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Abstract

In this paper an algorithm is proposed for the retrieval of a wide

class of invariants in quasi-polynomial systems. The invariance prop-

erties of the algorithm under different transformations are discussed.

The application of the algorithm is illustrated on physical and numer-

ical examples. The algorithm has been implemented in the MATLAB

computing environment.

PACS codes: 05.45.-a, 02.30.Ik, 89.20.Ff

Keywords: Quasi-polynomial systems, first integrals

1 Introduction

Finding constants of motion has been an important and intensively studied

area of the analysis of dynamical systems for a long time. If the given dy-

namical system is not integrable, then its first integrals (if they exist) give us

very useful information about the properties of the solutions and about possi-

bly physically meaningful conserved quantities. Several different approaches

have been proposed in the literature for the determination of invariants un-

der various conditions (see e.g. [3, 15, 19]). Furthermore, first integrals

play a great role in modern systems and control theory e.g. in the field of

canonical representations, controllability and observability analysis [14] and

stabilization of nonlinear systems [7, 16].

The class of quasi-polynomial (QP) systems has gained a significant in-

terest in the modelling of nonlinear dynamical systems since the majority of

smooth nonlinear systems occurring in practice can be algorithmically trans-

formed to QP form [4, 12, 13]. Recent research indicates that QP system-

representation can be used as a very useful tool in nonlinear systems and

control theory [17, 20, 21], too.

The theoretical background of the existence of quasi-polynomial invari-

ants is well-founded. In [8] algebraic tools are applied to find semi-invariants

and invariants in quasi-polynomial systems. In [9] it is shown that the exis-

tence of polynomial-type semi-invariants in the corresponding Lotka-Volterra

systems is a necessary condition for the existence of quasi-polynomial invari-
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ants. A general method is given in the same paper for the symbolical check-

ing of this necessary condition with numerous valuable examples. Moreover,

a computer-algebraic software package called QPSI has been implemented

for the determination of quasi-polynomial invariants and the corresponding

model parameter relations [10].

The purpose of this paper is to propose a numerically effective algorithm

for the retrieval of a frequent class of quasi-polynomial invariants. The main

differences between the approach of QPSI and our method are the follow-

ing. Firstly, the classes of invariants that can be found by QPSI and our

algorithm are different. Our method is able to retrieve only those invari-

ants that can be written as an explicit function of a power of a differential

variable. This is a narrower class of first integrals than QPSI can handle,

but this restriction is not so severe in practice (see section 2.2). Secondly,

our method does not use the Lotka-Volterra representation of QP systems,

but it searches for invariants directly in the original QP system model. Ad-

ditionally, our algorithm is not based on finding semi-invariants. Thirdly,

although our algorithm itself can handle the model parameters symbolically,

the implementation has been done in a numerical computational environment

(MATLAB) while QPSI works in a symbolic software environment (Maple).

It follows from the above mentioned differences that our algorithm works

effectively even in those cases when the number of monomials is high (see

the examples in section 5).

This paper is organized as follows. Section 2 contains the basic notions

that are needed to derive the main results. The main contribution of the

paper can be found in section 3 where the algorithm for the retrieval of

invariants is described. In section 4 the invariance properties of this algorithm

are discussed. Section 5 contains four physical and numerical examples for

the illustration of the proposed algorithm.
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2 Basic notions

2.1 Quasi-polynomial systems

Let us denote the element of an arbitrary matrix W with row index i and

column index j by Wi,j . Furthermore, let the i-th row and j-th column of W

denoted by Wi,· and W·,j respectively. Quasi-polynomial systems are systems

of ODEs. An (n+1) dimensional QP-ODE system can be represented in the

following general form:

ẋi = xi

(
λi +

m−1∑

j=1

Āi,jUj

)
, Uj =

n+1∏

k=1

x
B̄j,k

k , i = 1, . . . , n + 1 (1)

where Ā ∈ R
(n+1)×(m−1), B̄ ∈ R

(m−1)×(n+1), λi ∈ R, i = 1, . . . , n + 1. Fur-

thermore, λ = [λ1 . . . λn+1]
T . The product terms Uj , j = 1, . . . , m − 1 are

called the quasi-monomials (or monomials) of the system. Without the loss

of generality we can assume that m − 1 ≥ n + 1, and that the matrices Ā

and B̄ are of full rank i.e. Rank(Ā) = Rank(B̄) = n + 1 [13].

