-100 was evaluated and
compared to its predecessor, the well-known LMS-200. It was
found that the new sensor performs definitely better in such
environments where there are numerous obstacles with different
reflecting properties.
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