
Computational Stability Analysis of an
Uncertain Bioreactor Model
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Abstract The computational stability analysis of a frequently used fermen-
tation process model is reported in this paper. Linear fractional transforma-
tion (LFT) and computer algebra tools are used to transform the model into
appropriate form. The Lyapunov function is searched in a general quadratic
form composed of rational terms. The positivity of the Lyapunov function
and the negativity of its derivative, respectively, are ensured through the so-
lution of linear matrix inequalities (LMIs). The stability region is estimated
by determining the level set of the Lyapunov function within a suitable con-
vex domain. The stability analysis is performed for the controlled uncertain
system with a linear proportional and integral substrate feedback considering
different feedback gains. Computation results show that the studied simple
linear feedback can guarantee stability in a wide neighborhood of the oper-
ating point.

1 Introduction

Approximating the domain of attraction is often a fundamental task in the
analysis and control of nonlinear systems. The stability properties of dynam-
ical systems are most often studied using Lyapunov functions. Therefore, an
extensive literature exists on the computational construction of Lyapunov
functions [2]. A fundamental result in this field is the existence of so-called
maximal Lyapunov functions for a wide class of nonlinear systems and the
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corresponding (computationally demanding) iterative procedure to approxi-
mate them [16]. An algorithm for generating Lyapunov functions for a special
class of nonlinear systems based on the construction of polytopes is given in
[12]. In [6], a linear programming based method is given for the construction
of Lyapunov functions for general planar nonlinear systems. During the last
two decades, the use of linear matrix inequalities (LMI) and semidefinite pro-
gramming (SDP) techniques for the stability analysis of nonlinear systems
has become popular due to their advantageous properties and the availabil-
ity of efficient numerical solvers. A recent important result from this line of
research is published in [1], where the authors use Finsler’s lemma and affine
parameter dependent LMIs to compute rational Lyapunov functions for a
wide class of locally asymptotically stable nonlinear systems.

Recently introduced sufficient conditions for the stability are affine param-
eter dependent LMIs, since they are characterized by affine functions of the
state (x) and uncertain parameters (δ). Affine parameter dependent LMIs can
be computationally handled by checking their feasibility at the corner points
(vertices) of a polytopic region, on which the uncertain parameters are de-
fined. In [1] it is shown that with some additional conservatism, the use of
the vertices could be avoided by modifying the LMIs with the S-Procedure.

It is known that bioreactors often show strongly nonlinear dynamical be-
haviour and their efficient control is a challenging task [5]. Still, there exist
successful approaches for ensuring optimal biomass production even when the
growth kinetics is uncertain [7]. It is, however, widely believed that linear con-
trol structure can hardly guarantee acceptable performance and wide-enough
stability region for the closed loop system. In [4], a Lyapunov-function-based
stability analysis of a simple continuous fermentation process is performed as-
suming static linear state feedbacks. The stability region of similar bioreactor
models was analyzed in [15] using maximal Lyapunov functions.

In this work, we use a slightly modified version of the method [1] for the
stability analysis of a frequently used bioreactor model [4] assuming a sim-
ple linear control structure and uncertainty of the maximal growth rate in
the kinetics. The main motivation of our work was to evaluate the applica-
bility of the approach [1] on an uncertain kinetic model, and to study the
effect of a linear substrate feedback knowing that most of the advanced non-
linear control methods require full state information, while the satisfactory
measurement of biomass concentration is often difficult in practice [9].

2 Background

In this section, we present the basic notions and results on which our com-
putational method is based.
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System class, Lyapunov functions, and the domain of attraction.
We consider nonlinear systems of the form

ẋ(t) = f(x(t), δ(t)) x(t) ∈ Rn, x0 ∈ X , δ(t) ∈ D, δ̇(t) ∈ Ď (1)

where X ⊂Rn and D,Ď ⊂Rd are given polytopes, x is the state vector func-
tion, x0 = x(0) is the initial condition, and δ is a smooth, bounded vector
function with bounded time derivative representing the uncertain parame-
ters. Henceforth, the time arguments of x and δ will be suppressed as it is
commonly done in the literature. Furthermore, f : Rn×D 7→Rn of Eq. (1) is
a well defined smooth rational mapping, with the property f(0, δ) = 0 for all
δ ∈ D, i.e., x∗ = 0 ∈ Rn is a locally asymptotically stable equilibrium point
of (1) for all δ ∈D. The set of all initial conditions, from which the solutions
converge to x∗ is called the domain of attraction (DOA).