If λi 6= 0 for some i, then it is useful to introduce a so-called unit monomial

Um =
∏n+1

k=1 x0
k = 1. This way, the general equations (1) can be written in a

homogeneous form (see e.g. [5] or [11]) as

ẋi = xi

(
m∑

j=1

Ai,jUj

)
, Uj =

n+1∏

k=1

x
Bj,k

k , i = 1, . . . , n + 1 (2)

where the matrices A ∈ R
(n+1)×m and B ∈ R

m×(n+1) are the following:

Ai,j = Āi,j, i = 1, . . . , n + 1; j = 1, . . . , m − 1

Ai,m = λi, i = 1, . . . , n + 1

and

Bi,j = B̄i,j, i = 1, . . . , m − 1; j = 1, . . . , n + 1

Bm,j = 0, j = 1, . . . , n + 1

i.e. λ is inserted as a column vector after the last column of Ā, and a zero

row vector is inserted after the last row of B̄. The facts that Ā and B̄ contain
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n + 1 linearly independent rows and columns, respectively, and the row and

column ranks of a matrix are equal, imply that the rank of both A and B

remains n + 1. Then, it follows from the relation n + 1 < m that A and B

are also of full rank, which is a necessary condition for the applicability of

the proposed algorithm.

2.2 The examined class of invariants

A function I : R
n+1 7→ R is called an invariant of (2) if

d

dt
I =

∂I

∂x
· ẋ = 0. (3)

We consider quasi-polynomial invariants in (2) that can be written in the

following special form:

I = F (x) − x
1

β

i , β ∈ R (4)

where

F (x) =

p∑

k=1

ck

n+1∏

j=1,j 6=i

x
αkj

j , ck, αkj ∈ R (5)

It’s clear that (4) can be rewritten as

x
1

β

i = F (x) + c0, c0 ∈ R (6)

This is a narrower class of invariants than the one examined in [8] since it

contains those first integrals from where at least one of the variables can be

expressed explicitly. However, many types of first integrals (e.g. conserved

mechanical, thermodynamical or electrical energy) in physical system models

belong to this class.

3 The algorithm for retrieving invariants

In the following, an algorithm will be presented which is capable to retrieve

single invariants described in section 2.2. With a slight modification, another

algorithm is given which is able to retrieve multiple first integrals from a

QP-ODE model. Then the MATLAB implementation and computational

properties of these algorithms are discussed.

5



3.1 The underlying principle of the algorithm

Consider a set of (n + 1) QP differential equations in the homogeneous form

of (2). Let us assume without restriction of generality that i = n + 1 in (6)

(because the QP form of the equations is preserved under permutation of the

differential variables) i.e. the following algebraic dependence is present in (2)

x
1

β

n+1 = c0 +

L∑

ℓ=1

cℓVℓ (7)

where β, cℓ ∈ R, ℓ = 0, . . . , L, β 6= 0, and

Vℓ =

n∏

k=1

xαℓk

k , αℓk ∈ R, ℓ = 1, . . . , L, k = 1, . . . , n (8)

It is clear that (7) is equivalent to the existence of a first integral of the form

(4)-(5).

