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Abstract: Based on symbolic and numeric manipulations, a model simplification technique is
proposed in this paper for the linear fractional representation (LFR) and for the differential
algebraic representation introduced by Trofino and Dezuo (2013). This representation is needed
for computational Lyapunov stability analysis of uncertain rational nonlinear systems. The
structure of the parameterized rational Lyapunov function is generated from the linear fractional
representation (LFR) of the system model. The developed method is briefly compared to the
n-D order reduction technique known from the literature. The proposed model transformations
does not affect the structure of Lyapunov function candidate, preserves the well-posedness of
the LFR and guarantees that the resulting uncertainty block is at most the same dimensional
as the initial one. The applicability of the proposed method is illustrated on two examples.
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1. INTRODUCTION

Finding or at least approximating the domain of attraction
(DOA) of nonlinear dynamical systems is an important
task in model analysis and controller design/evaluation,
and numerous works have been devoted to this issue,
see, e.g. Vannelli and Vidyasagar (1985); Rozgonyi et al.
(2010); Ohta et al. (1993); Giesl and Hafstein (2012).
In the last two decades, the theory of linear matrix in-
equalities (LMI) and convex optimization alongside with
nonlinear system modeling have made a considerable
progress, which provide powerful and efficient tools to
model and solve robust control, stability and filtering
problems through LMI techniques. Ghaoui and Scorletti
(1996) used quadratic Lyapunov functions (LF) and linear
fractional transformation (LFT) to represent a rational
nonlinear system and defined convex conditions for sta-
bility analysis and state feedback design. Trofino et al.
(2013) considered uncertain rational LFs, moreover, affine
annihilators and Finsler’s lemma was used to formulate
parameter dependent LMI conditions for the stability of
uncertain rational nonlinear systems. The obtained LMIs
were solved within a bounded polytopic subset of the state
space.

Although the above mentioned optimization based tech-
niques are advantageous for DOA computation, they are
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less attractive from a computational point of view. In
general, they result in a high-dimensional optimization
model, which is difficult to solve. In order to make these
procedures numerically tractable, several dimension re-
duction techniques have been developed. Trofino et al.
(2013) showed that omitting certain irrelevant nonlinear
terms from the structure of the LF may result in a good
estimate of the DOA with less computational effort. Polcz
et al. (2017) used LFT and further automatic algebraic
simplification steps to generate a reduced set of non-
linear terms considered in the LF. Both techniques op-
erate on the differential-algebraic system representation
needed for DOA computation and introduced by Trofino
et al. (2013). At the same time, LFT provides several
dimension reduction possibilities, e.g. Marcos et al. (2005);
Hecker and Varga (2005, 2006); Hecker (2008) proposed
symbolic preprocessing and matrix conversion techniques
for low-order LFT modeling, such as Horner factoriza-
tion, continued-fraction form, enhanced tree decomposi-
tion, Morton’s method, enhanced variable splitting factor-
ization, etc. These new symbolic manipulation techniques
are implemented in the sym21fr function of Enhanced
LFR-toolbox for Matlab (Hecker et al. (2004)), henceforth
is referred to as the LFR-toolboz.

After the LFT, the obtained linear fraction representa-
tion (LFR) can be considered as a generalized state-space
model, on which further numerical order reduction tech-
niques can be applied. Lambrechts et al. (1993) proposed
a standard 1-D order reduction (1-DOR) for the LFR,
which removes the unobservable/uncontrollable eigenval-
ues from each subsystem of the LFR corresponding to each
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uncertainty block. Based on a Kalman like decomposition,
D’Andrea and Khatri (1997) proposed the n-D order re-
duction (n-DOR), which is proved to be less conservative
than 1-DOR, since it considers all uncertainty blocks at the
same time. The n-DOR is implemented in the LFR~toolbox
function minlfr. According to Magni (2006), numerical
order reduction techniques of the LFR-toolbox consider
strong input /output equivalence of the LFR models. Based
on this equivalence relation of LFRs introduced by Doyle
et al. (1996), Magni (2006) defined the notion of minimal-
ity and relative-minimality of an LFR model. An LFR is
said to be minimal if there is no equivalent representation
with a smaller uncertainty block (A). Furthermore, an
LFR is said to be relative-minimal if there is no similarity
transformation, such that some states can be eliminated
without modifying the input/output characteristics of the
LFR. It is shown by D’Andrea and Khatri (1997) that the
n-DOR leads to a relative-minimal representation.

