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SUMMARY

Input-output linearization based adaptive reference tracking controlof a low power gas turbine model is presented

in this paper. The gas turbine is described by a third order nonlinear input-affine state-space model, where the

manipulable input is the fuel mass flowrate and the controlled output is the rotational speed. The stability of

the one-dimensional zero dynamics of the controlled plant is investigated via phase diagrams. The input-output

linearizing feedback is extended with a load torque estimator algorithm resulting in an adaptive feedback scheme.

The tuning of controller parameters is performed considering three maindesign goals: appropriate settling time,

robustness against environmental disturbances and model parameter uncertainties, and avoiding the saturation of

the actuator. Simulations show that the the closed loop system is robust with respect to the variations in uncertain

model and environmental parameters and its performance satisfies thedefined requirements. Copyrightc© 2000
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1. INTRODUCTION

Gas turbines are important and widely used prime movers in transportation systems. Besides this main

application area, gas turbines are found in power systems where they are the main power generators

[1]. Therefore the modelling and control of gas turbines is of signficant practical importance.

Control techniques applied for gas turbines are most often based on linear controllers. These are

mainly variants of PID controllers such as in [18] or state-space based linear controllers, e.g. an LQ-

servo controller in [2]. Linear quadratic Gaussian controlwith loop transfer recovery (LQG/LTR) [3]

and robust control system design have also been performed for gas turbines [4].

Nonlinear control approaches for gas turbine control include model predictive control [17, 19]

or soft computing methods such as neural networks, genetic algorithms [16] and fuzzy controllers

[14]. In [5], mathematical programming is proposed for optimal turbine control. However, none

of the above mentioned studies examine the robustness of theproposed controllers with respect to

the changing environmental conditions and uncertain physical model parameters. The application of

classical nonlinear state-space methods in turbine control is not frequent, although several nonlinear

control solutions seem to be promising from other application areas. For example, nonlinear adaptive

control schemes can be applied to physically similar modelsin transportation engineering (see e.g. the

nonlinear adaptive tracking control of an induction motor with uncertain load torque [6] or a robust

backstepping-based control method with actuator failure compensation, applied to a nonlinear aircraft
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model [7]).

In order to apply nonlinear state-space model based control, one has to develop a relatively simple

(i.e. low dimensional) yet powerful model that is able to describe the nonlinear dynamic behaviour of

the gas turbine. A strongly nonlinear third order state space description of a low power gas turbine

of type DEUTZ T216 has been developed and identified from measured data [8], and its input-

output linearization based regulation is presented in [9].The main possibly time-varying disturbance

during the operation of gas turbines is the load torque. In the case of turbines, similarly to other

rotating machines like induction motors [21] or diesel engines [20], the value of the load torque

gives very important state and diagnostic information about the system. Moreover, the knowledge

of load torque can largely contribute to the design of more efficient control schemes [20]. However,

the instrumental measurement of load torque is not always possible in practice, therefore dynamic

model-based identification and estimation methods are often required to solve this problem.

It is well-known that exact and input-output linearizationbased control techniques are particularly

sensitive to model parameter uncertainties [10] and require almost perfect matching between the real

and the mathematical model to show the required performance. However, the following facts justify

the choice of linearization over other possible nonlinear design methods. Firstly, the availability of

a high fidelity nonlinear state-space model that was identified and validated from real measurement

data. Secondly, linearization with the given input-outputstructure introduces the rotational speed

and its time-derivative as state variables after the necessary coordinates transformation and this is

advantageous and useful from a physical and engineering point of view. Thirdly, the linearization-

based controller can serve as a basis for other nonlinear design schemes where the model or parameter

uncertainties are further handled using an appropriate technique.

The outline of the paper is as follows. In section 2, a third order nonlinear state space model is
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described briefly for the turbine. Section 3 deals with the stability of the zero dynamics with respect

to the rotational speed, since it plays a key role in controller design. In section 4, a linear quadratic

controller with load torque estimation is designed for the input-output linearized model. Finally, the

simulation results and the most important conclusions are shown in sections 5 and 6, respectively.