Taking the time derivative of (7) we obtain

ẋn+1 = β

(
c0 +

L∑

ℓ=1

cℓVℓ

)β−1

·
L∑

ℓ=1

cℓV̇ℓ (9)

Using (7) and the fact that the monomials Vℓ, ℓ = 1, . . . , L do not depend on

xn+1 we can further write

ẋn+1 = βx
β−1

β

n+1

L∑

ℓ=1

cℓ ·

n∑

i=1

∂Vℓ

∂xi

ẋi (10)

Finally, we can rewrite (10) to the standard QP form as

ẋn+1 = xn+1

(
L∑

ℓ=1

n∑

i=1

β · cℓ · αℓi · Vℓ · x
− 1

β

n+1

m∑

j=1

Ai,jUj

)
(11)

It is easy to see that the monomials in (11) (denoted by Rℓj) are the

following

Rℓj = Vℓ · Uj · x
− 1

β

n+1 = x
αℓ1+Bj1

1 · x
αℓ2+Bj2

2 · · · · · xαℓn+Bjn
n · x

− 1

β

n+1 (12)

j = 1, . . . , m, ℓ = 1, . . . , L (13)
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while the coefficients of the monomials are

γℓj =

n∑

i=1

βcℓαℓiAi,j (14)

i = 1, . . . , n, j = 1, . . . , m, ℓ = 1, . . . , L (15)

where the subscript i refers to that the partial differentiation in (10) has been

performed by xi.

Now, the aim of our algorithm is to determine β, the coefficients cℓ and

the exponents αℓi, ℓ = 1, . . . , L, i = 1, . . . n in (7)–(8) using the special form

of the equation (11) and that of the monomials in (12).

3.2 The basic algorithm for retrieving single invariants

The input required by the algorithm consists of the matrices A and B of the

QP model in its homogeneous form defined in (2).

The operational condition of the algorithm is that, consistently to our

preliminary assumptions, matrices A and B are of full rank.

Without the loss of generality we can assume that the explicit variable of

the possible first integral is the last differential variable xn+1. By a simple

permutation of variables, each variable can be checked whether it is the

explicit variable of a first integral.

1. Determination of the monomial candidates

To find a first integral in the form (7), one has to use the relationship

(12) defined between the monomials Uj , j = 1, . . . , m of the original

differential equations and the monomials Rℓj, ℓ = 1, . . . , L, j = 1, . . . , m

of the ODE for the algebraically dependent variable xn+1.

The first step is dedicated to collect these two groups of monomials,

and then to determine the monomial candidates of the first integral

using (12). Since the exponents of the j-th monomial of a QP-ODE

are given as the j-th row vector of matrix B, the first thing to do is

to gather the exponents of those monomials that occur in the first n

differential equations and construct the matrix B(U) from them. Let
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us denote the matrix created form A by deleting its (n + 1)-th row by

A∗. Now construct B(U) in the following way:

Let B(U) = B

Mark those rows B
(U)
j,· , j = 1, . . . , m , for which A∗

·,j = 0

Delete the marked rows from B(U)

Similarly, collect the row vectors containing the exponents of monomi-

als of the ODE for xn+1 to B(R):

Let B(R) = B

Mark those rows B
(R)
j,· , j = 1, . . . , m , for that A(n+1),j = 0

Delete the marked rows from B(R)

As a result, B(U) ∈ R
mU×(n+1), B(R) ∈ R

mR×(n+1), where mU , mR

denote the number of monomials in the first n, and in the (n + 1)-th

differential equations, respectively. Note that there may be monomials

(as row vectors) that appear in both B(U) and B(R).

As (12) shows, the exponents of the monomials Uj , j = 1, . . . , m in the

original differential equations and of the monomials Vℓ, ℓ = 1, . . . , L

in the algebraic equation are added up in the resulted monomials Rℓj.

This allows us to determine Vℓ by simply dividing Rℓj by Uj for some j.

This operation is equivalent to subtracting each exponent row vector

corresponding to the monomials Uj (stored as row vectors of B(U)) from

the row vectors determining Rℓj (stored as row vectors of B(R)).

