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SUMMARY

Input-output linearization based adaptive reference tracking carfteolow power gas turbine model is presented
in this paper. The gas turbine is described by a third order nonlinear &ffag- state-space model, where the
manipulable input is the fuel mass flowrate and the controlled output is thgomal speed. The stability of

the one-dimensional zero dynamics of the controlled plant is investigédeohase diagrams. The input-output
linearizing feedback is extended with a load torque estimator algorithm regirltan adaptive feedback scheme.
The tuning of controller parameters is performed considering three desilgn goals: appropriate settling time,
robustness against environmental disturbances and model paramegetainties, and avoiding the saturation of
the actuator. Simulations show that the the closed loop system is robust sp#ttéo the variations in uncertain

model and environmental parameters and its performance satisfigsfthed requirements. Copyrigf® 2000
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1. INTRODUCTION

Gas turbines are important and widely used prime moversirsportation systems. Besides this main
application area, gas turbines are found in power systenesenthey are the main power generators

[1]. Therefore the modelling and control of gas turbinesfisignficant practical importance.

Control techniques applied for gas turbines are most oftes®d on linear controllers. These are
mainly variants of PID controllers such as in [18] or stgpaee based linear controllers, e.g. an LQ-
servo controller in [2]. Linear quadratic Gaussian conwith loop transfer recovery (LQG/LTR) [3]

and robust control system design have also been performeas$aurbines [4].

Nonlinear control approaches for gas turbine control idelumodel predictive control [17, 19]
or soft computing methods such as neural networks, genkgfizitams [16] and fuzzy controllers
[14]. In [5], mathematical programming is proposed for ol turbine control. However, none
of the above mentioned studies examine the robustness grtp®sed controllers with respect to
the changing environmental conditions and uncertain plysnodel parameters. The application of
classical nonlinear state-space methods in turbine dostrmt frequent, although several nonlinear
control solutions seem to be promising from other applicatireas. For example, nonlinear adaptive
control schemes can be applied to physically similar modetiansportation engineering (see e.g. the
nonlinear adaptive tracking control of an induction motaethwincertain load torque [6] or a robust
backstepping-based control method with actuator failoragensation, applied to a nonlinear aircraft
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model [7]).

In order to apply nonlinear state-space model based cowimel has to develop a relatively simple
(i.e. low dimensional) yet powerful model that is able toa#®e the nonlinear dynamic behaviour of
the gas turbine. A strongly nonlinear third order state spdescription of a low power gas turbine
of type DEUTZ T216 has been developed and identified from oredsdata [8], and its input-
output linearization based regulation is presented inTBE main possibly time-varying disturbance
during the operation of gas turbines is the load torque. éndhse of turbines, similarly to other
rotating machines like induction motors [21] or diesel ewgi [20], the value of the load torque
gives very important state and diagnostic information aliba system. Moreover, the knowledge
of load torque can largely contribute to the design of mofieieht control schemes [20]. However,
the instrumental measurement of load torque is not alwagsiple in practice, therefore dynamic

model-based identification and estimation methods ar@ oftguired to solve this problem.

It is well-known that exact and input-output linearizatioased control techniques are particularly
sensitive to model parameter uncertainties [10] and recalmost perfect matching between the real
and the mathematical model to show the required performataeever, the following facts justify
the choice of linearization over other possible nonlinessigh methods. Firstly, the availability of
a high fidelity nonlinear state-space model that was ideuqtiéind validated from real measurement
data. Secondly, linearization with the given input-outgtructure introduces the rotational speed
and its time-derivative as state variables after the necgssoordinates transformation and this is
advantageous and useful from a physical and engineering pbiview. Thirdly, the linearization-
based controller can serve as a basis for other nonlineardeshemes where the model or parameter

uncertainties are further handled using an appropriatentque.