We are looking for an appropriate rational Lyapunov function V (x,δ)
which satisfies the following conditions:

vl(x)≤ V (x,δ)≤ vu(x) ∀(x,δ) ∈ X ×D
V̇ (x,δ, δ̇)≤−vd(x) ∀(x,δ, δ̇) ∈ X ×D×Ď

(2)

where vl, vu and vd are continuous positive functions on X . Clearly, if the
inequalities in (2) are fulfilled, then any closed level set of V contained (en-
tirely) in X bounds an invariant region of the state space that is part of
the DOA. Roughly speaking, our main objective is to find a function V (x,δ)
having a level set, which bounds the largest possible invariant region.

Dynamical system representation. In [1], the authors are looking for a
Lyapunov function in the form

V (x,δ) = πTb (x,δ)Pπb(x,δ) , πb =
[
x
π

]
(3)

where P ∈ Rm×m is a constant symmetric matrix, not necessarily positive
definite, and π : Rn×D 7→Rp is a mapping, in which each element is a mono-
mial in (x,δ), or a smooth rational function with monomial numerator. The
arguments of π and πb will be suppressed below.

Using the variables from Eqs. (1) and (3), we present a similar differential-
algebraic representation of nonlinear models that was introduced in [1]:

ẋ= f(x,δ) =Ax+Bπ x0 ∈ X
0 =Nπb(x,δ)πb δ ∈ D, δ̇ ∈ Ď

(4)

where A ∈ Rn×n and B ∈ Rn×p are constant matrices.
The representation (4) separates the linear part of the system (x) from

its nonlinear part (π). The application of the linear fractional transformation
(LFT) and further algebraic steps are proposed in [13] to transform the sys-
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tem ẋ=A(x,δ)x into the desired representation ẋ=Ax+Bπ in Eq. (4), and
to generate an appropriate annihilator Nπb(x,δ). These transformations also
result in the dimension reduction of the optimization problem compared to
the results presented in [1].

3 The SDP problem for estimating the domain of
attraction

In this section, we present the key elements of the method to construct the
semidefinite optimization task for obtaining an appropriate rational Lya-
punov function and its maximal invariant level set εα as an estimate of the
true domain of attraction.

polytope X
polytope Y
level set εα
level set ε1

X

εα

Yε1

Fig. 1

Using this model representation, we are searching for
a Lyapunov function of the form (3), which satisfies
the conditions (2) for every (x,δ, δ̇) ∈ X × D × Ď. As
Fig. 1 illustrates, we define an auxiliary polytope Y
around the locally stable origin inside X , looking for
a level set εα =

{
x ∈ X

∣∣ V (x) = α, 1≤ α
}

that is in-
side X , while ε1 is outside of Y. In order to find the
maximal invariant level set εα of the Lyapunov func-
tion, one should maximize α, under the following condi-
tions
(C1) V (x,δ) is positive on X ×D
(C2) V̇ (x,δ, δ̇) is negative on X ×D×Ď
(C3) εα lies inside X
(C4) Y is inside ε1 (without this condition the function V (x) can be scaled

arbitrarily leading to an unbounded feasible solution).
In the following subsections, we formulate LMI conditions for each constraint.