Therefore the next step is that the algorithm determines the exponent

row vectors by subtracting each row of B(U) from each row of B(R), and

construct the matrix B(V ) made of the resulted row vectors:

B(V ) ∈ R
(mU ·mR)×(n+1) : B

(V )
k,· = B

(R)
j,· − B

(U)
i,· , k = (j − 1) × mU + i

Finally, make sure that each monomial candidate is coded only once in

B(V ):

Delete repeated rows from B(V ) so that all rows are different

As a result, B(V ) ∈ R
mV ×(n+1) contains all the monomial candidates

of the first integral, where mV ≤ mU · mR denotes the number of
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these monomial candidates. However, taking into account all possible

monomial candidates may cause a huge redundancy but this guarantees

that the exponent vectors of all monomials of the first integral are

contained in B(V ).

2. Determination of β

To have a QP-type first integral from which xn+1 can be given explicitly,

the exponents of xn+1 in all of its monomials have to be identical. This

step classifies the exponent row vectors of the monomial candidates of

the first integral by their last element.

Compute how many different last elements of the row vectors of B(V )

have and denote this number by S. Now make S different sets Bk, k =

1, . . . , S and collect all the row vectors of B(V ) having identical last ele-

ments into the same sets, while row vectors with different last elements

into different sets. The result is a system of sets, where the elements

of each set are exponent row vectors belonging to the same β.

Now set the value of k to k = 1.

3. Determination of the coefficients

The last step to be performed is to search for a first integral with

monomial candidates belonging to the same Bk. Since the exponents of

the monomial candidates are already given, only their coefficients have

to be determined. If these coefficients exist, the first integral exists for

the current β, and it is completely determined by the algorithm.

Denote the number of elements of Bk by L, the candidate for being the

number of quasi-monomials in (7). Then the first integral candidate is

given by the monomials described by the elements of Bk with unknown

coefficients c1, . . . , cL. Perform time-differentiation by simply applying

(11) to it, with monomials and coefficients described in (12) and (14),

respectively. Then match the monomials of this time-derivative and

the monomials of the (n + 1)-th differential equation, and determine

the coefficients γℓj , ℓ = 1, . . . , L, j = 1 . . . , m therefrom. Then try to

solve the linear set of equations (14) for c1, . . . , cL.

Three cases are possible:
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(a) If (14) cannot be solved and k < S, increase k by one and jump

to Step 3.

(b) If (14) cannot be solved and k = S the algorithm stops without

finding a first integral.

(c) If (14) can be solved, then the first integral is successfully deter-

mined and the algorithm stops.

This algorithm is capable of finding QP type first integrals which are

explicit in (at least) one of their variables, moreover it operates without any

heuristic steps. The properties of the algorithm are thoroughly discussed in

section 4.

3.3 Retrieval of multiple first integrals

The multiple retrieval algorithm comes from the basic algorithm by two sim-

ple modifications:

1. The first modification is on Step 3.(c), where the algorithm does not

stop but stores the first integral found, increases s by one, and jumps

back to Step 3.

2. Similarly to the basic algorithm, the multiple retrieval algorithm can

find first integrals which are explicit in xn+1. The second modification

is the application of an outer loop performed (n + 1) times applying a

variable index swapping in each steps: in the k-th swapping

xnew
k = xn+1, xnew

n+1 = xk, xnew
i = xi, i = 1, . . . , n, i 6= k

where the superscript ’new’ refers to the variables with swapped in-

dices. With this modification, the multiple retrieval algorithm can find

first integrals which are explicit in at least one of their variables.

Care has to be taken to first integrals that are explicit in more than one of

their variables, because the multiple retrieval algorithm finds these algebraic

dependencies several times. Thus, after running this algorithm, the linear

independence of invariants found has to be checked.
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3.4 Implementation and computational properties of the

algorithms

The basic and multiple retrieval algorithms are implemented in the MATLAB

computation environment [1]. The functions

[TEXTFORM,C,EXPONENTS,MESSAGE]=ALG_BASIC(A,B)

[TEXTFORM,WHICHONE,C,EXPONENTS,MESSAGE]=ALG_MULTIPLE(A,B)

call the basic and multiple retrieval algorithms, respectively. The inputs A

and B are the matrices of the QP-ODE model in its homogeneous form (2),

while the output TEXTFORM gives the explicit form of invariant(s) found in a

readable (text) format, while the outputs WHICHONE, C and EXPONENTS give

the index of the explicit variable, the coefficients and the exponents of the

first integral, respectively.