2. DYNAMIC MODEL OF THE GAS TURBINE

The main parts of a gas turbine include the inlet duct, the compressor, the combustion chamber, the

turbine and the nozzle or the gas-deflector. The operation principle of gas turbines is roughly the

following. Air is drawn into the engine through the inlet duct by the compressor, which compresses it

and then delivers it to the combustion chamber. Within the combustion chamber, the air is mixed with

fuel and the mixture is ignited, producing a rise in temperature and hence an expansion of the gases.

These gases are exhausted through the engine nozzle or the engine gas-deflector, but first they pass

through the turbine, which is designed to extract sufficientenergy from them to keep the compressor

rotating, so that the engine is self sustaining. The main parts of a gas turbine are shown schematically

in Fig. 1.

A real low-power gas turbine is used for our studies. The equipment is installed in the Budapest

University of Technology and Economics, Department of Aircraft and Ships on a test-stand.

2.1. Dynamic model equations

The nonlinear state equations are derived from first engineering principles. Dynamic conservation

balance equations are constructed for the overall gas massm, its internal energyU and the mechanical

energyEsha f t [11].

These dynamic equations have to be transformed into intensive variable form to contain the
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measurable quantities. The set of transformed differential balances include the dynamic mass balance

for the combustion chamber, the pressure form of the state equation derived from the internal energy

balance for the combustion chamber and the intensive form ofthe overall mechanical energy balance

expressed for the rotational speedn. This way, three independent balance equations can be constructed

as state equations.

In order to complete the model, constitutive algebraic equations are also needed. These equations

describe the static behaviour of the gas turbine in various operating points, and all of them can be

substituted into the dynamic equations [11].

The final form of the nonlinear dynamic model equations is thefollowing:

dmComb

dt
= νC +ν f uel−νT (1)

dptot
3

dt
=

R
VCombcv

(
νCcpTtot

1

(
1 +

1
ηC

(( ptot
3

ptot
1 σComb

) κ−1
κ −1

))

−νTcp
ptot

3 VComb

mCombR
+Qf ηcombν f uel

)
(2)

dn
dt

=
1

4Π2Θn

(
νTcp

ptot
3 VComb

mCombR
ηTηmech

(
1−

( ptot
1

ptot
3 σI σN

) κ−1
κ

)

−νCcp
Ttot

1

ηC

(( ptot
3

ptot
1 σComb

) κ−1
κ −1

)
− 3Mload

2·50ΠΘ
(3)

where

νC = β A1
ptot

1√
Ttot

1

(
a1

n√
Ttot

1
288.15

ptot
3

ptot
1 σComb

+a2
n√
Ttot

1
288.15

+a3
ptot

3

ptot
1 σComb

+a4

)
(4)

νT = β A3
ptot

3√
ptot

3 VComb
mCombR

(
b1

τ n√
ptot

3 VComb
mCombR

ptot
3 σI σN

ptot
1

++b2
τ n√

ptot
3 VComb
mCombR

+b3
ptot

3 σI σN

ptot
1

+b4

)
(5)

The parameters, constants of the nonlinear dynamic model are previously known or determined from

measurements. The detailed identification and validation procedure is described in [11]. The parameter

values of the model can be found in Table II in the Appendix.
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2.2. Nonlinear input affine state space model

The dynamic equations (1)-(3) can be transformed into the following standard input-affine form [10]:

dx
dt

= f (x)+g(x)u (6)

y = h(x) (7)

with the state vector

x = [ x1 x2 x3 ]T =
[

mComb ptot
3 n

]T
(8)

and the only input variable

u = ν f uel. (9)

The set of possible disturbances is the following:

d = [ d1 d2 d3 ]T =
[

ptot
1 Ttot

1 Mload
]T

(10)

