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Abstract

In this paper, a model predictive controller is developed for controlling the main
primary circuit dynamics of pressurized water nuclear power plants during load-change
transients. The hybrid model of the plant is successfully embedded into a non-hybrid
discrete time LPV form. The designed controller is able to handle the hard constraints
for the state and input variables while keeping the plant stable and producing satisfactory
time-domain behavior.

1 Introduction

The paper describes a model predictive control scheme for the primary circuit system of the
Paks Nuclear Power Plant (Paks NPP) located in Hungary. The Paks NPP was founded in
1976 and started its operation in 1981. The plant operates four VVER-440/213 type reactor
units with a total nominal (electrical) power of 1860 MWs. About 40 percent of the electrical
energy generated in Hungary is produced here. Considering the load factors, the Paks units
belong to the leading ones in the world and have been among the top twenty-five units for
years.

The main motivations behind the present work are the following. Firstly, due to the
continuous reconstruction of the measurement equipment and the information infrastructure,
more and more measurement data are available in good quality. This fact allowed us the
control-oriented modeling and parameter identification of the primary circuit dynamics [11].
Secondly, the present control configuration of the plant is a distributed scheme, where the
controllers are tuned individually. The current operation of the system in the neighborhood
of the prescibed operating points is satisfactory, but studies and simulations show that the
dynamic behavior during bigger transients mainly caused by load changes can be improved
by applying a multivariable controller. Thirdly, another motivating fact is a previous work:
the successful modeling, identification [11], controller design [10] and implementation of the
pressure control loop in the primary circuits of units 1, 3 and 4 of the plant. Using this
model-based design, the precise stabilization of the primary loop pressure was a key factor in
the safe increase of the average thermal power of the units by approximately 1-2% in 2005.

*This paper revises and extends the results of the paper "LMI-based model predictive control for the hybrid
primary circuit dynamics of a pressurized water nuclear power plant’ presented in the European Control
Conference, 2007, Kos, Greece.
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The main aim of this paper is to propose an integrated controller, which eliminates some
imperfections of the present control architecture. This new controller belongs to the model
predictive control (MPC) scheme. The MPC is an optimization based control method, where,
assuming discrete time case, an open loop optimal control problem is solved in each sampling
instant, using the actual state as initial state, and the first element of the obtained control
sequence is applied to the plant. For the theoretical background of MPC see e.g. [7], [6].
The model predictive approach has several advantages: it is able to handle complex systems
where off-line computation of the control law is difficult, and in contrast to other techniques
it is able to handle hard constraints prescribed for the states and control inputs.

The paper is organized as follows. After the introduction in section 1, a nonlinear hybrid
model of the plant is constructed. Section 2 contains the main control objectives. In section
2.A, the LMI-based MPC method proposed by Kothare et.al [5] is introduced, which is slightly
modified in section 2.B. The original and the modified methods are applied and tested on the
nonlinear system model by numerical simulations. The simulation results are presented and
analyzed in section 4. The most important conclusions are summarized in section 5.

2 System Model

2.1 Overall system description

The liquid in the primary circuit is circulated at a high speed by powerful circulation pumps,
and it is under high pressure in order to avoid boiling. The energy generated in the reactor
is transferred by the primary circuit to the liquid in the steam generator making it boiling.
The generated secondary circuit vapor is then transferred to the turbines.

Figure 1 shows the flowsheet of the primary circuit in Paks NPP, where the main equip-
ments are the reactor, the steam generator(s), the main circulating pump(s), the pressurizer
and their connections are depicted. The sensors that provide on-line measurements are also
indicated in the figure by small full rectangles. The controllers are denoted by double rectan-
gles, their input and output signals are shown by dashed lines.

2.2 Continuous time state-space model

The dynamic model of the process has been constructed using a systematic modeling approach
proposed in [4]. The detailed modeling and model identification procedure has been described
in [3]. The continous time state-space model of the system is the following
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Figure 1: The flowsheet of the primary circuit
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where Wi = ¢y N. The measurable variables and constant parameters of the model are
summarized in table 1. The abbreviations R, PC, SG, PR refer to the reactor, primary
circuit, steam generator, and pressurizer, respectively.