The outline of the paper is as follows. In section 2, a thirdeornonlinear state space model is
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NONLINEAR REFERENCE TRACKING CONTROL OF A GAS TURBINE 3

described briefly for the turbine. Section 3 deals with tladoidity of the zero dynamics with respect
to the rotational speed, since it plays a key role in cordgradlesign. In section 4, a linear quadratic
controller with load torque estimation is designed for thput-output linearized model. Finally, the

simulation results and the most important conclusions faoe/e in sections 5 and 6, respectively.

2. DYNAMIC MODEL OF THE GAS TURBINE

The main parts of a gas turbine include the inlet duct, thepressor, the combustion chamber, the
turbine and the nozzle or the gas-deflector. The operatioripte of gas turbines is roughly the
following. Air is drawn into the engine through the inlet diy the compressor, which compresses it
and then delivers it to the combustion chamber. Within thalmastion chamber, the air is mixed with
fuel and the mixture is ignited, producing a rise in temp&@tand hence an expansion of the gases.
These gases are exhausted through the engine nozzle orgine gas-deflector, but first they pass
through the turbine, which is designed to extract sufficemergy from them to keep the compressor
rotating, so that the engine is self sustaining. The maitsgdra gas turbine are shown schematically
in Fig. 1.

A real low-power gas turbine is used for our studies. The mgent is installed in the Budapest

University of Technology and Economics, Department of Agftand Ships on a test-stand.

2.1. Dynamic model equations

The nonlinear state equations are derived from first engimgerinciples. Dynamic conservation
balance equations are constructed for the overall gas matsinternal energy) and the mechanical
energyEshaft [11].

These dynamic equations have to be transformed into imengriable form to contain the
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4 B. PONGRACZ, P. AILER, K.M. HANGOS, G. SZEDERKENY!

measurable quantities. The set of transformed differebéiances include the dynamic mass balance
for the combustion chamber, the pressure form of the stateten derived from the internal energy
balance for the combustion chamber and the intensive fortheobverall mechanical energy balance
expressed for the rotational speed his way, three independent balance equations can bergotest
as state equations.

In order to complete the model, constitutive algebraic &#qua are also needed. These equations
describe the static behaviour of the gas turbine in variqueyating points, and all of them can be
substituted into the dynamic equations [11].

The final form of the nonlinear dynamic model equations isftiewing:

dmcomb
dtom = Vc+Vigel— VT (1)
d ﬁg,Ot R ( 1 ptot KT71
= v cht(1+—(($> _1>)
dt VeomiEy e nc pt10tUComb
pEJ,OtVComb )
—VrCp——— + v 2
T%p MeomR Qf NcombVfuel (2)
dn 1 ptg,OtVCOmb ptlot <
- = c 1- (77— )
dt 4Mn26n (vT P meomR nT nm90h< (pg’tm UN)
TtOt tot K=1 3M
_VCCpli(<totL> K _1) _ load (3)
Nc P17 Ocomb 2-50Mo
where
ptlot ( n pt30t pt30t
ve =B A a +a +a + a4) 4
=P \/Tlm[ ' T pt].Otacomb ? \/ U ¥ th_OtGComb “)
28815 28815
N ps" tn pgloioy Tn P51 on )
vr=BAs P Voomb ( Vo P 2 Vo b3 ——; bs (5)
McomtR McomtR McomtR

The parameters, constants of the nonlinear dynamic moe@raviously known or determined from
measurements. The detailed identification and validationgrlure is described in [11]. The parameter
values of the model can be found in Table Il in the Appendix.
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2.2. Nonlinear input affine state space model

The dynamic equations (1)-(3) can be transformed into thewag standard input-affine form [10]:

dx

Gt = T +g00u (6)
y="h(x) @)
with the state vector
_ T_ tot T
X=[x1 X X3]' = [ Mcomp P35 N] (8)
and the only input variable
U= Vtyel- )

The set of possible disturbances is the following:
d=[dy dp d3]" = [ P T/ Mioaa ] (10)