Both algorithms are of polynomial complexity. Recall that the number

of the sets Bk was denoted by S in step 3 of section 3.2. Furthermore, let

u denote the maximal element size of Bk, k = 1, . . . , S. The retrieval of a

single invariant with the basic algorithm is of order

Θ
(
S × u3 × m3

)

where m denotes the number of monomials of the QP-ODE. The retrieval of

multiple first integrals with the multiple retrieval algorithm is of order

Θ
(
S × u3 × m3 × n

)

A rough upper estimation of these orders are Θ
(
m7
)

and Θ
(
m7×n

)
, respec-

tively, where m is the number of monomials, while n + 1 is the number of

equations in (2).

Although MATLAB gives numerical solutions, there is a possibility to

find first integrals even in parametric form (see Example 2 - Rikitake sys-

tem) because for solving sets of linear equations, the basic and the multiple

retrieval algorithms use the ’linsolve’ command of the built-in Maple kernel

of MATLAB Symbolic Math Toolbox utilizing its efficiency [2].

11



4 Algebraic properties of the algorithm

Being state-space models, QP-ODEs are inherently not unique in the sense

that there are different QP-ODE models describing the same physical sys-

tem: there are coordinates transformations of the variables that transform

the model to an equivalent QP-ODE. Moreover there might be another trans-

formations that give a different, but equivalent QP-ODE model.

This section concerns with the invariance of the retrieval process un-

der two of these transformations performed on the QP-ODE model: under

(nonlinear) quasi-monomial (QM) state transformations, and under algebraic

equivalence transformations.

4.1 The effect of quasi-monomial transformations

Consider the general form of invertible quasi-monomial transformations (QMT)

[13]:

x̂i =
n+1∏

j=1

x
Ci,j

i , i = 1, . . . , n + 1

where C ∈ R
(n+1)×(n+1) is a invertible quadratic matrix, xi, i = 1, . . . , n + 1

denotes the original and x̂i, i = 1, . . . , n+1 the transformed coordinates. The

inverse of this transformation is also a QMT characterized by C−1 [6]. It is

shown in [9] that a QP invariant of the form

I =

N∑

i=1

Fi

n∏

k=1

x
Ei,k

k (16)

has the following form in the transformed coordinates:

I =

N∑

i=1

Fi

n∏

k=1

x̂
[EC−1]i,k
k (17)

which means that (17) has the same quasi-monomial terms as (16). It is easy

to see from (4) and (17) that the explicitness of x
1

β

i is generally not preserved

under QMTs. Assuming that the index of the explicit variable is i = n + 1

in (4), it is clear that a QMT with the following special C matrix preserves
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xn+1 as the explicit variable:

C =

[
C11 C12

0 C22

]

where C11 ∈ R
n×n, C12 ∈ R

n×1, C22 ∈ R, 0 ∈ R
1×n.

It can be seen from the description in section 3, that the first step of the

algorithm does not use the special explicit structure of the invariants but the

second and third steps are completely dependent on this property. However,

this dependence can be relaxed a bit on the price of more computation time

in the following way. In Step 2, all the exponent row vectors b(V ) of the

monomial candidates are put to the same set B1 irrespectively of their last

elements. Then the first integral candidate can be written in its implicit form

with the monomials described by the exponent rows vectors of B1, and with

unknown coefficients of the monomials. These coefficients can be determined

by the time-differentiation of this first integral candidate.

This modification yields to first integrals that may not be given explic-

itly, only after an appropriate QM state transformation. This extension also

generates a significant redundance of monomial candidates possibly caus-

ing numerical problems in Step 3 during the determination of the monoms’

coefficients of the first integral.

