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Abstract: Engineering a synthetic oscillator requires an oscillatory model which can be
implemented into practice. Some required conditions for a successful practical implementation
include the robustness of the oscillation under realistic parameter values and the accessibility to
the variables that need to be manipulated. For a particular class of theoretical oscillators derived
from mass action kinetic models, oscillations appear provided that some of the concentrations
are kept constant at given values. This condition is not trivially accomplished in practice.
In this work we provide two different realizations of kinetic networks leading to the desired
limit cycle oscillation: a mass action kinetic system with constant inflow and outflow for some
of the species, and a stirred tank reactor configuration with some entrapped species where
the nonchemical effect of keeping some concentrations constant is achieved by manipulating
some accessible variables. The results, together with the robustness of the approach and the
conditions for further practical implementation are discussed and illustrated through the well
known Brusselator example.

Keywords: biochemical reaction, feedback linearization, nonlinear control systems, oscillators.

1. INTRODUCTION

One recurrent topic in synthetic biology is the design
and implementation of biological networks that perform
desired oscillations in a predictable manner. We focus on
a particular class of theoretical oscillators derived from
mass action kinetic models, where sustained oscillations
appear provided that the concentration of some of the
species involved are kept constant at particular values. A
number of reaction networks showing sustained oscillatory
behaviour for some ranges of the kinetic parameters have
been reported in the literature (Érdi and Tóth, 1989;
Nicolis and Nicolis, 1999) where the condition of keeping
some concentration constant is considered as a merely the-
oretical assumption. However, the appearance of sustained
oscillations in a real system driven by dynamics of this kind
requires this condition to be accomplished experimentally.

In this work, we provide two different realizations leading
to the desired oscillatory behaviour. In Section 3 we
describe how to obtain a mass action kinetic system (Horn
and Jackson, 1972) that in the presence of constant inflow
and outflow (or degradation) of some species, will produce
the a priori defined oscillation. In Section 4, the non-
chemical effect of maintaining the concentration of some
species constant during a biochemical reaction process is
achieved by nonlinear control. We design a linearization-
based control law able to keep the key concentrations

constant by manipulating some accessible variables. The
results are illustrated through the well known Brusselator
network.

2. SYSTEMS UNDER STUDY

Let us consider a mass action kinetic network with m
species and r reactions. The evolution of the species
concentration vector c in time is given by:

ċ = Nv (1)

where N is the m × r stoichiometric matrix and v is the
vector of reaction rates.

In the systems under study, oscillations appear when the
concentration of some species is kept constant. In what
follows, we will denote as key species the species to be
maintained constant to make the system to oscillate. Let
p be the number of key species, the dynamics of a system of
this kind is described through the literature by a reduced
order model of m− p ordinary differential equations:

ċ = N̂v (2)

where N̂ is the (m − p) × r matrix containing the rows
of the original stoichiometric matrix corresponding to non
key species, and v is the vector containing the reaction
rates for the r reactions. The concentrations of the key
species in the expression for the reaction rates take the
values of given constants.
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Example. The well known Brusselator network (Nicolis and
Prigogine, 1977) comprises four reversible steps:

A
k+1

GGGGGGBFGGGGGG

k−1

X v1 = k+1 c1 − k
−
1 c2 (3)

X
k+2

GGGGGGBFGGGGGG

k−2

C v2 = k+2 c2 − k
−
2 c3 (4)

B +X
k+3

GGGGGGBFGGGGGG

k−3

F + Y v3 = k+3 c2c4 − k
−
3 c5c6 (5)

2X + Y
k+4

GGGGGGBFGGGGGG

k−4

3X v4 = k+4 c
2
2c6 − k−4 c32 (6)

According to Nicolis and Nicolis (1999) oscillations appear
for some kinetic parameters when the concentrations of the
key species A,B,C and F are held constant at particular
values denoted by a, b, c and f . For the values in Table
1 the system shows the limit cycle oscillation depicted in
Fig. 1. To avoid confusion the concentrations of X and Y
are denoted in what follows by x and y. The corresponding
reduced order model reads:

ẋ = k+1 a+ k−2 c− (k+3 b+ k−1 + k+2 )x+ k−3 fy . . .