Positivity of the Lyapunov function. Using an annihilator and applying
Finsler’s lemma [13, Lemma 2.1], one can formulate a sufficient affine param-
eter dependent LMI condition for the positivity of the Lyapunov function (3)
(which is less conservative than simply prescribing P > 0) as follows:

∃Lb ∈ Rm×q : P +LbNπb(x,δ) +NT
πb

(x,δ)LTb > 0, ∀(x,δ) ∈ ϑ(X ×D), (5)

where the decision variables are matrices P and Lb, furthermore, ϑ denotes
the corner points of a convex polytope (see [3, Prop. 5.4]).

In [1], two different annihilators of πb are used, namely Cb(x,δ) and
ℵπb(x,δ), having two different roles. For the sake of simplicity, we propose to
unite these two annihilators into a single one: Nπb(x,δ) =

[
Cb(x,δ)
ℵπb(x,δ)

]
, as it is

visible in Eq. (5).
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Negativity of the time derivative of the Lyapunov function. The
time derivative of V (x,δ) is expressed as V̇ (x,δ, δ̇) = πTa (Pa+PTa )πa, where
πa :X ×D×Ď 7→Rn+2p+n2+np is a smooth rational mapping (the arguments
of πa are suppressed), Pa is a square matrix with appropriate dimensions. The
variables πa and Pa are defined in [1] in Eqs. (57) and (39), respectively.

Using the model matrices A,B,Nπb(x,δ) from representation (4), we can
construct an annihilator Nπa(x,δ, δ̇), such that Nπa(x,δ, δ̇)πa = 0 for all
(x,δ, δ̇) ∈ Rn+2d. The exact construction of Nπa(x,δ, δ̇) is presented in tech-
nical report [14, Eq. (3.22)]. The negative definiteness of V̇ (x,δ, δ̇) is ensured
by the following sufficient affine parameter dependent LMI condition:

∃La ∈ R(n+2p+n2+np)×(2q+n2+nq), such that: (6)
Pa+PTa +LaNπa(x,δ, δ̇) +NT

πa(x,δ, δ̇)LTa < 0, ∀(x,δ, δ̇) ∈ ϑ(X ×D×Ď)

where Pa and La contain the decision variables and P can be directly obtained
from Pa [1].

SDP conditions on X and Y. As it was mentioned, we require the level
set εα to be located inside X , this constraint is equivalent to the inequality
V (x,δ) > α for every δ ∈ D and for every x on the boundary of X . Accord-
ing to Finsler’s lemma, a sufficient LMI condition can be expressed for this
inequality as

∀k = 1,MX : ∃Lck ∈ Rm×q , ∃Mck ∈ R(m+1)×n, such that: (7)

QTk P
(α)
ck (x,δ)Qk ≥ 0, ∀(x,δ) ∈ ϑ

(
F (X )
k ×D

)
,

where MX is the number of facets of X , F (X )
k denotes the kth facet of X and

the constant matrix Qk is given in [1, Eq. (87)]. The affine matrix function
P

(α)
ck is defined as follows:

P
(α)
ck (x,δ) =

[
P +LckNπb(x,δ)+NT

πb
(x,δ)LTck 0

0 −α

]
+MckNπc(x)+NT

πc(x)MT
ck

where Nπc(x) =
[
In 0n×m −x

]
. Matrix P , Lck , Mck and the scalar α are

the decision variables. Similarly, the last condition (Y lies inside ε1) can be
formulated as:

∀k = 1,MY : ∃L̄ck ∈ Rm×q , ∃M̄ck ∈ R(m+1)×n, such that: (8)

Q̄Tk P̄
(1)
ck (x,δ)Q̄k ≤ 0, ∀(x,δ) ∈ ϑ

(
F (Y)
k ×D

)
Finally, we have to maximize α subject to the inequality constraints (5),

(6), (7), (8), in order to find an appropriate Lyapunov function and its maxi-
mal invariant level set. This method is presented in detail in [14, Chapter 3.].
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Estimating the ‘robust DOA’. Generally, the uncertain parameters δ ap-
pear in the computed Lyapunov function, hence the need arises to estimate
the so-called robust DOA, that is the set of initial conditions, from which the
system converges to the equilibrium point for all possible values of the un-
certain parameters. The robust invariant region (denoted by ε∗α) is computed
as the intersection of the bounded regions of the maximal invariant level sets
for all possible values of δ, namely, ε∗α =

⋂
δ∈D

{
x ∈ X | V (x,δ)≤ α

}
.