Finally, thef, g andh functions can be written as:

fl(X17X27X37d1;d2) C1 hl(XlaXZ;X3;dl)
f(X) = fz(Xl,Xz,X?,,dl,dz) ) g(x) = | Cc |>» h(X) - X2 (11)
f3(X1, %2, X3,d1, d2, d3) 0 X3

wherec; andc; are constants. It is important to note that these functiansat only depend on the
state variables, but also on the disturbance vector. Meredie elements aj are constants which
means that the input enters the model equations linearly.stdte, input, output and environmental
disturbance variables are explained in Table I, while a cefmgnsive list is given in the Nomenclature.

The dynamical model of the gas turbine is valid within thédwing operating domain:
000305 kg = Ximin S X1 S X]_max - 000835 kg
154837 Pa= Xomin < X2 < Xomax = 325637 Pa
1 1
650 S = Xamin< X3 < Xgmax = 83333 s
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6 B. PONGRACZ, P. AILER, K.M. HANGOS, G. SZEDERKENY!

From now, this domain is denoted by . The structure off andg is such that for every constant

reference control input value there is a unique steady ptate in 2.

3. ZERO DYNAMICS ANALYSIS

Roughly speaking, the zero dynamics (or zero output cansiadynamics) of a system gives us
information about its internal behaviour, when the outgubiced to be identically zero (or constant)
[10]. Before the design of a linearization-based contrpiteis essential to analyse the properties of
the zero dynamics to be able to ensure the stability of thdemtlosed- loop system. In our case, the
controlled output is the rotational speed, therefore the dgnamics analysis is performed with respect

to this output variable:

yzp = hzp(X) = X3

using the nominal values of the disturbance variables. ketanote the (piecewise constant) value of
the rotational speed to be trackedxXjy
As it can be seen from (11), the relative degree of our modatiformly 2 in the operating region,

since

dhzp
X

Lghzp(X) = gx)=0, xe &

and

LgthZD(X) 7& 0, xe Z

This means that the first and second derivative of the ouoube written as

yzo = Lihzp(X) 12)
yzo = L%hzp(X)+LgLthzo(x)u (13)
Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces2000;0:0-0
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Using the constraintgzp = x5 andyzp = 0, we can write the one-dimensional zero dynamics as a

function ofxy, i.e.
X2 = @(x2)

The Lie-derivatives ohzp and the functiorp are not given here in detail because of their complexity.
Although @ is a function of only one variable, it is hard to analyticaitgat the sign of it. Thus, we
apply a simple graphical method to examine the stabilithhefzero dynamics. Fig. 2 shows the phase
diagrams of the zero dynamics belonging to four differemtstant values of the rotational speed. In
all cases, the equilibrium poing (the point where the curve crosses the horizontal axis)iguenand

stable in the operating domain of the turbine.

Although Fig. 2 illustrates zero dynamics with the nomired torque onlyM,0ag = 5S0Nm), phase
diagrams of zero dynamics with a large number of investijltad torque values (betweerNinand
150N m) show that the operating points are unique and asymptlgtistdble in the whole operating

domainZ" for arbitraryu* in all cases.

4. INPUT-OUTPUT LINEARIZATION BASED SERVO CONTROL FOR THE®TATIONAL

SPEED

In this section we perform input-output linearization ardidgn an LQ-servo controller to the (input-
output) linearized model. Since the load torque (the thiednent of the disturbance vectd) cannot
be measured directly, an appropriate estimator is cortsttuor this quantity. The linearization is
done in two steps: the first step is a standard input-outpealization using the nominal model
parameters, while the estimation of the load torque is sbivehe second adaptive linearization step.
The controlled plant is expected to follow a prescribednefee signal for the rotational speed.
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8 B. PONGRACZ, P. AILER, K.M. HANGOS, G. SZEDERKENYI

4.1. Input-output linearization of the model with nominzdl torque

The linearizing feedback can be written in the followingstard form
u=a(x)+p(xw

wherea, B € R®— R, andw is the new external input.