Finally, the f , g andh functions can be written as:

f (x) =




f1(x1,x2,x3,d1,d2)

f2(x1,x2,x3,d1,d2)

f3(x1,x2,x3,d1,d2,d3)




, g(x) =




c1

c2

0




, h(x) =




h1(x1,x2,x3,d1)

x2

x3




(11)

wherec1 andc2 are constants. It is important to note that these functions do not only depend on the

state variables, but also on the disturbance vector. Moreover, the elements ofg are constants which

means that the input enters the model equations linearly. The state, input, output and environmental

disturbance variables are explained in Table I, while a comprehensive list is given in the Nomenclature.

The dynamical model of the gas turbine is valid within the following operating domain:

0.00305 kg= x1min ≤ x1 ≤ x1max = 0.00835 kg

154837 Pa= x2min ≤ x2 ≤ x2max = 325637 Pa

650
1
s

= x3min ≤ x3 ≤ x3max = 833.33
1
s

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process.2000;0:0–0

Prepared usingacsauth.cls



6 B. PONGRÁCZ, P. AILER, K.M. HANGOS, G. SZEDERKÉNYI

From now, this domain is denoted byX . The structure off and g is such that for every constant

reference control input value there is a unique steady statepoint inX .

3. ZERO DYNAMICS ANALYSIS

Roughly speaking, the zero dynamics (or zero output constrained dynamics) of a system gives us

information about its internal behaviour, when the output is forced to be identically zero (or constant)

[10]. Before the design of a linearization-based controller, it is essential to analyse the properties of

the zero dynamics to be able to ensure the stability of the whole closed- loop system. In our case, the

controlled output is the rotational speed, therefore the zero dynamics analysis is performed with respect

to this output variable:

yZD = hZD(x) = x3

using the nominal values of the disturbance variables. Let us denote the (piecewise constant) value of

the rotational speed to be tracked byx∗3.

As it can be seen from (11), the relative degree of our model isuniformly 2 in the operating region,

since

LghZD(x) =
∂hZD

∂x
g(x) = 0, x∈ X

and

LgL f hZD(x) 6= 0, x∈ X

This means that the first and second derivative of the output can be written as

ẏZD = L f hZD(x) (12)

ÿZD = L2
f hZD(x)+LgL f hZD(x)u (13)
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Using the constraintsyZD = x∗3 and ẏZD = 0, we can write the one-dimensional zero dynamics as a

function ofx2, i.e.

ẋ2 = φ(x2)

The Lie-derivatives ofhZD and the functionφ are not given here in detail because of their complexity.

Although φ is a function of only one variable, it is hard to analyticallytreat the sign of it. Thus, we

apply a simple graphical method to examine the stability of the zero dynamics. Fig. 2 shows the phase

diagrams of the zero dynamics belonging to four different constant values of the rotational speed. In

all cases, the equilibrium pointx∗2 (the point where the curve crosses the horizontal axis) is unique and

stable in the operating domain of the turbine.

Although Fig. 2 illustrates zero dynamics with the nominal load torque only (Mload = 50Nm), phase

diagrams of zero dynamics with a large number of investigated load torque values (between 0Nmand

150 Nm) show that the operating points are unique and asymptotically stable in the whole operating

domainX for arbitraryu∗ in all cases.

4. INPUT-OUTPUT LINEARIZATION BASED SERVO CONTROL FOR THE ROTATIONAL

SPEED

In this section we perform input-output linearization and design an LQ-servo controller to the (input-

output) linearized model. Since the load torque (the third element of the disturbance vectord) cannot

be measured directly, an appropriate estimator is constructed for this quantity. The linearization is

done in two steps: the first step is a standard input-output linearization using the nominal model

parameters, while the estimation of the load torque is solved in the second adaptive linearization step.