Finding an appropriate outer polytope. We applied an iterative pro-
cedure in order to algoritmically find a suitable polytope X , on which the
Lyapunov conditions are tested. First of all, an invariant level set ε(0)

α is found
by solving the optimization task considering a relatively small initial poly-
tope X (0). Then, in each ith iteration step a new polytope X (i+1) is defined
considering the shape of the level set ε(i)

α .
In this work, we require X to be a rectangular polytope X = [x11,x12]×

[x21,x22]× . . .× [xn1,xn2] (not necessarily symmetric with respect to the ori-
gin), which is enlarged by iterations using some scaling coefficients κi. This
assumption can be advantageous in case of higher dimensional systems, be-
cause generating a new polytope X (i+1) is quite straightforward by consid-
ering the axis aligned bounding box of ε(i)

α . We additionally mention the fact
that, in this way, we can avoid handling arbitrarily shaped closed (hyper)
triangle meshes.

In order to simplify the equations, we introduce the following nota-
tion. We collect the coordinates of the corner points of X in a matrix
X =

[
x11 x12 · · · xn1
x21 x22 · · · xn1

]
. The scale coefficients κi ∈ (1,2), i = 1,2n are gath-

ered in a vector κ ∈ (1,2)2n The algorithm of the polytope evaluation is the
following:

X = initial polytope X(0)

for i = 1 to maximum nr of iterations do
Solve the SDP problem for X =⇒ maximal invariant level set εα
if solution found then

X(prev) = bounding box of εα
increase the values of κi: κi = κi+2

2 , i= 1,2n
else

decrease the values of κi: κi = κi+1
2 , i= 1,2n

end
Increase-polytope-X (X(prev),κ)

end
Function Increase-polytope-X (X,κ)

Xi1 =max(Xi1κ2i−1,x
(min)
i ) , Xi2 =Xi2κ2i, i= 1,n

end
Algorithm 1: Evaluate the polytope X

The constant variables x(min)
i have a significance only when considering non-
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negative systems, furthermore, we assume that using the initial polytope X (0)

results in a feasible SDP problem.

4 Model of the continuous fermentation process

In this section, we present an isothermal nonlinear continuous fermentation
process model taken from [4] with constant volume V , constant physico-
chemical properties and uncertain maximal growth rate δ = µmax. The re-
action rate of the fermentation µ(S) is a rational function, where µmax can
be considered as its principal reaction rate coefficient. This value is usually
determined experimentally with relatively high uncertainty, causing a multi-
plicative uncertainty factor in Eq. (9).

In the numerical calculations, we assumed that δ belongs to the interval
D = [0.8,1.2], and let the nominal value of δ be: δ0 = 1 [l/h].

The dynamics of the process is given by the state-space model

dX
dt = µ(S)X− XF

V
,

dS
dt =−µ(S)X

Y
+ (SF −S)F

V

µ(S) = µmax
S

K2S2 +S+K1

,

V = 4 [l], Y = 0.5
SF = 10 [g/l]
K1 = 0.03 [g/l]
K2 = 0.5 [l/g]

(9)

where the state variables X and S are the biomass and substrate concentra-
tions, respectively, F is the feed flow rate, SF is the substrate feed concentra-
tion, Y is the yield coefficient, K1 and K2 are the saturation and inhibition
parameters, respectively. For more details on the bioreaktor model, see [4].