The mass flow mpg (which makes the system dynamics hybrid) from the primary circuit
to the pressurizer (or backward) can be written as

dT’
mpr = —ngccqg,l dJ;C (6)

We assume that the variables m,, Tpc 1, msg and Tsg sw are known and constant which
is an acceptable approximation of reality from a control point of view. The control inputs are
the rod position (v) and the heating power of the pressurizer (Wheq,pr) - Instead of v we
introduce v = (p1v? + pov + p3) N as a new control input, since eq. (1) depends linearly on v.
This can be done, since the polynomial p(v) = p1v?+pov+ps3 is monotonously increasing, thus
invertible: v = p~!(v/N). The constraints prescribed for v can be transformed into equivalent



Identifier ~ Variable Type Identifier Parameter Unit
N R neutron flux s (p1,p2,p2) control rod parameters R

v R control rod position i Pmax maximum reactivity R
Wr R reactor power o S zero neutron flux R
Min, PC inlet mass flow rate i Cp,PC specific heat PC
Tpco,1 PC inlet temperature d Mpc water mass PC
Tro,cL PC cold leg temperature (s) Kr 56, , heat transfer coefficients PC, SG
Tre,ur PC hot leg temperature (s) Tout containment temperature PC
PPR PR pressure 0,(s) Msa water mass SG
Trr PR temperature S Wioss,PC heat loss PC
lpr PR water level 0,(8)  Wiess,sa heat loss SG
Wheat,pr PR heating power i Cg,sc liquid specific heat SG
msa SG mass flow rate d Cp.sG vapor specific heat SG
Tsa,sw SG inlet water temperature d Cp,PR liquid specific heat PR
psG SG steam pressure o Wioss,PR heat loss PR

Table 1: Measured variables and constant parameters of the model (Notations: state, input,
otput, disturbance)

constraints prescribed for v as follows: vmin < v < Vmax < Nmin?(Vmin) < ¥ < NpinP(Umax),
where p(vmin) < 0 < p(Vmax) and Npin is a physical limit for which 0 < Ny, < N always
holds.

Since de—’;C does not depend on mpp, equation (6) can be substituted into equations (1)-
(5) without producing algebraic loop. Carrying out this simple manipulation and centering
the model around a predefined operating point (N, Tpc, Tsa, Trr, 7, Wheat’ pr) the dynamic
model can be rewritten in the following more compact form:

$ = As+ Bu

Zlmpr>0 = (af + 2pT + squ)s + a,z + busg
Zlmpr<o = bug (7)
mpr = mls

where s = [N—N,Tpc—Tpc, Tsa—Tsal, 2 = Tpr—Tpr,u1 = v—0, u2 = Wheat,PR—Wheat,PR
and A, B,a;,a,,p,q,b,ms are constant matrices, vectors of appropriate dimensions. If the
state variables ss and z in the nonlinear terms are considered as time-varying parameters
p1 = S2, p2 = z the equations above take the following hybrid-LPV form:

Elmpr>0 = (Aco+ p1dca + p2Ac2)r + Beu
= A.p)x + Beu
i|mPR§0 = AC731’ + B.u
mpr = mlx (8)

. T
where Ao, Ac 1, Ac2, Ac3 and B, are constant matrices, and x = [s z] ,m = [mT 0

2.3 Discrete time model

To apply model predictive control, the continuous model of the system has to be discretized.
If mpr < 0 the dynamics is linear, so it can be easily transformed into discrete-time. We have
to concentrate only on the first, parameter varying subsystem. Since the parameters p; and



po vary relatively slowly in time, the discretization can be performed in the following way:
at a time instant t; the parameters are fixed and the linear system obtained is discretized by
computing its solution under constant input wg:

x(ty +Ts) =~

Tht+1 = d( ).CCk + Bd(k)
Aq(k) eAc(p(tr))Ts
Ba(k) = / Apt)=7) B dr (9)

Fortunately, the computation of A4(k), By(k) can be simplified if the special structure of the
matrices A.; is exploited. By calculating the spectral decomposition of A.(p) symbolically
(with parameters p1, p2) it can be seen that its eigenvalues are all distinct and do not depend
on the parameters. Thus

AT — v (p(ty,))diag(e™)V (p(tr)) ™" (10)

where V' (p) = Vo + p1Vi + p2Va. Continuing the analysis, we can see that the eigenvectors
V (p) are also of special form, which enables us to express the matrices A4(k), Bg(k) as follows:

Ag(k) = Ago+p1lar + p2Ala

Ad,O — eAc,oTs

Ad,i — e(Ac,O+Ac,i)Ts _ Ad,07 i=1,2
By(k) = Bgo+ p1Ba1 + p2Bap

Ts
Bio = / eAeoTs=T) B dr
0

Ts
By = / eAeotAedTs=m) B dr — By, (11)
0
Thus, the hybrid LPV form (8) is preserved after the discretization:
Tht1|lmpr>0 = (Ago + p1dan + p2Aa2)xy +
(Ba,o + p1Ba + p2Baz2)uy
Thit|mpr<o = Adq3Tr + Bazug
mpr = mT:ck (12)