The controlled plant is expected to follow a prescribed reference signal for the rotational speed.
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4.1. Input-output linearization of the model with nominal load torque

The linearizing feedback can be written in the following standard form

u = α(x)+β (x)w

whereα,β ∈ R
3 7→ R, andw is the new external input.

It is clear from (13) that the linearizing feedback is the following

α(x) = −
L2

f hZD(x)

LgL f hZD(x)
(14)

β (x) =
1

LgL f hZD(x)
(15)

Let us use the following notations

z̄1 = x3−x∗3 (16)

z̄2 = ẋ3 (17)

w̄ = w−w∗ (18)

wherew∗ is the necessary constant input value corresponding to the steady statex∗3. Using (16)-(18)

the linearized system model can be written as a simple doubleintegrator:



˙̄z1

˙̄z2


 =




0 1

0 0







z̄1

z̄2


+




0

1


 w̄ (19)

while the zero dynamics is given by

ẋ2 = Φ(z1,z2,x2), (20)

whereΦ(0,0,x2) = φ(x2).

Since the input-output linearizing feedback is a state feedback, the state variables of the system have

to be determined from the measured output variables. We assume that the state variablesx2 andx3 are
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measurable directly, whilex1 can be determined from the functionh1 in (11) using the measured value

of d1:

x1 =
VComb

R
x2

y1

(
1−ηT

(
1−

( d1

σI σNx2

) κ−1
κ

))

4.2. Input-output linearization with load torque estimation

Until now in was assumed that the external disturbances are known exactly. The first two elements of

the disturbance vector (d1 = ptot
1 andd2 = Ttot

1 ) are assumed to be measurable and constant, so the only

difficulty is with the computation of the load torque (d3 = Mload). This problem is solved by designing

an adaptive control law that uses the estimation ofd3.

Let us denote the nominal value ofd3 by dnom
3 . Then the load torque can be rewritten as:

d3 = dnom
3 + µ

whereµ is the deviance ofd3 from its nominal value. Assume now thatd3 (and thereforeµ) is a

constant. Using the fact thatMload appears additively in (3), we can write the derivative ofyZD as

ẏZD = ẋ3 = f3(x,d
nom
3 )+ l1µ

where

l1 = − 1
2πΘ

3
50

and

f3(x,d
nom
3 ) =

1
4Π2Θn

(
νTcp

ptot
3 VComb

mCombR
ηTηmech

(
1−

( ptot
1

ptot
3 σI σN

) κ−1
κ

)

− νCcp
Ttot

1

ηC

(( ptot
3

ptot
1 σComb

) κ−1
κ −1

)
−2Π

3
50

ndnom
3

)

with the algebraic constraints (4)-(5) and the definition ofx in (8). The second time-derivative ofyZD

is:

ÿZD =
3

∑
i=1

∂ f3(x,d)+ l1µ
∂xi

(
fi(x,d)+gi(x)u

)
++

∂ f3(x,d)+ l1µ
∂x3

l1µ + l1µ̇
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where fi are the coordinate functions off defined in (11). Using thatµ is a constant, this equation

becomes

ÿZD =
3

∑
i=1

∂ f3(x,d)

∂xi

(
fi(x,d)+gi(x)u

)
+

∂ f3(x,d)

∂x3
l1µ = L2

f hZD(x)+LgL f hZD(x)u+ψ(x,dnom)µ

whereψ(x,dnom) = l1
∂ f3(x,d

nom)
∂x3

, anddnom denotes the disturbance vector with nominal disturbance

values. Applying the feedback (14)-(15) and using the notations in (16)-(18) the system model becomes

ż1 = z2 (21)

ż2 = ψ(x,dnom)µ +w (22)

Comparing this model to the model (19), the only difference is the nonlinear term in the second

differential equation. To cancel the effect of this nonlinearity, an adaptive controller is designed that

estimates the value ofµ .