+ k+4 x
2y − k−4 x3

ẏ = k+3 bx− k
−
3 fy − k

+
4 x

2y + k−4 x
3. (7)

Fig. 1. Brusselator limit cycle for a, b, c, f in Table 1.

Table 1. Key species’ values (Brusselator)

k+1 k−1 k+2 k−2 k+3 k−3 k+4 k−4 a c b f

1 1 1 1 1 1 1 1 1 1 16 0.5

3. MASS ACTION EQUIVALENT REALIZATION

Usually, in order to maintain the concentration of some
species constant during a reaction process, one can make
them to be in a large excess over the rest. The assumption
of constant concentration for species in large excess within
the control volume is largely widespread in Chemistry
and Chemical Engineering (Missen et al., 1998; Othmer,
2003). Oscillations appearing at constant concentrations
of the key species will persist in the real system until the
excess of these species vanishes, as it corresponds to a
closed system, where the oscillations cannot be sustained

in the long term. Therefore, the reduced order model (2)
showing oscillatory behaviour will be only valid for a time
period when the excess of the key species persist. It is
important to remark here that closed mass action kinetic
networks, fulfilling the detailed balance condition, evolve
towards a unique and stable equilibrium point (Otero-
Muras et al., 2008). Therefore, any mass action kinetic
network exhibiting sustained oscillations is necessarily
open, where some external forces are maintaining the
system far from the thermodynamic equilibrium by means
of matter and/or energy exchange through the boundary.
This exchange may lead to the unfulfillment of the detailed
balance condition and/or of the mass conservation (within
the control volume) for any of the atomic species in the
network.

Starting from a non mass action oscillatory network of the
class introduced in the previous Section, we describe next
how to design a mass action kinetic system producing the
same sustained oscillation. To this purpose, we construct
a network diagram by stripping away the key species from
the original network such that: i) the key species appearing
in a complex 1 together with other non key species are
stripped away and their concentration is embedded in
the corresponding kinetic constant, ii) if all species in
a particular complex have time invariant concentrations,
the complex is substituted by the zero complex (where
all the species’ coefficients are zero) representing the
environment.

In this way, the oscillatory behaviour can be reproduced
by a mass action kinetic system by modifying some ki-
netic constants (case R.1) and/or adding a constant in-
put/output flow of some non key species (case R.2).

Example. Next, we construct a mass action kinetic network
leading to the same dynamics as (7). In first instance,
by keeping B and F constant at the values b and f ,
respectively, the reaction step (5) is transformed into:

X
k̃+2

GGGGGGBFGGGGGG

k̃−2

Y ṽ2 = k̃+2 x− k̃
−
2 y (8)

with k̃+2 = b k+3 , k̃−2 = f k−3 . Keeping A and C constant,
the reactions (3) and (4) lead to:

∅
kin

GGGGGGGBFGGGGGGG

kout
X ṽ1 = kin−koutx (9)

where ∅ represents the environment and kin, kout are the
inflow/production rate and the outflow/degradation rate
constant of the species X. An equivalent mass action
kinetic network for the Brusselator assuming constant
concentrations of the species A, C, B and F reads:

∅
kin

GGGGGGGBFGGGGGGG

kout
X ṽ1 = kin − koutx

X
k̃+2

GGGGGGBFGGGGGG

k̃−2

Y ṽ2 = k̃+2 x− k̃
−
2 y

2X + Y
k+4

GGGGGGBFGGGGGG

k−4

3X ṽ3 = k+4 x
2 y − k−4 x3

1 Complexes are the sets of species in both sides of a reaction arrow
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and the dynamics, described by:

ẋ = −ṽ2 + ṽ3 + kin − koutx,
ẏ = ṽ2 − ṽ3,

with kin = k+1 a+k−2 c, kout = k−2 +k−1 is equivalent to (7).