The MPC framework applied later requires the system to be in polytopic form [5]. For this,
we have to introduce upper and lower bounds for the parameters Py < p1 = Prs Py S P2 < Py,
to be able to express the dynamics in the required form.
g P20 = A(k)zy, + B(k)uy, [A(k), B(k)] € Q
Q= Co{[A1,B1], ..., [A4, B4]}
Ai = Ago+0i1Aa1 + 0i2Aa2
B; = Bgo+9;1Bg1 + 0;2Bg2
i1 € {p,:P1} Gi2 € {py, P2}
Tht1|mpr<o = Aa 3%k + Bagug
mpr = mlx (13)



Notice that, if we complete the set of corner points of {2 with the system [As, Bs| = [A43, Bq 3]
the hybrid dynamics above can be embedded into the following non-hybrid LPV system:

The1 = A(k)zie + B(k)ur [A(k), B(k)] € Q
Q= CO{[Al,Bl],...,[A4,B4] ,[A5,B5]} (14)

where Co(+) denotes the convex hull of its arguments. This can be easily checked by considering
the following convex combinations:

5 5 5
A(k) =) mA;, Bk)=) 7B, > vi=1 (15)
i=1 i=1 i=1
with Z?:lfyi = 1, Y5 :OifmpR >0 and’yl =772 =73 = Y4 :0, V5 = 1 ifmpRSO.

3 Controller Design

3.1 Control goals, assumptions and constraints

In the present control configuration, the neutronflux and the heating in the pressurizer are
controlled separately. This performs quite well in the neighborhood of the prescribed steady
states, but during large load changes, the temperature in the pressurizer usually slightly goes
out of the required optimal operating interval. Therefore, the goal of the controller design is
to obtain such a controller that - first of all - keeps all the predefined hard constraints for the
state and input variables and secondly, it produces a satisfactorily quick load change transient.
More precisely, the aim is to design an integrated controller, which steers the system from
one operating point to another, so that

e the settling time of the neutron flux N be as small as possible
e the temperature change in the pressurizer be at most 1K during the transient

e the control inputs v, Wi,cqt pr satisfy the given hard, physical constraints, coming from
the limited heating energy at the pressurizer.

3.2 Model Predictive Control using Linear Matrix Inequalities

The control method we intend to apply is based on the MPC procedure proposed by Morari
et.al in [5] and [2]. First, this procedure will be introduced briefly.

Suppose the system to be controlled is given in the form of (14) with an output equation
y(k) = Cx(k), y(k) € R™. Concentrating on the robust regulation problem, i.e. steering
the state from an arbitrary initial value xo to the origin the MPC solution proposed by [5]
involves the following min-max optimization problem:

o0

. T T
min max Je J© = g (a: Q1T ik + up_ . Ruy, k) 16
W A0, [A(41). B (b)) €0 ko k e k+ilk +i k+ilk +4l (16)

where JP*° is a prescribed infinite horizon cost function and x4 1, up44x denote the predicted
state and control action at time instant k+14, both based on the state measurement xj = 3.



This optimization has to be performed at each sampling instant with the actual state measure-
ments to obtain the next control input. Since this problem is computationally demanding, the
following idea has been applied: if it is possible to find a quadratic function V (zy) = 2] Py,
which gives an upper bound on the robust performance objective J.°, the min-max problem
can be replaced by a minimization of this quadratic function over the sequences of possible
control moves. This can be easily solved by using linear matrix inequalities [9]. For V (xy) to
be an upper bound it has to satisfy the following inequality [5]:

V(@ktivin) = V(@rpip) < — (if;;FJrqulkam + UZ+¢|kRUk+i|k) (17)
Since in this case

-V < —-JrX = a JX <V 18
(m1) < k [A(k+i)133(>]§+i)]eg o < Vi(xy) (18)

holds. Using this upper bound, (16) can be replaced by the following simpler problem:

min max Jp° < min  V(xg) = min  z} Pexy, (19)
Ugpi|k:t=0,1,...,m [A(k+1%),B(k+i)]€Q Uk 44|k,¢=0,1,... Uk 4 4|k>t=0,1,...