The above model can easily be written in standard input-affine form with
the centered state vector

x=
[
x1 x2

]T =
[
X−X0 S−S0

]T (10)

consisting of the centered biomass and substrate concentrations. The centered
input flow rate is chosen as manipulate input variable u= F −F0(δ), where
the inlet feed flow rate F0 is a linear function of δ. The centered model is:
ẋ= f(x,δ) +g(x)u, where

f(x,δ) =
[

(x1 +X0) ·µ(x2 +S0) − (x1+X0)F0(δ)
V

− (x1+X0)·µ(x2+S0)
Y + (SF−(x2+S0))F0(δ)

V

]
(11)

g(x) =− 1
V

[
x1 +X0

x2 +S0−SF

]
(12)

Function f can also be written in the form f(x,δ) =A1(x,δ)x, where
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A1(x,δ) =

 −F0(δ)(c2x
2
2+c1x2)

q(x2)V
δV (x1+X0)−X0F0(δ)(c2x2+c1)

q(x2)V

− δS0
q(x2)Y −F0(δ)

V − δ(x1+X0)
q(x2)Y − F0(δ)(S0−SF )(c2x2+c1)

q(x2)V


c0 =K2S

2
0 +S0 +K1 c1 = 2K2S0 + 1

q(x2) = c2x
2
2 + c1x2 + c0 c2 =K2

(13)

The equilibrium point of the system is computed such that the biomass pro-
duction X0F0 is maximized:

S0 = arg max
S>0

(SF −S)µ(S) =
−K1+

√
K2

1 +S2
F
K1K2+SFK1

K2SF+1 (14)

X0 = (SF −S0)Y, F0(δ) = V µ(S0) (15)

The identities in Eq. (15) are coming from the fact that f(0, δ) = 0 for all δ.
We can observe, that the equilibrium point of the system does not depen-
dent on δ. The steady state operating point values are X0 = 4.8907 [g/l],
S0 = 0.2187 [g/l] and F0(δ) = 3.2089 · δ [l/h]. Due to the positivity of the
biomass and substrate concentrates, we can assume that x1 > −X0 and
x2 >−S0.

5 Stability analysis results

In this section, we present the computational results of the method described
in the first part of this paper.

The results presented in this section have been computed in the Mat-
lab environment. For symbolic computations we used the Matlab’s built-in
Symbolic Math Toolbox based on Mupad. For LFT we used the Enhanced
LFR-toolbox [8, 11]. To model and solve semidefinite optimization (SDP)
problems we used the Mosek solver with YALMIP [10].

5.1 Linear proportional substrate feedback

Let us define the centered input flow rate as u=−kPx2, where kP > 0 is the
feedback gain. The equation of the closed-loop system can be transformed
into the following form: ẋ=A2(x,δ)x, where

A2(x,δ) = (A1(x,δ)−g(x)KP )x , KP = [0 kP ] (16)

Having this form, we can apply the LFT to the matrix function A2(x,δ),
then executing the consecutive algebraic transformations presented in [13],
we can obtain the necessary representation (4). When estimating the DOA,
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we tested different feedback gain values from the interval kP ∈ [0.125,5.125].
In Fig. 5, we can see the estimated DOA for each tested value of kP . We can
observe, that between the values k(1)

P = 0.916 (A(1) = 0.6634) and k(2)
P = 0.917

(A(2) = 6.5188) the estimated DOA suddenly increases.
In Fig. 2, we can see the obtained maximal robust invariant region and the

corresponding rectangular polytope X for different feedback gain values. The
polytope X is evaluated automatically as presented in Algorithm 1, where
the numerical values of the scaling coefficients are: κ1 = κ2 = 1.5, κ3 = 1.4,
κ4 = 1.6. Fig. 3. illustrates the estimate for a manually chosen polytope,
when kP = 0.917. For that polytope we achieved an even larger invariant
region than that when using a rectangular polytope and applying the same
feedback gain value.