4.2 The effect of algebraic equivalence transformations

It is important to remark that there are cases when the sum of the coefficients

in (11) is such that too much information is lost (i.e. too many terms are

cancelled) to be able to obtain candidates for the parameters of (7)-(8) by the

proposed algorithm. Of course, this problem can be caused by an unlucky

equivalent algebraic transformation of the right hand side of the differential

equations, as we will see at the end of Example 1 in section 5. However (as

it is also shown in Example 1), there is a good hope to finally find the first

integral if it is explicit in at least one more variable.
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5 Examples

In this section, the operation of the basic algorithm is illustrated on the

model of a fed-batch fermentation process, and on the model of a simple

electric circuit. The multiple retrieval algorithm is also demonstrated on a

Rikitake system and on a computational example. Most of these examples

are implemented in MATLAB environment.

5.1 Example 1: A fed-batch fermentation process

In this example we use the model of an isotherm fed-batch fermentation

process. Fermenters are used for producing different kinds of biomass (e.g.

baker’s yeast, antibiotics, etc.) in various branches of industry.

A fed-batch fermentation process with a bi-linear reaction characteristics

[18] is used as a case study which is described by the following physical model:

ẋ1 = Krx1x2 −
x1

x3
F (18)

ẋ2 = −
1

Y
Krx1x2 +

SF − x2

x3
F (19)

ẋ3 = F (20)

The variables of the model and their units in square brackets are

x1 biomass concentration [g/l]

x2 substrate concentration [g/l]

x3 volume [l]

F feed flow rate [l/h].
The constant parameters and their typical values are the following

Y = 0.5 yield coefficient

Kr = 1 kinetic parameter [g/l]

SF = 10 influent substrate concentration [g/l]
The feed flow-rate F is the physical control input variable and will be

treated as a constant parameter during the retrieval process. The model

(18-20) can be given as a QP-ODE in its homogeneous form (2):

ẋ1 = x1

(
Krx2 − Fx−1

3

)
(21)

ẋ2 = x2

(
−

1

Y
Krx1 + SF Fx−1

2 x−1
3 − Fx−1

3

)
(22)

ẋ3 = x3

(
Fx−1

3

)
(23)
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The A and B matrices of the QP model are:

A =




Kr −F 0 0

0 −F −Kr

Y
SFF

0 F 0 0



 , B =





0 1 0

0 0 −1

1 0 0

0 −1 −1





Apply the basic algorithm to search for a first integral. First set x1 the

variable for which the first integral is searched for. It needs to put x1 to the

3-rd place, which can be easily done with the following change of coordinates:

xnew
1 = x3, xnew

2 = x2, xnew
3 = x1.

Now apply the basic algorithm:

Step 1. The system matrices in the new coordinates are:

Anew =




0 F 0 0

0 −F −Kr

Y
SFF

Kr −F 0 0



 , Bnew =





0 1 0

−1 0 0

0 0 1

−1 −1 0





The matrices B(U) and B(R) containing the exponent row vectors of the mono-

mials respectively in the first two, and in the third differential equations are:

B(U) =




−1 0 0

0 0 1

−1 −1 0



 , B(R) =

[
0 1 0

−1 0 0

]

Now subtract each row of B(U) from each row of B(R):

b
(V )
1 =

[
0 1 0

]
−

[
−1 0 0

]
=

[
1 1 0

]

b
(V )
2 =

[
0 1 0

]
−

[
0 0 1

]
=

[
0 1 −1

]

b
(V )
3 =

[
0 1 0

]
−

[
−1 −1 0

]
=

[
1 2 0

]

b
(V )
4 =

[
−1 0 0

]
−

[
−1 0 0

]
=

[
0 0 0

]

b
(V )
5 =

[
−1 0 0

]
−

[
0 0 1

]
=

[
−1 0 −1

]

b
(V )
6 =

[
−1 0 0

]
−

[
−1 −1 0

]
=

[
0 1 0

]

Since the last elements of these row vectors should give − 1
β
, these elements

must be non-zero, meaning that there are only two feasible exponent vectors:

b
(V )
2 and b

(V )
5 .
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Step 2. Since the last components of both exponent vectors are identical,

(both vectors belong to the same β = 1) there is only one set B1 containing

these two exponent vectors: B1 = {b2, b5}.