If py4)3, is chosen to be wup ) = Fr@pi) it can be shown (see [5]) that the solution (Fy, Py)
of (19) can be obtained in the following form:

F,=F=YQ "' P=P=7Q"' (20)

where @ > 0,7 > 0,Y are the solutions of the following linear objective minimization problem:

min 21
%Q,YPY (21)
subject to
1 27
>
A o
and
1
Q QAT +YTBT QQi YTR:
A; B;Y 0 0
JQ —i_ J Q Z 0
Qi Q 0 ~I 0
R2Y 0 0 NI
j=1.L (23)

where x = xj, and (23) is equivalent to the condition (17). If there are constraints prescribed
for the input and/or output, they can be easily taken into consideration by expressing them
as LMIs and attaching them to the constraints (22), (23) in the optimization problem above.
For example, consider the peak bounds prescribed on each component of the input uy, i.e.

’Uj,k+i\k| < Ujmaz> j=1l.ny (24)



where n,, is the number of inputs. This holds if
[ X Y

2
YT Q] > 0, ij <uj (25)

7,max

The component-wise peak bounds on the outputs involve further LMI constraints, that can
be given as:

[ Q (A;Q + BY)'Cf >0
Ci(A;Q + B;Y) Yi maz! B
j=1,.,L, 1=1.n, (26)

where C is the [-th row of C. For further details see [5] and [1]. The following Theorem
summarizes the main result of [5]:

Theorem 1. If at any time k there exists Q,Y,~ and Fy, = Y Q™! solving the problem (21)
then

e the control inpul Fyxy i will be feasible for all times i >0

e the control policy given by the MPC procedure stabilizes the polytopic system and satisfies
the prescribed input/output constraints.

3.3 Implementation issues

The MPC procedure above assumes that the control gain Fj is available at the same time
instant k, when the measurement xj is taken. This means that the computation time of Fj
(the time needed to solve the optimization problem above) is neglected, or assumed to be
negligible compared to the sampling time Ts. Unfortunately, in our case this assumption does
not hold. The reactor dynamics is sampled with Ts = 1sec, while the solution of the LMI-s
(23),(25) and (26) takes minimum 0.7 sec maximum 1.02 sec (depending on the actual state
measurement ). Decreasing the frequency of the controller update is not enough to solve
this problem, since in itself it does not provide more time for computation. The following
procedure is proposed instead: new controller is designed only at each M-th time instant;
between two controller design steps the feedback gain is calculated as follows:

!

Foa if i—k<l (27)
1 —k—1 o
Fk_M+M7_l(Fk *Fk_M) if 1 —k >l

i=k,...k+M—1,k=n-M, Vn (28)
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After measuring xy, at the step k there are [ time steps (I-Ts sec) to determine the new control
input Fj. During this time the system is controlled by the previous controller Fj_j;. After
having determined Fj we give it to the plant step by step, according to the interpolating
rule above. The cause why Fj is not applied immediately is the observation that our system
is sensitive to the change of the control gain. This means that small changes in F' cause
undesired oscillations in the system trajectories, especially in mpgr. The linear interpolation
attenuates this effect.



The modified control strategy does not necessarily inherit the advantageous properties
(constraint satisfaction, feasibility, stb.) of the original control policy. To ensure the feasibility
of F; the following slightly conservative method has been chosen: at time k the gain F, is
designed so that the the controlled system is stable and satisfy the constraints for all convex
combinations of the new and the previous control gains, i.e.:

F:aFk_M—}—(l—a)Fk (29)

Replacing the control input uy = Fyxp ), with ug, = F Tj 44|k and following the same argument
as [5] the new LMI conditions can be easily recalculated. The LMIs (23),(25) and (26) have
to be replaced by the LMIs (30), (31) and (32), respectively, which are defined as follows:

LMIs (23) and

Q QAT+ QF'BY QQF QFTR}
4Q+ Bil'Q @ 0 O >0, j=1.1L (30)
Qi Q 0 (A
R:FQ 0 0 NI
LMIs (25) and
X FQ
|:QFT Q :| 20, ij < uimax (31)
LMIs (26) and
Q (A;Q + B;FQ)Tcl
_ >0 32
|:C(AjQ + BjFQ) yl%ma:cf - (32)

where F = F),, P = P, F = F;,_j;. It can be seen that the new sets of LMIs, beside the
original F-dependent inequalities, contain further LMIs, which depend on the previous control
gain F. For further details see [8]. The modified control problem, therefore, can be handled
in the same way as the original one, except that it involves more LMI constraints.

The properties of the modified control policy can be summarized in the following theorem.
Theorem 2. (a) The control gain Fy, defines a feasible control policy for all time t > k.