Observe that the model (21)-(22) is in the following linearly parameterised input affine form:

˙̄z= f̃ (z̄)+ q̃(x,dnom)µ + g̃(z̄)w̄

where

f̃ (z̄) =




z̄2

0


 , g̃(z̄) =




0

1


 , q̃(x,dnom) =




0

ψ(x,dnom)


 .

Let us apply to our model the so-called "Adaptive Feedback Linearization Theorem" [12] which will

serve as a theoretical basis for the controller design.

Theorem 1.: Assume that for system (21)-(22)

(i) the nominal system is globally feedback linearizable,

(ii) the strict triangularity conditionsadq̃Gi ⊂ Gi , 0≤ i ≤ ñ−2, (whereGi = span{g̃,adi
f̃
g̃})

are satisfied;
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then there exists an adaptive feedback linearizing control.

It is important to note that the theorem above will be appliedto the model (21)-(22) instead of the

open loop turbine model. Its is easy to see that the feedback linearization of the model (21)-(22) is

equivalent to the input-output linearization of the model defined by (21)-(22) and the additional zero

dynamics (20). Also note that although the feedback that will be computed feedback linearizes (21)-

(22) globally, this feedback will only be applied to the turbine model inside its operating domainX .

Since the nominal system (i.e. (21)-(22) withµ = 0) is globally feedback linearizable with ¯w = 0,

the first condition is satisfied. Furthermore, the dimensionof the model (21)-(22) is̃n= 2, which means

that onlyadq̃G0 ⊂ G0 has to be checked, whereG0 = span{g̃}:

adq̃G0 =
∂ g̃
∂ z̄

q̃− ∂ q̃
∂ z̄

g̃ = −




0 0

∂ψ
∂ z̄1

∂ψ
∂ z̄2







0

1


 =




0

− ∂ψ
∂ z̄2


 ⊂ span








0

1








= G0

Since both conditions are satisfied, the adaptive feedback linearizing control can be computed in the

following way (see pages 119-120. in [12]). Define a reference model



˙̄zr1

˙̄zr2


 = Ar




z̄r1

z̄r2


+




0

1


wr , Ar =




0 1

−k1 −k2




wheres2 +k2s+k1 is a Hurwitz polynomial (i.e.Ar is a stability matrix). Denote the estimated value

of µ by µ̂ and the estimation error by∆µ :

∆µ = µ − µ̂ (23)

Define the following control input function:

w = −ψ(x,dnom)µ̂ −k1z̄1−k2z̄2 +wr (24)

wherewr is the common input variable of both the controlled system model and the reference model,
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12 B. PONGRÁCZ, P. AILER, K.M. HANGOS, G. SZEDERKÉNYI

and substitute it to the model (21)-(22):

ż1 = z2 (25)

ż2 = −k1z̄1−k2z̄2 +ψ(x,dnom)∆µ +wr (26)

Define the reference erroreas

e=




e1

e2


 =




z̄1

z̄2


−




z̄r1

z̄r2




Then the reference error dynamics reads



ė1

ė2


 = Ar




e1

e2


+




0

ψ(x,dnom)


∆µ

where the dynamics ofµ is not determined yet. LetP be the positive definite solution of the Lyapunov

equation

AT
r P+PAr = −I

where I ∈ R
2×2 is the identity matrix. Consider the following positive definite Lyapunov function

candidate:

V = eTPe+ γ∆µ2 , γ ∈ R

The time derivative ofV is given by

d
dt

V = −e2
1−e2

2 +2

[
e1 e2

]
P




0

ψ(x,dnom)


∆µ +

2
γ

∆µ
d
dt

∆µ

By choosing the following adaptation error dynamics

d
dt

∆µ = −γ
[

e1 e2

]
P




0

ψ(x,dnom)


 ,

the time derivative becomes

V̇ = −e2
1−e2

2
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which is negative definite, thereforeV is a Lyapunov function and the adaptation error asymptotically

converges to zero.