Step 3. The parametric first integral is

xnew
3 = c1(x

new
1 )−1 + c2x

new
2 + c0 (24)

Its time-derivative does not provide solution for c1, c2 because of the phe-

nomena described in section 4.2. However, this can be written in the original

coordinates as

x1 = c1x
−1
3 + c2x2 + c0 (25)

By arranging it to an implicit form:

x3

(
x1 − c2x2 − c0

)
= c1 (26)

and taking its time-derivative gives an equation that from the coefficients c1

and c3 can be uniquely determined, and therefore the implicit form of the

first integral is retrieved:

x3

( 1

Y
x1 − x2 + SF

)
=

SF

c0

(27)

where c0 comes from the initial conditions of the model.

Note that another algorithm based on the construction of Lie-algebras

has been applied to a similar fermenter model with the same structure but

slightly different reaction kinetics in [22], giving the same final result. As a

comparison, this new method provides a computationally more advantageous

way of retrieval mainly because it does not require the analytic solution of

partial differential equations which was the case in [22].

Now take a look at the four monomials U1, . . . , U4 of the model:

U1 = x2, U2 = x−1
3 , U3 = x1, U4 = x−1

2 x−1
3 (28)

To see the connection with [8], the monomials of the first integral (27) can

be written as a product of a term which is a quasi-monomial function of the

monomials, and another term which is a polynomial function of the mono-

mials:

U−2
2

( 1

Y
U2U3 − U1U2 + SF U2

)
=

SF

c0
(29)
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Observe that the polynomial term is of second order.

This example shows the effect of an algebraic equivalence transformation

described in section 4.2. If one chooses x3 as the explicit variable of the first

integral, then the retrieval process is not successful. To understand the exact

problem, let us express x3 form the first integral (27):

x3 =
( c0

SF

( 1

Y
x1 − x2 + SF

))−1

(30)

then take its time-derivative:

ẋ3 = −x2
3

(
−

1

Y
ẋ1 − ẋ2

)
= x3

( c0F

SFY
x1 + c0F −

c0F

SF

x2

)
(31)

and then compare this to (23). These two differential equations are equiva-

lent, since
c0F

SF Y
x1 + c0F −

c0F

SF

x2 = Fx−1
3 (32)

according to (27). This is the case when an algebraic equivalence transfor-

mation defined by (32) is applied to the third model equation (31) resulting

(23).

5.2 Example 2: A Rikitake system

Consider a Rikitake system [8] with α = µ = 0:

ẋ1 = x1(x
−1
1 x2x3 + βx−1

1 x2) (33)

ẋ2 = x2(x1x
−1
2 x3 − βx1x

−1
2 ) (34)

ẋ3 = x3(x1x2x
−1
3 ) (35)

The application of the basic algorithm gives the following first integral:

x2
2 = c1x

2
1 − 2β(1 + c1)x3 + (1 − c1)x

2
3 + c0 , c1 ∈ R (36)

where the constant c0 comes from the initial conditions of the model while

c1 is an arbitrary real parameter. This first integral is equivalent with two

non-parametric first integrals:

I1 = x2
3 + 2βx3 − x2

1

I2 = x2
3 − 2βx3 − x2

2

17



We note that the first integral found in [8] is the linear combination I1 − I2.

The MATLAB implementation of this example uses a constant β value

and applies the multiple retrieval algorithm to show that the first integral

comes back with all variables chosen as the explicit one.