Itis clear from (13) that the linearizing feedback is thddaling

LZhzp(x
a(x) —Lg[ff];i()x) (14)
BY = o (1)
Let us use the following notations
= x—% (16)
L = X 17)
W o= w—w (18)

wherew* is the necessary constant input value corresponding totélael\s statec. Using (16)-(18)

the linearized system model can be written as a simple dontagrator:

1 0 1 2} 0
= + w (29)
2 0 O b2y 1

while the zero dynamics is given by
Xo =D (21,22, %), (20)

where®(0,0,%2) = @(x2).
Since the input-output linearizing feedback is a stateliael, the state variables of the system have
to be determined from the measured output variables. Weresthat the state variables andxsz are
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NONLINEAR REFERENCE TRACKING CONTROL OF A GAS TURBINE 9

measurable directly, whibe; can be determined from the functibpin (11) using the measured value

of dy:

X= Vclgmb%@_m(l_ (mg,l\,xz)KK»

4.2. Input-output linearization with load torque estinati

Until now in was assumed that the external disturbancesraoehk exactly. The first two elements of
the disturbance vectod{ = pi** andd, = T;°!) are assumed to be measurable and constant, so the only
difficulty is with the computation of the load torqués(= Mgaq)- This problem is solved by designing

an adaptive control law that uses the estimatiodzof

Let us denote the nominal value @f by d3°™ Then the load torque can be rewritten as:
d3 — dgom+ “

where u is the deviance oflz from its nominal value. Assume now thds (and thereforeu) is a

constant. Using the fact thito,q appears additively in (3), we can write the derivative/gah as

Yzp = X3 = f3(x,d3°") + 1

where
| 13
1= T 2me50
and
1 ptOtVComb piot K
fa(x, diom  — 3 1— (g
S I T (VTCp oot T me( 1= () )

Ttot ptot K—1

veeo (e —) * 1) —2ﬂ§0nd§°m>

with the algebraic constraints (4)-(5) and the definitiox @f (8). The second time-derivative gfp

is:
3
. dfa(x,d)+ 11 0 f3(x,d)+I1u .
=5 222 (fi(x,d) +gi 20T L
o =3 p (fited)+gi0)u) ++ ekl
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10 B. PONGRACZ, P. AILER, K.M. HANGOS, G. SZEDERKENY!

where f; are the coordinate functions dfdefined in (11). Using thati is a constant, this equation
becomes

3
v2o = 3 75D 1k + a09u) +

0 fg(X, d)

% l1p = L2hzp(X) 4 LgLthzp(X)u+ g(x,d™° M u

where g(x,d"°™) = Ilw, andd"™ denotes the disturbance vector with nominal disturbance

values. Applying the feedback (14)-(15) and using the imtatin (16)-(18) the system model becomes

=12 (21)

= Wxdu+w (22)

Comparing this model to the model (19), the only differensehie nonlinear term in the second
differential equation. To cancel the effect of this nondiriey, an adaptive controller is designed that
estimates the value qf.

Observe that the model (21)-(22) is in the following linggrarameterised input affine form:

7= (@ +d(x d""u +§@w
where

0

Q'

~ 0
f(Z) = ) g(zj = ) a(xvdnom) =
1 Y(x,d"em)

Let us apply to our model the so-called "Adaptive Feedbacieaiization Theorem" [12] which will

o

serve as a theoretical basis for the controller design.

Theorem 1.: Assume that for system (21)-(22)

(i) the nominal system is globally feedback linearizable,
(i) the strict triangularity conditionsadsG; C Gj, 0<i<n-2, (whereG; = spang, ad‘f@})
are satisfied,;

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces2000;0:0-0
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NONLINEAR REFERENCE TRACKING CONTROL OF A GAS TURBINE 11
then there exists an adaptive feedback linearizing cantrol

It is important to note that the theorem above will be appteethe model (21)-(22) instead of the
open loop turbine model. Its is easy to see that the feedbaefrization of the model (21)-(22) is
equivalent to the input-output linearization of the modefided by (21)-(22) and the additional zero
dynamics (20). Also note that although the feedback thdtheilcomputed feedback linearizes (21)-
(22) globally, this feedback will only be applied to the turbine model diesits operating domait?".