In this paper, we consider uncertain rational nonlinear
systems in the lower LFR (Lambrechts et al. (1993)), that
is generated using the systematic symbolic manipulation
techniques contained in the function sym21fr of the LFR-
toolbox. In general, the obtained model is reducible, there-
fore, we have the possibility to apply the available order
reduction techniques. The structure of the LF candidate
is given by a set of rational uncertain terms, which are
generated from the LFR by using symbolic computations.
Nevertheless, it is stated by Varga and Looye (1999), that
“the interlaced symbolic and numeric manipulations are
hazardous since they involve many tolerance dependent
rank decisions”. Additionally, due to the “fraction of in-
tegers” symbolic representation of floating point numbers,
numerical reduction may lead to very complex symbolic
expressions in the LF. On the other hand, after a numerical
reduction, the obtained LFR may generate a reduced set
of rational functions, hence eliminating certain (maybe
important) rational terms from the structure of the LF.
As a possible resolution, we propose a symbolic model sim-
plification method, which, compared to n-DOR, generates
an LFR containing a possibly higher dimensional uncer-
tainty block, but having advantageous properties for DOA
estimate computation. And, importantly, it preserves the
structure of the LF candidate.

1.1 The studied uncertain system class

We consider nonlinear systems in the quasi linear param-
eter varying (quasi-LPV) form

x(t) = A(x(t),0)x(t), x(t)eR™ zpe X, 6D (1)
where z(t) € R™ is the state vector, x(0) = ¢ is the
initial condition, and § € R? is a vector of constant
uncertain parameters. X C R™ and D C R? are bounded
polytopes given a priori. Polytope X is the set of initial
states considered in the stability analysis. We assume that
A(z, ) is a matrix of well-defined scalar uncertain rational
functions a;;(z,d), i,j = 1,n. Secondly, we assume that
the origin 2* = 0, € X is an asymptotically stable
equilibrium point of (1) for all § € D. From now on,
the time argument of z will be suppressed. We denote the
bounded s-dimensional polytope X xD C R*® by 2, where
s := n+d. We use the vector valued variable w = (§) € Q
as a shorthand for the arguments of an arbitrary function
f depending both on z and ¢, namely f(w) := f(z,9).

Finally, let 0,, € R™, and I,, € R™*"™ denote the zero vector
and the identity matrix, respectively.

1.2 Model representation and Lyapunov functions

Similarly to Trofino et al. (2013), we propose to start from
the following differential algebraic representation of (1)
needed for stability analysis:

t = A(w)x = Az + Bn(w), m(w) € RP, (2a)
where A € R"*" B € R"*P are constant matrices, and
m(w) € RP is a vector of well-defined uncertain rational
nonlinear functions of w. Furthermore, we consider the
algebraic constraint:

0p = G(w)z + F(w)m(w), Yw € Q, (2b)
which represents the algebraic coupling between the state
variables and the nonlinear uncertain terms of the system
equation A(w)x collected in vector 7(w). G(w) € RP*™ and
F(w) € RP*P are matrices of affine functions of w. Matrix
F(w) is assumed to be non-singular for all w € .

With reference to Trofino et al. (2013), a suitable LF is
searched in the form

V(UJ) = Wg(W)PWb(w)7 ﬂb(w) = (ﬂ_(zw)) € R™=ntp (3)

where P € R™*™ is a (not necessarily positive definite)
symmetric matrix. The combined vector mp(x, ) contains
the rational terms to be considered in the LF. The neces-
sary Lyapunov conditions for local stability, namely

v(flz]]) < V(w) < wvu(llz]) VweQ, (4a)

V(w) = 0V (w)/0z A(w)x < —vg(||z|]) Yw e Q, (4Db)
are ensured using sufficient LMI conditions, where v;(-),
vy (+) and vg4(-) are continuous strictly increasing functions,
being zero in x = 0. Trofino et al. (2013) introduced further
LMI conditions to ensure that the unitary level set of the
LF is entirely inside of X for all § € D. Additionally,
a linear objective function is proposed and meant to be
minimized in order to enlarge the unitary level set as
much as possible. After the LF computation, the maximal
stability domain inside & can be characterized by the
following two regions

TJ={zeX |V5eD:V(z,0) <1}, (5)
U={reX |IeD:V(z,0) <1}, TCIL
Due to the Lyapunov conditions it is ensured that any
trajectory with an initial condition from J will not leave L.