4. FEEDBACK LINEARIZING CONTROL

In this Section we design a controller that, by keeping
the key species concentrations constant at some specific
critical values, drives the system to the manifold in the
state-space where the desired nonlinear dynamics occurs,
in this case, a sustained oscillation. The control approach,
inspired by Grognard and Canudas de Wit (2004), includes
an input-output linearization by feedback. Before stating
the main result, let us introduce the following Proposition.
The complete statement and proof can be found in the Ap-
pendix, together with a description of the needed notation
and geometric properties (internal dynamics, normal form
and relative degree).

Proposition 1. Consider the Multi Input Multi Output
(MIMO) system

ẋ = f(x) + g(x)u u ∈ U (10)

y = h(x) y ∈ Y (11)

with x ∈ Rm, U = Y = Rp, and vector relative degree
{r1, . . . , rp}, globally defined and constant. The feedback:

u = −R−1(x)(α(x) +w) (12)

with R being the m×m matrix:

R(x) =


Lg1L

r1−1
f h1(x) . . . LgpL

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) . . . LgpL

r2−1
f h2(x)

...
. . .

...

Lg1L
rp−1
f hp(x) . . . LgpL

rp−1
f hp(x)

 (13)

and α(x) being:

α =


L
(r1)
f h1(x)

...

L
(rp−1)
f hp−1(x)

L
rp
f hp(x)

 (14)

linearizes the MIMO system from the new input w to the
output y.

Remark 1. The closed loop dynamic system (11) with
feedback (12) can be expressed in (z,y) coordinates such
that 2 :

ż = f(z, y1, . . . , y
(r1−1)
1 , . . . , yp, . . . , y

(rp−1)
p )

y
(1)
1 = Lfh1(x)

...

y
(r1)
1 = w1

...
y(1)p = Lfhp(x)

...

y(rp)p = wp

(15)

where ż = f(z, y1, . . . , y
(r1−1)
1 , . . . , yp, . . . , y

(rp−1)
p ) repre-

sent the internal dynamics.

2 Let us remind here the notation y(k) ≡ dyk/dkt

Now, we are in the position to introduce the control law
driving the dynamics to a limit cycle.

Proposition 2. Consider a reaction network with p key
species si ∈ Skey, such that the species formation function
f : Rm 7→ Rm corresponding to the inner kinetics

f(c) = Nv, (16)

exhibits sustained oscillations when the concentration of p
key species is kept constant at some specific critical values
c̃ ∈ Rp

≥0.

Then, the system

ċ = Nv + φ(cin(t)− c) c ∈ Rm
≥0

y = h(c) (17)

where h : Rm 7→ Rp, with a control law of the form:

cin(t) = c+
1

φ
G(c)u (18)

and u given by:

u = −
[
∂h

∂c
G(c)

]−1
∂h

∂c
Nv +

[
∂h

∂c
G(c)

]−1
w, (19)

exhibits a limit cycle in the internal dynamics, provided
that:

(i) w ∈ Rp is a external reference input of the form:

w = −K(y − ỹ), (20)

such that (dimy = dimu = p), K ∈ Rp×p is an
arbitrary positive definite diagonal matrix and ỹ = c̃,
with c̃ containing the critical concentration values.

(ii) The matrix G(c) ∈ Rm×p is constructed as follows.
Let G′ ∈ Rm×m defined as:

G′ij(c) =

{−ci + 1 for i = j, if si, si ∈ Skey

−ci for i 6= j, if si, sj ∈ Skey

0 for j = 1, . . . , p if si, sj /∈ Skey.
(21)

G(c) = G′(c)Ik, (22)

with Ik = {1, 0}m×p, where the columns 1, . . . , p of Ik
are the vectors of the euclidean basis corresponding
to key species 1, . . . , p.