Since the nominal system (i.e. (21)-(22) wijth= 0) is globally feedback linearizable witlhi = 0,
the first condition is satisfied. Furthermore, the dimensitthe model (21)-(22) i& = 2, which means

that onlyad;Go C Go has to be checked, whe@ = span{g}:

9. 9. 0 0 0 0 0
aquo:d—g_qf—cig:f = C span =Gy
1 _oy 1

022

N7
N
QJ
(S
Q)‘Q;
NS

Since both conditions are satisfied, the adaptive feedhaekrizing control can be computed in the

following way (see pages 119-120. in [12]). Define a refeeemodel

Z1 Z 0 0 1
Z> Z2 1 ki —ko
wheres® + kos+ kj is a Hurwitz polynomial (i.eA is a stability matrix). Denote the estimated value
of u by [i and the estimation error kiyu:
Ap=p—p (23)
Define the following control input function:

W= —(x,d"" U — kizs — koZ + Wi (24)

wherew; is the common input variable of both the controlled systendehand the reference model,
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12 B. PONGRACZ, P. AILER, K.M. HANGOS, G. SZEDERKENY!
and substitute it to the model (21)-(22):
27 =12 (25)

Z = —kizs—koZo+ P(x,d"MAL +wy (26)

<P
N
N
=

Then the reference error dynamics reads
€&l el 0

= A + Au
& & P(x,dmom)

where the dynamics qf is not determined yet. L& be the positive definite solution of the Lyapunov

equation

ATP+PA = —I

wherel € R?%2 is the identity matrix. Consider the following positive defe Lyapunov function
candidate:

V =ePetyAu?, yeR

The time derivative oY is given by

d 0 2 d
aV:—e§—<%4r2 e o |P B+ A A
W(x,dmom Y

By choosing the following adaptation error dynamics

d 0
qibH= V{ e & ] P ;
P(x,d"m)
the time derivative becomes
V=-&-¢
Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces2000;0:0-0
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NONLINEAR REFERENCE TRACKING CONTROL OF A GAS TURBINE 13

which is negative definite, therefoxkis a Lyapunov function and the adaptation error asymptibtica
converges to zero.
Differentiating (23) by time and using that is a constant, the adaptation law can be determined

from the adaptation error dynamics:

d_ 0 d

~f=y|l e e |P = ——Au (27)

dt dt

"U(X’dnom)

Thus, the controller designed to (21)-(22) with the contirghut (24) and adaptation law (27)

successfully performs adaptive feedback linearizatiahstabilisation of (21)-(22), moreover, it gives

an (asymptotically converging) estimgieof the unknown parameter.

4.3. Servo controller with stabilising feedback

Our aim is to build a controller that tracks the referenceaigser that is our prescribed value for the
rotational speed. For this purpose, an LQ-servo contridldesigned.

Observe that in the control input defined in (24), the parans& andk;, have not been determined
yet. These parameters can be computed as the result of sedi@ptlesign to the double integrator
model (19). Additionally, by choosing, = kiyset, the controlled plant will track a prescribed
piecewise constant reference signal. Since ligA\p = 0, the only steady state operating point of
(25)-(26) isz1 = Yref, Z2 = 0 which is unique, and - because of the LQ controller - it isnastptically
stable.

The tuning parameters of the controller are the positivendefstate and input weighting matrices
(Q e R?*?2 andR e R*1, respectively), and the adaptation coefficigini (27). LetR= 1 be fixed. For
the sake of simplicity, th€ is restircted to be diagona@ = diag(Q11, Q22).