The proposed LMI optimization problem of Trofino et al.
(2013) in equation (91) can be efficiently solved by the
available numerical tools, although, the sizes of the ob-
tained LMIs explode combinatorially as the number of
coordinates of 7m(w) € RP increase. Therefore, the di-
mension reduction of the optimization model needs to
be addressed in order that the method be adoptable on
complex and/or higher dimensional systems. At the same
time, there is a trade-off between the model’s dimension
and the conservatism of the obtained estimate, since any
new term in 7(w) may result in a better LF with a larger
stability region estimate J (see e.g. Section 5.2).

In order to reduce the dimension of w(w) appearing in (2),
Polez et al. (2017) proposed systematic algebraic simpli-
fication steps, which resulted in a significant dimension
reduction of the optimization problem. However, the pro-
posed algebraic manipulations do not preserve the non-
singularity of matrix F'(z), and it is generally not assured
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that F(z) remains a square matrix. Nevertheless, Theo-
rem 4.1 of Trofino et al. (2013), related to local stability,
requires the non-singularity of the square matrix F(w).
Furthermore, in certain cases, the proposed simplification
steps may result in an even higher dimensional model as
the initial one.

2. LINEAR FRACTIONAL TRANSFORMATION

LFT plays an important role in modeling uncertain ratio-
nal systems, and it is often used in literature, as presented
by Ghaoui and Scorletti (1996). Using the LFT any quasi-
LPV system of the form (1) can be represented as a linear
time invariant (LTI) system:

& = Ax + Bm, AeR™", B e R™*P, (6a)

y = Cx + Dm, C € RP*™, D € RP*P, (6b)
with a nonlinear input characterized by the operator A(w):
AR RPXP.(6e)
In representation (6), A, B, C, D are constant matrices,
xz € R", m, y € RP are the state, input, and output vectors,
respectively. Henceforth, (6) will be shortly denoted by
Fp(A,B,C,D;A), which is a lower LFR of matrix A(w).
Subscript p emphasizes the dimension of the uncertainty
block A(w) of the LFR.

Multiplying (6b) by A(w) from the left, and using (6¢), we
obtain an algebraic relation (2b) between z and 7 (w),

where G(w) := —A(w)C € RP*™, (7a)

F(w) :=I, — A(w)D € RP*P. (7b)

This LFR is well-posed (i.e. well-defined) since, by assump-

tion, F'(w) is non-singular for all w € . Consequently, for

each well-posed LFR, an explicit formula can be given for
the set of rational functions considered in the LF (3):
m(w) = —F(w)'G(w)z € RP. (7c)
Although, the numerical n-DOR technique preserves the
value of A(w)=A — BF(w)"!G(w), it may also remove
certain rational terms from the generated vector m(w)
of the initial LFR. On the other hand, the symbolic

calculation of F(w)~! for the numerically reduced LFR
may be difficult.

7 =7(w) = Aw)y,

In Section 3, we introduce a symbolic preprocessing step,
a decomposition of vector m,(w), then, in Section 4, we
propose a model simplification method for representation
(2), which decreases the dimension of 7(w) (if possible),
such that the structure of the initial LF (3) remains the
same.

3. CANONICAL DECOMPOSITION OF A VECTOR
OF RATIONAL FUNCTIONS

In this section, the vector valued variables z(w), 2(w), €
R™ and zo(w) € RE will be denoted as bold symbols, in
order to emphasize the distinction between them and their
(scalar valued) coordinate values z;(w), Z;(w), and 2o j(w),
where i =1,m and j = 1, K.

Let z(w) € R™, be a vector of rational functions, namely

)= (M) a@ =29 iotm

Zm (w) v;(w)

Procedure 1. Decomposition of z(w).

1: procedure DECOMPOSE(z(w) € R™)

2: v(w; k) + (K, z(w)), where k € RYX™ w € R?