Differentiating (23) by time and using thatµ is a constant, the adaptation law can be determined

from the adaptation error dynamics:

d
dt

µ̂ = γ
[

e1 e2

]
P




0

ψ(x,dnom)


 = − d

dt
∆µ (27)

Thus, the controller designed to (21)-(22) with the controlinput (24) and adaptation law (27)

successfully performs adaptive feedback linearization and stabilisation of (21)-(22), moreover, it gives

an (asymptotically converging) estimateµ̂ of the unknown parameterµ .

4.3. Servo controller with stabilising feedback

Our aim is to build a controller that tracks the reference signaly3re f that is our prescribed value for the

rotational speed. For this purpose, an LQ-servo controlleris designed.

Observe that in the control input defined in (24), the parametersk1 andk2 have not been determined

yet. These parameters can be computed as the result of a simple LQ design to the double integrator

model (19). Additionally, by choosingwr = k1y3re f , the controlled plant will track a prescribed

piecewise constant reference signal. Since limt→∞ ∆µ = 0, the only steady state operating point of

(25)-(26) isz1 = yre f , z2 = 0 which is unique, and - because of the LQ controller - it is asymptotically

stable.

The tuning parameters of the controller are the positive definite state and input weighting matrices

(Q∈R
2×2 andR∈R

1×1, respectively), and the adaptation coefficientγ in (27). LetR= 1 be fixed. For

the sake of simplicity, theQ is restircted to be diagonal:Q = diag(Q11,Q22).

Now, three scalar parameters (Q11,Q22 andγ) are to be determined according to the following control

goals:
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14 B. PONGRÁCZ, P. AILER, K.M. HANGOS, G. SZEDERKÉNYI

1. let the settling time of the rotational speed between 1.5 sand 2s;

2. let the plant be robust against uncerainties in environmental disturbances and model parameters;

3. avoid the saturation of the actuator (the control inputu is bounded: 0≤ u≤ 0.03kg/s)

The tuning of parameters is successfully performed via simulations in Matlab/Simulink using

piecewise constant reference signals (for Goal 1) and ’worst case’ disturbances/uncertainties (for Goals

2 and 3). The resulted design parameters are:

Q =




3×105 0

0 1.5×105


 , γ = 25

It is important to note that (according to [12]) time-varying parameters are also allowed, if they can

be modelled by the following exosystem with unknown initialconditionµ0:

µ̇ = Ω(t,x)µ +ω(t,x) (28)

if ΩT +Ω is negative semidefinite, whent ≥ 0, and the exosystem is bounded input (x) bounded state

(µ). During simulations, only suchµ functions will be used that can be modeled withΩ = 0.

5. SIMULATION RESULTS

The simulations were performed using the Matlab/Simulink software environment. For the integration

of the model equations, the built-in ’ode45’ ordinary differential equation solver was applied, which is

based on a Runge-Kutta (4,5) formula [13].

In Fig. 3, the subfigures show the time function of the controlinput and of the rotational speed

- ν f uel andn respectively -, near typical values of parameters and environmental disturbances. The

load torque is set to its nominal value:Mload = 50 Nm. The rotational speed (solid line in the second

subfigure) is started fromn = 750 1
s and tracks a piecewise constant reference signal (dashed line in
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the second subfigure). The settling time of the transient is about ts = 1.7 s. The related control input

function is depicted in the first subfigure. This simulation demonstrates that the controlled nominal

plant is asymptotically stable and tracks the reference signal with linear transients.

The operation of the adaptive controller is shown in Fig. 4. The second subfigure shows the

estimation of the load torque. The time function of the load torque (dashed line) consists of linear

and constant pieces, that are followed well by the estimatedvalue (solid line). The estimation contains

some little drops/overshoots at time instances 2,4,5.5,7 scaused by the fast changes in the load torque

function. The third subfigure shows the reference tracking for the rotational speed with the same

reference signal as in Fig. 3. This reference signal is successfully tracked, and large changes in the

load torque cause only transients of small magnitude in the rotational speed. The first subfigure shows

the related control input function. It is important to mention that the drops/overshoots in the estimation

of the load torque does not affect the rotational speed or thecontrol input significantly.