Now, three scalar parametef3, Q22 andy) are to be determined according to the following control
goals:

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces2000;0:0-0
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14 B. PONGRACZ, P. AILER, K.M. HANGOS, G. SZEDERKENY!

1. let the settling time of the rotational speed betwe&shnd 2s;
2. let the plant be robust against uncerainties in enviraniatelisturbances and model parameters;

3. avoid the saturation of the actuator (the control inpistbounded: 6< u < 0.03kg/s)

The tuning of parameters is successfully performed via Eitimns in Matlab/Simulink using
piecewise constant reference signals (for Goal 1) and weaise’ disturbances/uncertainties (for Goals

2 and 3). The resulted design parameters are:

3x10° 0
Q= , Yy=25
0 15x10°

It is important to note that (according to [12]) time-varyiparameters are also allowed, if they can

be modelled by the following exosystem with unknown initahdition uip:
ft=Q(t X+ w(t,x) (28)

if QT + Q is negative semidefinite, wher> 0, and the exosystem is bounded inpgtifounded state

(u). During simulations, only such functions will be used that can be modeled wik= 0.

5. SIMULATION RESULTS

The simulations were performed using the Matlab/Simulioftvgare environment. For the integration
of the model equations, the built-in 'ode45’ ordinary diffatial equation solver was applied, which is
based on a Runge-Kutta (4,5) formula [13].

In Fig. 3, the subfigures show the time function of the coninplut and of the rotational speed
- Vfyel @ndn respectively -, near typical values of parameters and enmental disturbances. The
load torque is set to its nominal valudi,ag = 50 Nm The rotational speed (solid line in the second
subfigure) is started from = 750% and tracks a piecewise constant reference signal (dasheéhli

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces2000;0:0-0
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NONLINEAR REFERENCE TRACKING CONTROL OF A GAS TURBINE 15

the second subfigure). The settling time of the transienb@itts = 1.7 s. The related control input
function is depicted in the first subfigure. This simulati@ntbnstrates that the controlled nominal

plant is asymptotically stable and tracks the referencaeasigith linear transients.

The operation of the adaptive controller is shown in Fig. #ie Tsecond subfigure shows the
estimation of the load torque. The time function of the loadjtie (dashed line) consists of linear
and constant pieces, that are followed well by the estimzd&de (solid line). The estimation contains
some little drops/overshoots at time instancgs 25, 7 s caused by the fast changes in the load torque
function. The third subfigure shows the reference trackimgtlie rotational speed with the same
reference signal as in Fig. 3. This reference signal is fsfally tracked, and large changes in the
load torque cause only transients of small magnitude indtaional speed. The first subfigure shows
the related control input function. It is important to memtithat the drops/overshoots in the estimation

of the load torque does not affect the rotational speed otdhé&ol input significantly.

5.1. Robustness

To test the proposed control scheme under more realistaroistances, we now relax the original
assumptions that all the model parameters and disturb&witeshe exception of the load torque) are

known.

Figure 5 demonstrates the 'worst case’ behaviour of thet plgainst model parameter uncertainties
and environmental disturbances: This simulation showsréfierence tracking when three model
parameters having a significant effect on the dynamical \debr are uniformly set to their
maximal/minimal/nominal values together withy and T;. The applied minimal and maximal

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces2000;0:0-0
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16 B. PONGRACZ, P. AILER, K.M. HANGOS, G. SZEDERKENY!

parameter and disturbance values were the following:

min Veomp= 0.0053m° |  maxVgemp= 0.0061Im°
min © = 0.000&gn? , max® = 0.000%gn?
Min Neomp= 0.74768 , mMaxncomp= 0.82048
min pi® =9000Pa , maxp™ = 110000Pa
min T{" = 26815K , maxT{% = 30315K

mMin Mjgag = ONmM | maxMjgag = 150NmM

The load torque (second subfigure) - was simultaneouslystt iminimal and maximal value (@m
and 150N m, respectively).