3: O(w; k), ¢(w) < NumDEN (v(w; K))

4 ¢j(k), z0,j(w) <= Corrrs(0(w; k), w), where j = 1, K
T

5: zo(w) + (20,1(w) ... 20 k(w))

6: © < EquaTioNnsToMatrix(c1(K), ..., c2(K), k)

7

8:

: return 0, zy(w), ¢(w)
end procedure

where wu;(w) and v;(w) are multivariate polynomials of
wi,...,ws € R (i.e. in short w € R®) and v;(w) # 0 for
all w € 2. We aim to find the following decomposition

z(w) = © zo(w) q(w) ™, (9)

where © € R™*X is a constant coefficient matriz of z(w),
¢(w) is a monic polynomial of w (with leading coefficient
1), and zg(w) € RE is a vector, in which the coordinates
2p,j(w) are distinct monic monomials, j =1, K.

In order to perform this decomposition, first we determine
the smallest degree common monic denominator ¢(w) of
rational functions zj(w), ..., zm(w). We introduce vector
2(w) = z(w)g(w), in which the coordinates functions
are polynomials, and let zg(w) contain every distinct
monomial term, which appears in each coordinate of Z(w).
Then, for each %; there exist real values ¥;; € R such that

. K .
Zi(w) = Zj:l Vij 20,5(w), i=1,m. (10)
Finally, Z(w) can be written as:

2(w) = O zo(w), © = (19“ v

) e R™K  (11)

I oo Ok

which gives the decomposition (9) of vector z(w).

The proposed decomposition described in Procedure 1
can be efficiently produced using Matlab’s Symbolic
Math Toolbox (SMT). In order to compute ¢(w), we
introduce m number of auxiliary symbolic (indetermi-
nate) scalar variables K1, ..., Ky, collected in a row vector
k= (K1 ... km) € RYX™ The operations of Procedure 1
are explained below in the following list, where the num-
bers correspond to the line numbers of Procedure 1:

2. Evaluate the dot product of (k, z(w)) =: v(w; k). Both
k and w are vectors of symbolic variables. z(w) €
R™ is a vector of w-dependent symbolic rational
expressions. The resulting scalar valued object v(w, k)
is a rational expression of indeterminates w and k.

3. Reduce v(w;k) into an irreducible fractional form,
then determine the resulting numerator o(w;k) :=
(K, 2(w)) and denominator g(w). These operations
can be automated using the SMT function numden.

4. Collect and extract the multipliers of the common
monomial terms (2 ;j(w)) of the numerator o(w; k)
with respect to variables wy, ..., ws:

Dlwin) = Sy R 2i(w) = 250 ¢5(8) 20,5(w), (12)
where the multipliers ¢;(k) = Y-, ki¥;; are linear
functions of indeterminates k1, ..., Ky, furthermore,
20,j(w) is the corresponding monomial term. These
pairs can be extracted using SMT function coeffs.

5. Let the coordinates of zg(w) be the resulting mono-

mials 2o j(w) in the same order as it was returned by
SMT functions coeffs.
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6. Using SMT function equationsToMatrix, determine
the coefficients 11, ..., ¥m; for each multiplier ¢;(k)
returned by SMT functions coeffs, then construct
the coefficient matrix © € R™*X as presented in (11).

7. This procedure will return matrix O, vector zo(w)
with distinct monic monomial coordinates functions
and the denominator ¢(w), which together will give
the desired decomposition of z(w).

Note that for a fixed monomial order, this decomposition
is unique.

4. MODEL SIMPLIFICATION

In this section, we propose a linear (similarity) transfor-
mation of the LFR, which imply that some variables in
vectors m and y and the corresponding equations in (6b)
can be eliminated from the LFR without modifying both
the value of the uncertain matrix A(w), and the set of
uncertain rational terms of the LF candidate.

We consider a system in representation (6) with the vector
my(w) = (x(w)). As presented in (9), we produce the
decomposition of m,(w) as follows:

mp(w) = O mp(w) q(o.))*1 € Rm=ntp, (13)
If © € R™*K ig full row-rank, our method cannot reduce

the model’s dimension. Let the rank of © be n + k < m,
than © can be written in the following block-matrix form:

0— ((g)z) c Rme @L c RHXK7 @7'(1 c RkXK
O

@7‘_2 c R(pfk)xK. (14)
Proposition 1. Matrix ©, € R"*X is full row-rank.