Proof Substituting the expression (18) into (17), the
system reads:

ċ = Nv + G(c)u c ∈ Rm
≥0

y = h(c) (23)

where h : Rm 7→ Rp and G(c) is defined by (21).

Let us compute now the MIMO linearizing law introduced
in Proposition (1). The matrix R(c) in (13) reads:

R(c) =


LG1h1(c) . . . LGph1(c)
LG1h2(c) . . . LGph2(c)

...
. . .

...
LG1hp(c) . . . LGphp(c)

 (24)

where by construction, the relative degree of the system
(23) fulfills:

r1 = r2 = . . . = rp = 1.

The expression for α in (14) becomes:

α =


Lfh1(c)

...
Lfhp−1(c)
Lfhp(c)

 . (25)
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After substituting (24) and (25) in (12), the MIMO lin-
earizing feedback is transformed into (19). According to
Proposition 1, this feedback linearizes the MIMO system
(23) from the input w to the output y. The closed loop
system in the (z,y) coordinates can be expressed, accord-
ing to Eq. (2), as:

ż = f(z, y1, y2, . . . , yp)
ẏ1 = w1

ẏ2 = w2

...
ẏp = wp.

Setting the external reference given by (20) in the system
above, we arrive to the following expression for the closed
loop dynamics, in compact form:

ż = ζ(z,y) (26)

ẏ = −K(y − ỹ) (27)

where (26) is the internal dynamics, and the linear stabi-
lizing feedback (20) drives the system exponentially to the
manifold ỹ. The internal dynamics (26), as it was assumed
in the main statement, shows a limit cycle oscillation when
the concentrations of the key species si ∈ Skey are constant
and equal to the critical values c̃i. Provided that ỹ = c̃
in (20), the controller drives the concentrations of the
key species to the critical values, and the oscillation will
appear for the controlled system in the reduced manifold
determined by ci = c̃i for si ∈ Skey.

The system can be implemented into practice provided
that: i) all concentrations can be measured, ii) inflow con-
centrations of key species can be manipulated as required,
iii) the control volume is constant during the process,
iv) the non key species are entrapped within the control
volume. The feedback linearization technique is known to
be sensitive to model error. However, in the systems under
study, oscillatory behaviour prevail for ranges of kinetic
parameters and key species reference concentrations, hence
error within certain margins will be tolerated without
loosing the desired oscillation.

Example. The Brusselator network is again selected as
a proof of concept for the proposed control law. As
reported previously, a limit cycle oscillation appears in the
Brusselator when A, B, C and F are held constant at the
values shown in Table 1. Using the results presented a
controller is designed next to drive the dynamics (3-6) to
the sustained oscillation shown in Fig. 1. The key species
A, B, C and F are chosen to be controlled by their inlet
flow rate. The selected output vector is:

y = (c1 c3 c4 c5)T .

and the closed loop expression is of the form (23) with:

Nv =


−1 0 0 0

1 −1 −1 1
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 1 −1


 v1
v2
v3
v4

 .

The expressions for the reaction rates v1, v2, v3 and v4 are
given by Eqs. (3-6), and G(c) is constructed following (21):

G(c) =


−c1 + 1 −c1 −c1 −c1

0 0 0 0
−c3 −c3 + 1 −c3 −c3
−c4 −c4 −c4 + 1 −c4
−c5 −c5 −c5 −c5 + 1

0 0 0 0

 .

The matrix (13) reads:

R(c) =

−c1 + 1 −c1 −c1 −c1
−c3 −c3 + 1 −c3 −c3
−c4 −c4 −c4 + 1 −c4
−c5 −c5 −c5 −c5 + 1

 ,

and the vector (14) is of the form:

α(c) =


−k+1 c1 + k−1 c2
k+2 c2 − k

−
2 c3

−k+3 c2c4 + k−3 c5c6
k+3 c2c4 − k

−
3 c5c6

 .