5.1. Robustness

To test the proposed control scheme under more realistic circumstances, we now relax the original

assumptions that all the model parameters and disturbances(with the exception of the load torque) are

known.

Figure 5 demonstrates the ’worst case’ behaviour of the plant against model parameter uncertainties

and environmental disturbances: This simulation shows thereference tracking when three model

parameters having a significant effect on the dynamical behaviour are uniformly set to their

maximal/minimal/nominal values together withp1 and T1. The applied minimal and maximal
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16 B. PONGRÁCZ, P. AILER, K.M. HANGOS, G. SZEDERKÉNYI

parameter and disturbance values were the following:

min VComb= 0.0053m3 , maxVComb= 0.0061m3

min Θ = 0.0003kgm2 , maxΘ = 0.0005kgm2

min ηcomb= 0.74768 , maxηcomb= 0.82048

min ptot
1 = 90000Pa , max ptot

1 = 110000Pa

min Ttot
1 = 268.15K , maxTtot

1 = 303.15K

min Mload = 0Nm , maxMload = 150Nm

The load torque (second subfigure) - was simultaneously set to its minimal and maximal value (0Nm

and 150Nm, respectively).

The prescribed rotational speed trajectory (dashdot line in the third subfigure) differs from the former

ones in order to show not just the transient, but also the steady state behaviour (between 3s and 6.5 s)

of the plant in a more realistic environment.

The trajectories of the rotational speed corresponding to the maximal/ minimal/ nominal values

of uncertain model parameters are denoted by solid/dashed/dotted lines, respectively in the third

subfigure. The same line styles are used for the related control input functions in the first subfigure.

The effect of model parameter uncertainties can be observedin the beginning of the time function

of the rotational speed, showing that the LQ-servo controller successfully suppresses their influence:

the rotational speed trajectories overlap (third subfigure), the only slight difference is between the

related control input functions (first subfigure). Althoughthe changes of the load torque (as external

disturbance) are non-smooth with the possible largest magnitude, they cause only tiny drops/overshoots

in the time function of the rotational speed, which converges back to the prescribed reference value in

a very short time.
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It is also visible that the control input is far from saturation since it is between 5× 10−3 kg
s and

17×10−3 kg
s , while the saturation bounds are 0kg

s and 30×10−3 kg
s .

Another case study is performed and illustrated in Fig. 6 in order to show the effect of environmental

disturbances not just on reference tracking, but also on theadaptive estimation of the load torque. Four

different simulations are reported here: with minimalptot
1 andTtot

1 values (denoted by dotted line),

with minimal ptot
1 and maximalTtot

1 , and with maximalptot
1 and minimalTtot

1 values (both denoted

by dashed lines), and with maximalptot
1 andTtot

1 values (denoted by solid line). The only significant

difference is between the control input functions (first subfigure).

The time-function of the load torque consists of linear and constant pieces (dash-dot line in the

second subfigure. Large drops/overshoots in the estimationof the load torque only occur between 1s

and 8s, caused by the quick changes in the load torque. It is also shown that there is no significant

difference between the estimations of the load torque belonging to different extrema ofptot
1 andTtot

1

(these four curves overlap).

The reference signal for the rotational speed (dash-dot line in the third subfigure) is a staircase-like

piecewise constant function which is successfully tracked. The little drops/overshoots between 1sand

8 s are caused by the sudden changes of the highest magnitude in the time function of the load torque.

The time functions of the rotational speed belonging to different extrema ofptot
1 andTtot

1 overlap during

the whole simulation. Note that the control input is far fromsaturation just like in the former simulation

studies.