Proof. Suppose that ©, = (::1 > is rank deficient. Then,

there exists an index j and real values B;, such that

9, = Z?:Li;ﬁjﬂiﬁia I1<j<n (15)
Considering the dot product of both sides of (15) with
mo(w)g(w) ™! we obtain that x; = 31", . Bix;, which is
a contradiction, since generally, there is no linear depen-

dence between the state variables. Consequently, ©, must
be a full row-rank matrix.

After an appropriate permutation of coordinates in vector
m(w) of model (6), we may assume, without the loss of
generality, that ©, is full row-rank. Consequently, there
exist matrices I'y e RP=F)*7 and T'y e RE—F)1*k gych that

@772 =116, + F2@7r1- (16)

Namely, the rows of O, can be expressed as the linear

combination of the rows in matrices ©, and O, .

Let us introduce the following decompositions of (6):
:i‘:ALC+B17T1 +BQ7T27 (17&) Ut :Al(w)yl, (17d)
Y1 :Cl,’E+D117T1+D127T2, (17b) 7T2:A2(w)y2, (176)
Yo = Cox+Doym + Dyomy, (17(3)

where 3, € R* and 7, € R¥, k < p are the output and the

nonlinear input, respectively.

Proposition 2. If we introduce the transformed matrices

;{Z:A-FBQFh EZZ Bi1 + BoI'g,

. _ (18)
C:=C1+ Diol'y, D := Dy + Diol'g,

representation fk(ﬁ,ﬁ,é,ﬁ; Ay), with m and y; is a
dimensionally reduced equivalent of (6). Furthermore,
Fir(A,B,C,D;Ay) is well-posed if (6) is well-posed.

Proof. Due to (16), there exists a matrix S € R™*™,

I, 00 Oq
S=10 L |0 |, st.5-©6=1[6.]. (19)
—T7 2T 0

Multiplying both sides of the second equation of (19) with
To(w)q(w) ™", we obtain a key identity for

T T
S - | =M = mo = I'ax + Damy. (20)
Uy} 0

Considering (20), the state and output equations (17a,17b)
of representation (17) are rewritten as
T = (A + BoT'1)x + (By + Bel'9)my, (21&)
y1 = (C1 + Di2l'1)x + (D11 + Dyal'2)m, (21b)
with 11 = Ay (w)y;. (21c)
The output equation (17c¢) of y2 and (17e) can be sup-
pressed, since the system dynamics (21a) does not depend

on e nor on yo. Representation (21) describes the same
dynamics as the original (decomposed) model (17).

Using the inverse of .S, vector m(w) can be given as follows:

T I, 0] O
my(w) =S m |, withS™ = (o0 1, o |. (22

0 Fl F2 Ip*k

On the other hand, considering the block-matrix decom-

position of matrices G(w) and F(w) of (7), we have that

n k p—k

i (0 ] B () 20 e

PRI\ Gow) Paw) Faow) ) \rw)

Using (22), and considering only the upper part (first &
rows) of identity (23), we reach to the following identity:

(G1 (w) + Flg(w)f‘l)ac n (Fu(w) n Flg(w)F2>7r1 (w) = 0.

Note that (Fii(w) Fiz(w)) and (f’;) are full row-, and
column-rank matrices, respectively, thus their product

ﬁ(w) := F11(w) + Fi2(w)Ty is non-singular, hence invert-
ible, and 71 (w) = —F(w) 'G(w)r with G(w) = G (w) +
Fi9(w)T'y, which completes the proof.

Proposition 3. (Structure invariance of the LF). Let

™ ww P~ — z
mp(w) = (wiﬁw%)’ and Tp(w) = <7T1(w)) :
Then, for every matrix P € R™*™ there exists a matrix

P € R+R)x(n+k) guch that
V(w) = a1 (w)Pry(w) = 7f (w) P7y(w), Yw € R*HE. (25)

(24)

Proof. We introduce the block-matrix decomposition of
matrix P of the LF V(w) in (25):

_ (Pu P2 (n+k)x (n+k)
P = <P21 P22>’ where P13 € R . (26)

Considering (22), the LF (25) can be altered as follows:

~ —1 (P11 | P —1/(7
7l Py = (#L]0) S T(P—;’P—Z)S 1(%) (27)
= A7 (Pi+TT Py + PioT + T TPy D)7y, =: 7 Py,
where I' := (T'; T'g). Consequently, we obtained that P

~

with 7, and P with 7, satisfies (25) for every w € R*.
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Fig. 1. Plot of & versus x for 1D system (28) (left). z* =0
is a (locally) stable equilibrium point, since the graph
crosses axis z with a negative slope. The obtained
rational LF for (28) is illustrated in the right figure.
The red line segment highlights polytope X.