The prescribed rotational speed trajectory (dashdotfitied third subfigure) differs from the former
ones in order to show not just the transient, but also thelgtsi@te behaviour (betweersand 65 s)
of the plant in a more realistic environment.

The trajectories of the rotational speed correspondinghéonhaximal/ minimal/ nominal values
of uncertain model parameters are denoted by solid/dadbtteld lines, respectively in the third
subfigure. The same line styles are used for the relatedatonpiut functions in the first subfigure.
The effect of model parameter uncertainties can be obsearvéte beginning of the time function
of the rotational speed, showing that the LQ-servo corgralccessfully suppresses their influence:
the rotational speed trajectories overlap (third subfigutee only slight difference is between the
related control input functions (first subfigure). Althoutiie changes of the load torque (as external
disturbance) are non-smooth with the possible largest iatg they cause only tiny drops/overshoots
in the time function of the rotational speed, which convergack to the prescribed reference value in
a very short time.

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces2000;0:0-0
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It is also visible that the control input is far from satuaatisince it is between & 10*3'%g and
17x 1(T3k—59, while the saturation bounds ar@sg(hnd 30x l(r3k—sg.

Another case study is performed and illustrated in Fig. @deoto show the effect of environmental
disturbances not just on reference tracking, but also oadaetive estimation of the load torque. Four
different simulations are reported here: with miningl and T{®* values (denoted by dotted line),
with minimal pi°* and maximalT®!, and with maximalp{® and minimalT{** values (both denoted
by dashed lines), and with maximpi®* and T{** values (denoted by solid line). The only significant
difference is between the control input functions (firstfigure).

The time-function of the load torque consists of linear andstant pieces (dash-dot line in the
second subfigure. Large drops/overshoots in the estimatitre load torque only occur betweers1
and 8s, caused by the quick changes in the load torque. It is alsarshioat there is no significant
difference between the estimations of the load torque Iyahgnto different extrema op!® and T
(these four curves overlap).

The reference signal for the rotational speed (dash-detitirthe third subfigure) is a staircase-like
piecewise constant function which is successfully tracléxa little drops/overshoots betweess and
8 sare caused by the sudden changes of the highest magnitutetime function of the load torque.
The time functions of the rotational speed belonging teedéfit extrema of'® and T overlap during
the whole simulation. Note that the control input is far freaturation just like in the former simulation

studies.

6. CONCLUSIONS

In this paper, a nonlinear model of a low-power gas turbing @en built from first engineering
principles which is suitable for control purposes. Becao$ethe algebraic complexity of the
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one-dimensional zero dynamics model of the turbine with ristational speed held constant, the
stability neighbourhood of its operating points were eated with phase diagrams and found to be
asymptotically stable in all examined cases. An adaptipathtoutput linearizing and LQ-servo control
loop has been built to track a given piecewise constanterter signal for the rotational speed. The
adaptive control scheme includes the estimation of the oaplie which is an important time-varying
parameter in the system. Simulations showed that the dimttgalant fulfills the required performance
criteria, and the reference tracking is sufficiently robaginst both environmental disturbances and
model parameter uncertainties. Moreover, the result afdtftpie estimation is accurate and well usable

even when the environmental parameters change in the exdmrange.
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NOMENCLATURE OF THE TURBINE MODEL

Variables/Constants

area [

mechanical energy|J]

torque [Nm

lower thermal value of fuel [J/kg]
specific gas constan{J/(kgK)]
temperature [K]

internal energy [J]

volume [m°]

coefficients ofgy |9
coefficients ofgy [—]
coefficients ofjz [—]

specific heat [J/(kg K)]

mass [kg|

rotational speed[1/s]
pressure [Pa]

time [g

specific par. of air & gas[v/Ks/m|
efficiency [—]

inertial moment [kg n?)
adiabatic exponent—|

mass flowrate [kg/s|

pressure loss coefficienf—]

turbine velocity coefficienf/Ks|

Copyright(© 2000 John Wiley & Sons, Ltd.