6. CONCLUSIONS

In this paper, a nonlinear model of a low-power gas turbine has been built from first engineering

principles which is suitable for control purposes. Becauseof the algebraic complexity of the
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one-dimensional zero dynamics model of the turbine with therotational speed held constant, the

stability neighbourhood of its operating points were estimated with phase diagrams and found to be

asymptotically stable in all examined cases. An adaptive input-output linearizing and LQ-servo control

loop has been built to track a given piecewise constant reference signal for the rotational speed. The

adaptive control scheme includes the estimation of the loadtorque which is an important time-varying

parameter in the system. Simulations showed that the controlled plant fulfills the required performance

criteria, and the reference tracking is sufficiently robustagainst both environmental disturbances and

model parameter uncertainties. Moreover, the result of thetorque estimation is accurate and well usable

even when the environmental parameters change in the examined range.
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NOMENCLATURE OF THE TURBINE MODEL

Variables/Constants Subscripts

A area [m2] 0 inlet duct inlet

E mechanical energy[J] 1 compressor inlet

M torque [Nm] 2 compressor outlet

Qf lower thermal value of fuel[J/kg] 3 turbine inlet

R specific gas constant[J/(kgK)] 4 turbine outlet

T temperature [K] C refers to compressor

U internal energy [J] Comb refers to combustion chamber

V volume [m3] comb refers to combustion

a1,a2 coefficients ofq1 [s] f uel refers to fuel

a3,a4 coefficients ofq1 [−] I refers to inlet duct

bi , i = 1, ..,4 coefficients ofq3 [−] load load

c specific heat [J/(kg K)] mech mechanical

m mass [kg] N refers to gas deflector

n rotational speed[1/s] p refers to constant pressure

p pressure [Pa] scha f t refers to schaft

t time [s] T refers to turbine

β specific par. of air & gas[
√

Ks/m] v refers to constant volume

η efficiency [−]

θ inertial moment [kg m2] Superscripts

κ adiabatic exponent[−] tot refers to a total quantity

ν mass flowrate [kg/s]

σ pressure loss coefficient[−]

τ turbine velocity coefficient[
√

Ks]
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FIGURES

Comp-

ressor


Combustion

chamber


Turbine


1
0
 2
 3
 4
 0


Inlet

duct


M
load


Gas-

deflector


Figure 1. The main parts of the gas turbine
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Figure 2. Phase diagram for the system with four constant rotational speed values
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Figure 3. Reference signal tracking for the rotational speed
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Figure 4. Estimation of the load torque
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Figure 5. Robustness of the proposed control scheme I.(curves overlap in subfigures 2 and 3)
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Figure 6. Robustness of the proposed control scheme II. (curves overlap in subfigures 2 and 3)
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TABLES

Table I. State, input, output and disturbance variables (see the Nomenclature for further details)

Notation Variable name/Units Notation Variable name/Units

mComb mass in combustion chamber[kg] ptot
1 compressor inlet total pressure[Pa]

ptot
3 turbine total inlet pressure[Pa] Ttot

1 compressor inlet total temperature[K]

n rotational speed[1/s] Mload load torque [Nm]

ν f uel mass flowrate of fuel[kg/s] Ttot
4 turbine outlet total temperature[K]
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APPENDIX

Table II. Constants of the simplified model of the DEUTZ T216 type turbine

Not. Value Not. Value

R 287J/(kg K) β 0.0404184
√

Ks/m

cp 1004.5 J/(kg K) cv 717.5 J/(kg K)

κ 1.4 τ 0.028071
√

Ks

Qf 42.8 MJ/kg T0 288.15K

A1 0.0058687m2 A3 0.0117056m2

σN 0.96687 σI 0.98879

σComb 0.93739

ηC 0.67585 ηT 0.85677

ηcomb 0.79161 ηmech 0.9801

Θ 0.0004kg m2 VComb 0.005675m3

a1 0.00035319s a2 0.0011097s

a3 −0.4611 a4 0.16635

b1 −0.033728 b2 0.004458

b3 0.048847 b4 0.15542
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