To conclude, the proposed linear transformation (18) re-
sults in a simplified LFR model (i.e. with a smaller
uncertainty bock Aj). Furthermore, the obtained LFR

fk.(ﬁ,é,é,f);m) generates the same rational terms to
be considered in the LF as the initial LFR model.

5. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we illustrate the applicability of the ap-
proach presented above through different numerical ex-
amples. The results presented in this section were com-
puted in the Matlab environment. For symbolic computa-
tions, we applied Matlab’s built-in Symbolic Math Tool-
box based on Mupad. To model and solve semidefinite
optimization (SDP) problems, we used YALMIP, Lofberg
(2004), with Mosek solver, MOSEK ApS (2015). We used
LFT software tools provided by the LFR-toolbox.

5.1 One dimensional benchmark system

In order to transparently illustrate the difference between
the n-DOR, the symbolic manipulations of Polcz et al.
(2017), and the proposed model reduction, we consider a
very simple artificial one dimensional benchmark system:

& = A(x)z, where A(z) = T}H + m —4. (28)

If the domain of operation is constrained to z(t) €
(—1,00), this system is well-defined and it has a locally
stable equilibrium point at z* = 0, for which the DOA
can be determined precisely considering the graph of & =
A(x)z versus the state variable z (Fig. 1). The reason we
still use this 1D model is to demonstrate the operations
of the proposed model reduction method, and to show its
possible advantages compared to the two other mentioned
techniques know from the literature. The set of possible
initial conditions considered in the stability analysis is
chosen to be X = [-0.5,0.5].

Applying LFR-toolbox function sym21fr to A(z), an ini-
tial 4-dimensional LFR model is obtained:

A=-2 (29a)
- 1 - -110 0 .
c=(1) p=(3%8) Aw-n

0 00 -1

1
The generated set of rational terms to appear in the LF is
~ 24423422 22 22 2?2 T
J— 1 1 1 1 1 1
7T(.T) - (z?+z?+zl+1 zf+1 z§+zf+zl+1 z1+1 (29b)

The numerical n-DOR technique results in a 3-dimensional
LFR (A.la), for which the obtained rational terms are

presented in (A.1b). The symbolic simplification steps for
model (29) proposed by Polcz et al. (2017) generates a
5-dimensional model (A.2) with a set of rational terms,
in which both the denominators and the monomial nu-
merators are monic. Using the proposed model simpli-
fication technique presented in Section 4, we obtain a
3-dimensional LFR (A.3), for which the corresponding
rational functions in 7(w) are relatively simple compared
to the model (A.la) generated by the n-DOR.

5.2 An uncertain mass-action kinetic (MAK) system

We consider the minimal MAK system presented by Wil-
helm (2009) with a modified parameter configuration and
with an uncertain reaction rate coefficient ¢:
§e€D=[08,12],
k‘g = 2, v = 4.

This system with the given parameter values has a locally
T

fl =V — 5@1@‘%,

where (30)

- — -2 —
Xrog = (51‘13&‘2 — k‘gl‘g,

asymptotically stable equilibrium point at *(0) = ('} 2)
with an unbounded DOA. The task is to generate a model
(2) and then give a (bounded) estimate for the DOA by
solving the optimization problem given in (91) of Trofino
et al. (2013).

Introducing the centered state vector x := & — z* and
considering the numerical values of coeflicients v; and ko,
we obtain a system & = A(z)x, where:
(=62 +2)? —zo—4
Alw) = ( 5(;2+2)g 2y +2 )
Applying the LFR-toolbox function sym21fr to A(w), we
obtain a 8-dimensional LFR model. The numerical n-DOR
results in a 3-dimensional LFR. The corresponding set of
rational terms is denoted by #'(w). The proposed LFR
transformation produces a 4-dimensional model with 7(w).
The values of both vectors 7/(w) and 7(w) are given in
(A.4). For this system, the algebraic simplifications of
Polcz et al. (2017) generates a 4-dimensional model.