According to Proposition 1, the feedback law (19) lin-
earizes the system from the input w to the output y. The
input w is defined by (20), where the constant reference
for y to be tracked by the controller is

ỹ = (1 1 16 0.5)T

and the linear feedback gain K selected to stabilize the
linear part of the input-output linearized system is the
(4 × 4) identity matrix. The trajectories of the closed
loop system evolve to the manifold where the limit cycle
appears, as it is shown in Fig. 2 (a, b). We choose a

Fig. 2. Closed loop response (a) in the time domain (b) in
the c2–c6 phase space. (c),(d),(e),(f) key species’ inlet
concentrations.

residence time such that (18) is satisfied for positive inlet
concentrations. In Fig. 2 (c-f) the inlet concentrations of
the key species driving the system to the desired oscillation
computed using (18) are depicted. Here it is important to
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Fig. 3. Viable reference values for a sustained oscillation
(b-c), and corresponding locations of the unstable
focus (a). In light grey, viable reference values for
a sustained oscillation with focus within a circle of
radius 0.5 around the nominal value.

note that both the required inlet and outlet concentrations
for species X and Y are zero, thus X and Y must be
entrapped in the control volume. In order to analyze the
capacity of the controller to maintain a given desired
behaviour in presence of uncertainty, we explore the space
of the reference values, using the algorithm by Zamora-
Sillero et al. (2011). In Fig. 3 we depict the values of the
reference ỹ found to preserve a sustained oscillation (blue
regions). In light grey, we depict the values of the reference
ỹ found to preserve the oscillation where distance of the
unstable focus to the reference value (1, 11) is less or equal
than 0.5.

APPENDIX

Concepts and results summarized in this Appendix are
closer discussed in (Isidori, 1989; Kravaris, 1990; Grognard
and Canudas de Wit, 2004). Let us define a nonlinear
system affine in the input and without feedthrough term
of the form:

ẋ = f(x) + g(x)u u ∈ U
y = h(x) y ∈ Y (28)

where x ∈ Rn. For a MIMO (Multi Input Multi Output)
system with p outputs and m inputs, U = Rm, Y = Rp,
g(x) is an n×m matrix:

g(x) = [g1(x), . . . , gm(x)]

and h(x) a p-vector.

Basic geometric properties

Let λ(x) : Rn → R. The derivative of λ along f is denoted:

Lfλ(x) =

(
∂λ

∂x

)T

f(x) =

n∑
i=1

∂λ

∂xi
fi(x). (29)

We also define:

LgLfh(x) =
∂(Lfh)

∂x
g(x) (30)

and

Lk
fh(x) =

∂(Lk−1
f h)

∂x
f(x). (31)

Definition 1. The MIMO system (28) with U = Y = Rm

is said to have a (vector) relative degree {r1, . . . , rm} at a
point x0 if, for all x in a neighborhood of x0:

(i) LgjL
k
fhi(x) = 0 for all 1 ≤ i, j ≤ m and k < (ri − 1);

(ii) the m×m matrix:

R(x) =


Lg1L

r1−1
f h1(x) . . . LgmL

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) . . . LgmL

r2−1
f h2(x)

...
. . .

...
Lg1L

rm−1
f hm(x) . . . LgmL

rm−1
f hm(x)


(32)

is not singular at x = x0.

Definition 2. Let us consider a dynamic system of the
form (28) in which relative degree is defined. For the sake
of simplicity, let us consider the SISO system (28) with
p = m = 1, and assume that the relative degree r of the
system is globally defined and constant. Let us apply a one
to one change of coordinates

[ξ, z] = Φ(x) (33)

being:

ξ = [φ1(x), . . . , φr(x)], z = [φr+1(x), . . . , φn(x)] (34)

such that φi(x) = Li−1
f h(x) for 1 ≤ i ≤ r and Lgφi(x) = 0

for r + 1 ≤ i ≤ n, then:

ξ1 = h(x)

ξ2 = Lfh(x)

...