5.3 Example 3: An electric circuit

Consider the simple electric circuit in Figure 1. consisting of two inductors

and a capacitor. Assume that the inductors have linear characteristics with

L
2

Q
C
=f(U
C
)


U
C


i
L2
i
L1


L
1


i
C


Figure 1: The LC circuit

inductances L1 and L2. Denote the currents of the inductors by iL1 and iL2

respectively. Let the capacitor have a nonlinear QM-type characteristic:

QC = f(UC)

where QC is the charge and UC is the voltage of the capacitor and f is a QM-

type function of UC . The partial derivative of f is also a QM-type function

of UC :
∂f

∂UC

= kUα
C , α ∈ N, k ∈ R

Denote the current of the capacitor by iC . The dependence

iC =
dQC

dt
=

∂QC

∂UC

·
dUC

dt

gives
dUC

dt
=

1
∂f

∂UC

· iC
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Using Kirchhoff’s laws and choosing the variables x1 = iL1 , x2 = iL2 and

x3 = UC gives a three dimensional QP-ODE model:

ẋ1 =
1

L1
x3 = x1

( 1

L1
x−1

1 x3

)
(37)

ẋ2 =
1

L2
x3 = x2

( 1

L2
x−1

2 x3

)
(38)

ẋ3 =
1

k
x−α

3 (−x1 − x2) = x3

(
−

1

k
x1x

−α−1
3 −

1

k
x2x

−α−1
3

)
(39)

The basic algorithm gives the following algebraic dependence:

xα+2
3 =

((α + 2)(L2
1 − L1L2)

2kL2
+

L2
1

L2
2

P
)
x2

1 −
(2L1

L2
P +

(α + 2)L1

k

)
x1x2 + Px2

2

where P ∈ R is an arbitrary parameter. This first integral is equivalent to

two non-parametric ones:

xα+2
3 =

(α + 2)(L2
1 − L1L2)

2kL2

x2
1 −

(α + 2)L1

k
x1x2

xα+2
3 = −

α + 2

k

(L1

2
x2

1 +
L2

2
x2

2

)

If the capacitor has a linear characteristics (i.e. α = 0), the latter first

integral describes the conservation of the electrical energy since it can be

re-written in the form
1

2
L1x

2
1 +

1

2
L2x

2
2 +

1

2
kx2

3 = const.

with k being the capacitance.

The MATLAB implementation of this example uses constant values of

L1, L2, k and α, and gives the invariant in its parametric form.

5.4 Example 4: A computational example with multiple

first integrals

Consider the following QP-ODE system:

ẋ1 = x1(x2) (40)

ẋ2 = x2(x
2
1) (41)

ẋ3 = x3(−21x10
1 x−7

2 x−1
3 + 24x6

1x
−5
2 x−1

3 ) (42)

ẋ4 = x4(10x10
1 x21

2 x2
3x

−1
4 + 20x12

1 x20
2 x2

3x
−1
4 − 42x20

1 x13
2 x3x

−1
4 +

+48x16
1 x15

2 x3x
−1
4 ) (43)
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The application of the multiple retrieval algorithm gives back three first

integrals:

x4 = x10
1 x20

2 x2
3 (44)

x3 = 3x8
1x

−7
2 + 4x6

1x
−6
2 (45)

x2
1 = 2x2 (46)

The MATLAB implementation of this example uses the multiple retrieval

algorithm successfully. The efficiency of the algorithm in the case of multiple

first integrals is clearly visible in this example.

6 Conclusions and further work

A numerically effective polynomial-time algorithm is proposed in this paper

for the determination of a class of first integrals in quasi-polynomial sys-

tems. The algorithm was implemented and tested in the Matlab numeric

computational software environment. The operation and the effectivity of

the algorithm is illustrated on several examples: a fed-batch fermentation

model, a model of a nonlinear electrical circuit, a Rikitake system and a

purely numerical example.

Further work will be focused on two directions. Firstly, on the reim-

plementation of the algorithm in a symbolic computer-algebra system and

secondly, on the constructive application of the algorithm in control oriented

nonlinear system analysis and feedback design.
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