(31)

Consider the following two rectangular polytopes

Xy =[—1.4,1.4]x [~0.7,1.3], X, =[~1.9,1.9] x[-0.7, 1.5]. (32)
We solved the DOA computation problem (91) of Trofino
et al. (2013) for both polytopes and both (simplified)
models (A.4). For model (A.4a) with polytope X, the
problem is infeasible. The area of the estimated stability
region in the different cases is given in Table 1.

Though the optimization is adopted on the centered sys-
tem, the obtained LF V' (z, ) is transformed back into the
original coordinate system V (z,d) = V(Z—z*(4), ). Then
the two regions J C 4l are computed similarly as presented
in (5). The obtained areas are illustrated in Figure 2.

6. CONCLUSIONS
In this paper, we presented a model simplification tech-
nique for the LFR based on symbolic and numeric manipu-
lations. Using the obtained LFR with a reduced number of
input-output pairs (7, y;), a specific system representation
is generated, which is used for the DOA estimate computa-
tion for rational uncertain nonlinear systems, as proposed
by Trofino et al. (2013). The structure of the Lyapunov
function candidate is given by a set of rational uncertain
terms, which are generated from the dimensionally reduced
LFR. Compared to n-DOR, our proposed technique results
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Table 1. Area of the estimated stability region us-
ing different polytopes and different sets of rational
functions considered in the LF. The two values in the
3rd column is the area of the inner and outer regions,
respectively, introduced in (5).

Model reduction technique X.  Area
(A.4a) using n-DOR X1 1.14,2.4447
(A.4a) using n-DOR Xy  infeasible
(A.4b) using our proposed method ~A;  1.61,3.32u?
(A.4b) using our proposed method A  1.57,3.17u?

Table 2. Number of free decision variables of the
optimization problem are given in the 2nd column for
each model. The 3rd column gives the dimensions of the
LMIs corresponding to the Lyapunov conditions (4).

Model reduction technique #var  Size of LMIs
(A.4a) using n-DOR 637 5x5,18x 18
(A.4b) using our proposed method 913 6 x 6,22 x 22

Y 1142

3
s 2.4402
25 J: 1.61u?
a4 3.32u

. I*((SL). (SL S D. i =ﬁ

state variable xo
no

1.5

0 0.5 1 1.5 2
state variable x

Fig. 2. Computed stability regions for the minimal MAK
system using both sets of rational function (A.4).

in a possibly higher dimensional model (i.e. with larger
A block), but all distinct rational terms of the initial
LFR representation are preserved. The illustrative exam-
ples show that the method is indeed suitable for DOA
estimation.

REFERENCES

D’Andrea, R. and Khatri, S. (1997). Kalman decomposition of
linear fractional transformation representations and minimal-
ity. In Proceedings of the 1997 American Control Confer-
ence (Cat. No.97CH36041), volume 6, 3557-3561 vol.6. doi:
10.1109/ACC.1997.609484.

Doyle, J.C., Paganini, F., D’Andrea, R., and Khatri, S. (1996). Ap-
proximate behaviors. In Decision and Control, 1996., Proceedings
of the 35th IEEE Conference on, volume 1, 688-693 vol.1. doi:
10.1109/CDC.1996.574430.

Ghaoui, L.E. and Scorletti, G. (1996). Control of rational systems us-
ing linear-fractional representations and linear matrix inequalities.
Automatica, 32(9), 1273 — 1284. doi:10.1016/0005-1098(96)00071-4.

Giesl, P. and Hafstein, S. (2012). Construction of Lyapunov functions
for nonlinear planar systems by linear programming. Journal of
Mathematical Analysis and Applications, 388, 463—479.

Hecker, S., Varga, A., and Magni, J.F. (2004). Enhanced LFR-
toolbox for MATLAB. 25-29.

Hecker, S. (2008). Improved mu-analysis results by using low-order
uncertainty modeling techniques. Journal of guidance, control,
and dynamics, 31(4), 962-969.

Hecker, S. and Varga, A. (2005). Symbolic techniques for low order
Ift-modelling.

Hecker, S. and Varga, A. (2006). Symbolic manipulation tech-
niques for low order Ift-based parametric uncertainty mod-
elling. International Journal of Control, 79(11), 1485-1494. doi:
10.1080,/00207170600725644.

Lambrechts, P., Terlouw, J., Bennani, S., and Steinbuch, M. (1993).
Parametric uncertainty modeling using LFTs. 267-272.