The largest area is obtained when kP = 0.917. The approximated values
of the obtained model matrices in this case are the following:

πT =
[

δx1
ζ(x2)

δx2
ζ(x2) δx2

δx1x2
ζ(x2) x1x2

δx1x
2
2

ζ(x2)
x1x

2
2

ζ(x2)
x1x2
ζ(x2)

x3
2

ζ(x2)
x2

2
ζ(x2)

δx2
2

ζ(x2) x
2
2

]
A=

[
0 1.121
0 −2.242

]
, ζ(x2) = q(x2)

c2
= q(x2)

K2
(17)

B =
[

0 0.219 0 4.47e-2 0.229 −0.802 0 0 0 0 −3.92 0
−0.875 −0.437 −0.802 −4 0 0 0 0 0 0 7.85 0.229

]
The generated annihilatorNπb has q= 21 rows, therefore, we do not present it
here. Fig. 4 illustrates the obtained Lyapunov function V (x,δ) in two different
view points when δ = δ0.

In [13], the estimated DOA is already shown in the case of an open-loop
bioreactor system with no uncertainty. We can remark that assuming even
a simple substrate feedback law with an appropriate feedback gain, the area
of the estimate is much larger compared to that obtained for the open-loop
system in [14].

5.2 Linear proportional and integral substrate feedback

Let the centered input flow rate be u=−kPx2−kI
∫ t
t0
x2(τ)dτ . In this case

the equation of the closed-loop system is ξ̇ =A3(x,δ)ξ, where ξ = [x1 x2 u]T
is the state vector of the obtained three dimensional system. Using the vari-
ables from Eqs. (12) and (13), the state-transition matrix function A3 can
be composed as follows:

A3(x,δ) =
[

A1(x,δ) g(x)
−KPA1(x,δ)−KI −KP g(x)

]
∈ R3×3 ,

KP =
[
0 kP

]
KI =

[
0 kI

] (18)
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After the model transformation steps, the approximated value of the model
matrices [A|B] and column vector π are the following:0 0 −1.22 0 0.219 0 0.0447 −0.25 −0.802 0 0 0 0 −3.92 0

0 0 2.45 −0.875 −0.437 −0.802 −4.0 0 0 0 0 0 0 7.85 −0.25
0 −2.0 −4.89 1.75 0.875 1.6 8.0 0 0 0 0 0 0 −15.7 0.5


πT =

[
δx1
ζ(x2)

δx2
ζ(x2) δx2

δx1x2
ζ(x2) x1x3

δx1x
2
2

ζ(x2)
x1x

2
2

ζ(x2)
x1x2
ζ(x2)

x3
2

ζ(x2)
x2

2
ζ(x2)

δx2
2

ζ(x2) x2x3

]
The obtained annihilator has q = 22 rows. Fig. 6. illustrates the obtained
robust invariant 3D region in two different feedback gain configurations, and
its cross section when the initial value of the input variable is zero. We can
observe that the obtained estimates in both feedback configurations are much
smaller than that obtained when no integral feedback is applied. A possible
cause of this artifact could be that the dimensions of optimization problem
corresponding to the three dimensional system are significantly larger, hence
it becomes a more complex task for the optimization solver.

When evaluating the polytope X we used Algorithm 1, but we have fixed
the bounds of the centered input feed flow rate in both feedback configura-
tions as u ∈ [−1,1] (Fig. 6, left) and u ∈ [−2,2] (Fig. 6, right), respectively.

6 Conclusions

In this work, we presented an improved optimization-based computational
method for determining Lyapunov functions and invariant regions for nonlin-
ear dynamical systems with rational terms based on [1]. We gave a simplified
formula for the LMIs of the optimization problem by merging the two anni-
hilators defined in [1] into a single one: Nπb(x,δ). Furthermore, we presented
an algorithm to evaluate the initial polytope X (0), on which the Lyapunov
conditions are tested. We applied the method for the stability analysis of an
uncertain continuous bioreactor model.

The Lyapunov function for the closed-loop system using a proportional
state feedback law was successfully computed, and the corresponding guar-
anteed stability regions were determined for different feedback gains. The
method was successfully applied on the three dimensional uncertain closed-
loop system considering a proportional and an integral substrate feedback
law. The computational approach itself is able to handle a wide class of un-
certain models, therefore future work will be focused on the stability analysis
of more complex and/or higher dimensional systems.
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