(b) The control law obtained by using the modified MPC' algorithm stabilizes the closed loop
system, and satisfies the input and state constraints.

Proof. The proof is based on showing that the control policy

1—k—1
= Fy_ —(F — Fi—
-y + 7 (F = Finr)
t=k...k+M-1

E, = F i>k+M (33)

(which is the control policy (28) extended to infinite horizon) is feasible at all time. The
details of the proof can be found in [§]



Remark. Although (30), (31) and (32) contains more LMI-s than (23),(25) and (26), the
number of decision variables is the same in the two optimization problem. Therefore the
modified control policy does not require significantly more computation time than the original
one.

Remark. Our algorithm requires high computational power only at the M-th time steps, when
the LMI-s (30), (31) and (32) are solved. In other sampling instants a much simpler (low-
level) computing hardware is enough to realize the interpolation (28). Therefore the modified
algorithm can be implemented on a computer architecture depicted in figure 4. When there
is no need for the high capacity computer, it can be used to solve other tasks related to the
power plant.

4 Simulation Results

The control method was tested on an identified model of the pressurized water nuclear power
plant. The dynamics was sampled with Ty = 1s and it was centered around the operating
point belonging to N = 100% and Tpr = 599K. The remaining two state variables were
determined by substituting N, Tpg into (1)-(5) and solving the equations for 0. The steady-
state values obtained for Tpc, Tse and the control inputs were as follows:

Tpc =553.7398  Tsg = 530.3435
u1 = 4.5312 uo = 1.6823 (34)
In the simulation we examined the behavior of the plant under load increase, i.e. when the

states are steered to the origin (to the steady state (34)) from a workpoint belonging to a
lower neutron flux. In our case N(0) = 85% and

Tpc(0) = 548.9279  Tsq(0) = 529.4117 (35)

In the centered model these values are equivalent to the following initial state:
]T

2(0) = —[15 48119 0.9318 0 (36)

Since we had constraints prescribed for N and Tpg, these two state variables were chosen as
outputs, i.e.:

02[1 00 o} (37)

The constraints were as follows:

-20<21<20 (N-10< N <N +10)
—1<z4<1 (Tpr—1<Tpr<Tpr+1) (38)
The control inputs always have to be in a physically realizable range. This means for Wheqt pr

to be between 0 and 3.6 and for v to be between —15 and 15. Since in the MPC framework
the limits have to be symmetric to 0 we used the following constraints:

—10<u; <10
—tp <up <ty (0 < Wheat,pr < 3.3646) (39)



Figure 2: Trajectories of N, Tpc,Tsq, TPr

The weighting matrices in the cost function were chosen to be 1 = diag(0.1,0.1,0.1,0.01),
R = diag(0.01,0.01). The feedback gain was updated at every 12s (M = 12). For the com-
putation 2s was allocated (I = 2).

The dynamic behavior of the system controlled by the modified MPC procedure can be
seen in figs. 2 and 3. These figures show that the algorithm is able to solve the control
problem: the settling time of the neutron flux is acceptably small, the states and the control
inputs satisfy the prescribed constraints.

The simulation was performed in MATLAB/SIMULINK by using LMI Control Toolbox.
The computation time of the control gain at each time step was between 0.91sec and 1.42sec
on a P4 2.4 GHz processor. Since these values are smaller than the allocated time [-Ts = 2sec
we can conclude that the modified control procedure is suitable for real-time application.

5 Conclusions

In this paper an LMI based model predictive regulator has been constructed for the primary
circuit of a pressurized water nuclear power plant. During the control design it was shown that
the dynamic behavior of the plant can be described well by a continuous hybrid LPV dynamics.
Moreover, this model could be discretized so that the discrete time model obtained is also of
LPV form with the same parameters as its continuous counterpart. Then, the discrete time
hybrid model was embedded into a non-hybrid LPV structure, for which, effective control
design methods exist. For the discrete LPV model we have successfully applied the LMI-
based MPC algorithm proposed by [5]. Finally, a useful modification of the original control
algorithm has been proposed to better suit it to our special needs. The dynamic behavior of
the controlled system was investigated through numerical simulations and it has been found
to satisfy the input and state constraints.

Further work will be directed towards two possible improvements of the proposed method.
Firstly, the modeling of the real actuator dynamics of the neutronflux controller and secondly,



Figure 3: Control inputs uy, ug and mass flow mpp

Figure 4: Hardware architecture realizing the modified control policy

the treatment of some parameters (especially mgg and Tsg gw) as time-varying parameters
in the LPV model.
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