Lofberg, J. (2004). Yalmip : A toolbox for modeling and optimization
in MATLAB. In Proceedings of the CACSD Conference. Taipei,
Taiwan. URL http://users.isy.liu.se/johanl/yalmip.

Magni, J.F. (2006). User Manual of the Linear Fractional Repre-
sentation Toolbox: Version 2.0.

Marcos, A., Bates, D.G., and Postlethwaite, I. (2005). A multivariate
polynomial matrix order-reduction algorithm for linear fractional
transformation modelling. IFAC Proceedings Volumes, 38(1), 327
— 332. doi:http://dx.doi.org/10.3182/20050703-6-CZ-1902.00999.
16th IFAC World Congress.

MOSEK ApS (2015). The
for MATLAB manual. Version 7.1 (Revision 28).
http://docs.mosek.com.

Ohta, Y., Imanishi, H., Gong, L., and Haneda, H. (1993). Computer
generated Lyapunov functions for a class of nonlinear systems.
IEEE Transactions on Clircuits and Systems, 40, 343-354.

Polcz, P., Péni, T., and Szederkényi, G. (2017). Improved
algorithm for computing the domain of attraction of ratio-
nal nonlinear systems. FEuropean Journal of Control. doi:
10.1016/j.ejcon.2017.10.003.

Rozgonyi, S., Hangos, K.M., and Szederkényi, G. (2010). Determin-
ing the domain of attraction of hybrid non-linear systems using
maximal Lyapunov functions. Kybernetika, 46, 19-37.

Trofino, A., Dezuo, T.J.M., Trofino, A., and Dezuo, T. (2013).
LMI stability conditions for uncertain rational nonlinear systems.
International Journal of Robust and Nonlinear Control, 24(18),
3124-3169. doi:10.1002/rnc.3047. Cited By 14.

Vannelli, A. and Vidyasagar, M. (1985). Maximal Lyapunov func-
tions and domains of attraction for autonomous nonlinear sys-
tems. Automatica, 21, 69-80.

Varga, A. and Looye, G. (1999). Symbolic and numerical software
tools for Ift-based low order uncertainty modeling. In Computer
Aided Control System Design, 1999. Proceedings of the 1999
IEEE International Symposium on, 1-6. IEEE.

Wilhelm, T. (2009). The smallest chemical reaction system with
bistability. BMC Systems Biology, 3(1), 90. doi:10.1186/1752-
0509-3-90. URL 10.1186/1752-0509-3-90.

MOSEK optimization toolbox
URL

Appendix A. NUMERICAL VALUES
Matrices of the LFR and vector 7(z) after using n-DOR on the initial
LFR obtained for the benchmark 1D system:
Al =2, B'=(001.4142), (A.la)

, —0.8165 , —0 —0.3536 —0.5774 ,
C'=|( -11547 ), D'=|( 14142 0 -08165 ), A’'=xls.
—1.4142 -0 0.6124 -1

2.5¢31 22(2.0e31 z—4.1e31) 1
7'(z) = —1.4e32 2%(1.0e31 2+1.0e31) — (A.1b)
—1.422(1.2¢63 2 46.2¢62 x+1.2¢63) q(x)
g(z) = 1.2e63 23 + 1.2¢63 22 + 1.2e63 = + 1.2¢63.
Simplified modeling as presented in Polcz et al. (2017):
z1+Hl —x1 z1+l 0zl
5 = 10 o0
B=(-10-1-1-1), F(x):(;i 0 apd 0 gi >,
0 0 0 a1 0

o z4 22 z2 22 z3 5 2
#=( stk stk 7 i )=t (A2)

LFR model and vector m(w) after the proposed model simplification:
1 —-110
A=-2, B=(-21-1), C= (1), D= (—101)
1 -100

4,.3, 2 2 2
— _ Ty hey ey 1 1
Alz) =213, W(x)*(z§+z§+z1+1 2241 2P 4eltag Tl

(A.3)

The set of rational functions considered in the LF for the uncertain
MAK system generated by n-DOR (7’) and by the proposed model
simplification technique (7):

—diz1V?2
7r'(w) = 1122_% . (dlxlzg — Sz% — 8d1w1$§) (A4a)
66’% . (200% + 8diz172 + lexlzg)
2 T
m(w) = (dwl d1a:ﬂc2+d1x21x2 d1x21x2 zg) (A.4b)