Prepared usingcsauth.cls

Comb

comb

fuel

load

mech

N

p

schaft

T

tot

Subscripts

inlet duct inlet

compressor inlet
compressor outlet

turbine inlet

turbine outlet

refers to compressor
refers to combustion chamber
refers to combustion

refers to fuel

refers to inlet duct

load

mechanical

refers to gas deflector
refers to constant pressure
refers to schaft

refers to turbine

refers to constant volume

Superscripts

refers to a total quantity
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FIGURES
) Gas- )
Inlet Comp- Combustion Turbine deflector
uct_ |y ressor chamber A -
- 1 p
0 1 2 3 4 0
load
Figure 1. The main parts of the gas turbine
Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces2000;0:0-0

Prepared usingcsauth.cls



NONLINEAR REFERENCE TRACKING CONTROL OF A GAS TURBINE 23

903 [ipays

0.157 with n*=800 1/s
with n*=750 1/s

: with n*=700 1/s
0.17 with n*=650 /s

0057

p3 [kPa]

Figure 2. Phase diagram for the system with four constant rotationed spdues
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001 1 I T T T T I I
w —control input
(=)
=,
3 0.01f =
I?H—
3 0009 1 1 1 I 1 1 I 1
0 1 2 3 4 ) 6 7 8 9
80QF-————— 10— ——- ' ' ' ]
—rotational speed
---reference signal
@
= 70t 1\ peeeeemeesoooee
c
700 1 ! R T 1 ! 1
0 1 2 3 4 5 6 7 8 9
t[s]
Figure 3. Reference signal tracking for the rotational speed
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© 0,0157 ‘ | | ‘ ' ! ! | .
D
=5 0,01 %

2 |—control input
I 1 1

---load torque -
—estimated load | |

0 1 2 3 4 5 6 7 8 9

800 ‘ —rotational speed f
0 ---reference signal
- 75%0¢ VN, rmmm--oz===
[
700
0 1 6 7 8 9

Figure 4. Estimation of the load torque
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650 ---reference si
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gnal for the rotational speed 7-----.-‘-‘-'-'-'-. --------- 3

Figure 5. Robustness of the proposed control scheme |.(cureglapvn subfigures 2 and 3)
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0 5 10 15 yg 2 25 30

-------- transients with (p1min, T1min)

---transients with (p1min, T1max) and (p1max,T1min)
—transients with (p1max, T1max)

---reference signal

Figure 6. Robustness of the proposed control scheme Il. (cuvegkap in subfigures 2 and 3)
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TABLES

Table I. State, input, output and disturbance variables (see the Normeadiar further details)

Notation Variable name/Units Notation Variable name/Units
Mcomp  Mass in combustion chambékg pit compressor inlet total pressurfPg]
pict turbine total inlet pressurePal et compressor inlet total temperaturf|
n rotational speed[1/s| Mioad load torque [Nm
Viuel mass flowrate of fuel[kg/s| o turbine outlet total temperaturgK|
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APPENDIX

Table II. Constants of the simplified model of the DEUTZ T216 type turbine

Not.  Value Not.  Value
R 287J/(kgK) B 0.0404184\/Ks/m
cp  10045J3/(kgK) ¢,  7175J3/(kgK)
K 14 T 0.028071VKs
Qf  428MJ/kg T  28815K
A1 0.0058687n? Az 0.0117056m7
on 096687 o 098879
Ocomb  0.93739
nc 067585 nr  0.85677
Neomb  0.79161 Nmech  0.9801
€] 0.0004kg n? Veomb  0.005675m?
a  0.0003531% &  0.0011097s
a3  —04611 a; 016635
b;  —0.033728 b,  0.004458
bs  0.048847 by  0.15542
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