ξr−1 = Lr−2
f h(x)

ξr = Lr−1
f h(x)

and therefore:

ξ̇1 = ξ2

ξ̇2 = ξ3
...

ξ̇r−1 = ξr

ξ̇r =
∂Lr−1

f h(x)

∂x
ẋ = Lr

fh(x) + LgL
r−1h(x)u = v (35)

Using the condition Lgφi(x) = 0 for r + 1 ≤ i ≤ n,
subsystem z takes the form:

ż = F (z, ξ). (36)

The expression of the dynamic system (28) after the
change of coordinates described, constituted by two sub-
systems of the form (35) and (36) is denoted as normal
form in the context of nonlinear feedback theory. The
subsystem (36) represents the internal dynamics of (28)
with respect to the output y.

Input Output linearizing feedback

Proposition 3. Consider the MIMO system (28) with U =
Y = Rm, and vector relative degree {r1, . . . , rm}, globally
defined and constant. The feedback:

u = −R−1(x)(α(x) + v) (37)
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with R defined by (32) and α(x) being:

α =


L
(r1)
f h1(x)

...

L
(rm−1)
f hm−1(x)
Lrm
f hm(x)

 (38)

linearizes the MIMO system from the input v to the output
y. That is, transforms the system into a system whose
input-output behaviour is identical to that of a linear
system having a transfer function matrix:

Y (s)

V (s)
=



1

sr1
0 . . . 0

0
1

sr2
. . . 0

...
...

. . .
...

0 0 . . .
1

srm


(39)

proof First, let us transform (28) to normal form by
means of a change of coordinates of the form:

[ξ1, . . . , ξm, z] = Φ(x) (40)

where, for i = 1, . . . ,m

ξi = [ξi1, . . . , ξ
i
ri ] = [φi1(x), . . . , φiri(x)] (41)

and
z = [z1, . . . , zn−r] = [φr+1(x), . . . , φn(x)] (42)

such that, on the one hand:

ξi1 = hi(x)

ξi2 = Lfhi(x)

...

ξir−1 = Lr−2
f hi(x)

ξir = Lr−1
f hi(x)

for i = 1, . . . ,m and then:

ξ̇i1 = ξi2

ξ̇i2 = ξi3
...

ξ̇iri−1 = ξ̇iri
ξ̇iri = Lri

f hi(x) + Lg
ri
j L

ri−1
f hi(x) (43)

and, on the other hand, φr+1(x), . . . , φn(x) are such that:

ż = f(z, ξ1, . . . , ξm). (44)

Conditions under which such a change of coordinates
can be found are described by Isidori (1989). The feed-
back (37), known as the Standard Noninteractive Feedback
(Isidori, 1989), applied to the system described by (43)
and (44) yields the following system, characterized, on the
one hand, by m sets of equations of the form:

ξ̇i1 = ξi2

ξ̇i2 = ξi3
...

ξ̇iri−1 = ξ̇iri
ξ̇iri = vi (45)

plus an additional set of the form (44) constituted by
n−r equations. The input-output behaviour of this system
coincides with the corresponding to a linear system having
the transfer function matrix (39).

Remark 2. Taking in account the following equivalences:

y1i = ξi2

y2i = ξi3
...

y
(r−1)
i = ξir
yri = vi

the system in normal form described by (45) and (44) can
be expressed in an equivalent form by:

ż = f(z, y1, . . . , y
(r1−1)
1 , . . . , ym, . . . , y

(rm−1)
m )

y
(1)
1 = Lfh1(x)

...

y
(r1)
1 = v1

...
y(1)m = Lfhm(x)

...

y(rm)
m = vm

(46)
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