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Abstract

In this letter we show that closed reversible chemical reaction net-

works with independent elementary reactions admit a global pseudo-

Hamiltonian structure which is at least locally dissipative around any

equilibrium point. The structure matrix of the Hamiltonian descrip-

tion reflects the graph topology of the reaction network and it is a

smooth function of the concentrations of the chemical species in the

positive orthant. The physical interpretation of the description is

briefly explained and two illustrative examples are presented for global

and local dissipative Hamiltonian description, respectively.

Keywords: Hamiltonian systems, Nonlinear systems, Reaction kinetic sys-

tems, Reaction networks

1 Introduction

The class of Hamiltonian systems as a special type of passive systems have

gained significant interest during the last decade [5]. This interest is mainly

originated from the fact that Hamiltonian systems have a number of ad-

vantageous properties from a control theoretic point of view. However, the

Hamiltonian description of dynamical systems in an appropriate coordinates

system is also extremely useful for the deep understanding of the underlying

physical processes and the complex relations between the system’s struc-

ture and the preservation or dissipation of energy-like quantities. Beside

pure mechanical systems, well-known examples of Hamiltonian systems are

LC-circuits [10, 4], electromechanical models [13] and even certain classes of

distributed process systems [9]. The possibility to transform nonlinear con-

trol systems to Hamiltonian form via feedback has been studied in a recent

paper [2].

A more general system class is the set of pseudo-Hamiltonian systems [3],

where the algebraic system structure is the same as in the case of Hamiltonian

systems, but the invariance or the decreasing nature of the Hamiltonian

function cannot be proved globally from the properties of the structure matrix

of the system. In [17], an effective general algorithm is presented for obtaining
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the approximate dissipative Hamiltonian realization and constructing local

Lyapunov functions for continuous time nonlinear systems.

One of the most significant achievements in the study of the dynamical

properties of complex chemical reaction systems is [7], where (among other

important results) the global stability of so-called ’deficiency zero’ reaction

networks is proved with a given Lyapunov function. It is important to note

that the deficiency zero property is a structural feature of a certain class of

reaction networks, therefore their stability does not depend on the system

parameters. These ideas were recalled, extended and put into a control theo-

retic framework in [15]. In agreement with [7] (as they fall into the deficiency

zero class) the closed and reversible reaction networks with independent ele-

mentary reactions are proved to be globally stable [8]. The thermodynamical

foundations of the passivity properties of process systems (into which class

reaction kinetic systems also belong) were defined in [18] and [1], where the

storage function is derived from the entropy.

It is shown in [3] and [11] that Lyapunov-stable nonlinear systems can be

algorithmically transformed to a special Hamiltonian form, but in this case,

the structure matrix is generally nonsmooth at the equilibrium point, and

not much physical insight is gained about the system structure.

Based on the above mentioned results, the aim of this short paper is to

show that closed reversible reaction networks admit a pseudo-Hamiltonian

structure where the structure matrix is smooth in the positive orthant of

the concentration space and it is negative definite in a neighborhood of any

equilibrium point if the elementary reactions are independent.

2 Basic notions

2.1 The basic structure of reaction kinetic networks

In describing the underlying dynamic structure of reaction networks, we

adopt the notation employed in [8] for the dissipative reaction network kinet-

ics. We can distinguish between closed (isolated) and open kinetic networks

depending on whether there is or not material exchange with the environ-

ment.
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Let us consider the isolated and homogeneous isotherm systems where n

chemical species participate on a r-step reaction network, represented by the

following stoichiometric mechanism:
n∑

i=1

αijAi ⇄

n∑

i=1

βijAi for j = 1, . . . , r (1)

with αij , βij being the constant stoichiometric coefficients for specie Ai in the
reaction step j. The linear combinations of the species in eq. (1), namely
∑n

i=1 αijAi and
∑n

i=1 βijAi for j = 1, . . . , r are called the complexes. All
reactions are assumed to be reversible, with reaction rates obeying the mass

action law [7]:

Wj(x) = k+
j

n∏

i=1

x
αij

i − k−
j

n∏

i=1

x
βij

i , j = 1, . . . , r (2)

where k+
j and k−

j are the constants of the direct and inverse rates of the

j-th reaction step, respectively, and xi > 0 represents the concentration of

the specie Ai. Each concentration evolves in time according to the ordinary

differential equation:

ẋi =
r∑

j=1

νijWj(x), i = 1, . . . , n (3)

where νij = αij −βij is positive or negative depending on whether the specie

i is a product or a reactant in the reaction j. The dynamic evolution of the

network can then be represented by a set of ordinary differential equations

which in compact matrix form is written as:

ẋ = N ·W (x) (4)

where N = [νij ] is the n×r coefficient matrix whose columns are the so-called

stoichiometric vectors ν·j = β·j − α·j, and W (x) ∈ R
r denotes the vector of

reaction rates.

The following simple example illustrates the above notions. Let the set

of species be given by P1,P2,P3, and P4, while the set of complexes is P1,

P2 + P3, and P4. The reactions are

P1

k+
1−→←−

k−
1

P2 + P3

k+
2−→←−

k−
2

P4 (5)
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The α and β matrices are given by

α =








1 0

0 1

0 1

0 0








, β =








0 0

1 0

1 0

0 1








, (6)

from which N can be calculated as

N = β − α =








−1 0

1 −1

1 −1

0 1








(7)

The reaction rates are given by

W1(x) = k+
1 x1 − k−

1 x2x3 (8)

W2(x) = k+
2 x2x3 − k−

2 x4 (9)

Now, let us modify the structure of (5) in such a way that there is a further

reaction step between P1 and P4:

P1

k+
1−→←−

k−
1

P2 + P3

k+
2−→←−

k−
2

P4

k+
3−→←−

k−
3

P1 (10)

Now, the modified stoichiometric matrix is

N ′ =








−1 0 1

1 −1 0

1 −1 0

0 1 −1








(11)

and the third reaction rate (in addition to (8) and (9)) reads

W3(x) = k+
3 x4 − k−

3 x1 (12)

Observe that the columns of the original N are linearly independent which

means that N is of maximal rank. In this case, we say that the elementary

reactions (or the stoichiometric vectors) are independent. It is also visible,
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that the rank of the modified N ′ is only two, because the structure of the

modified reaction is such that the third column of N ′ is a linear combination

of the columns of N .

From now, we assume that r ≤ n and the the columns of N are linearly

independent i.e., the rank of N is exactly r. With this assumption, we

only deal with a proper subclass of closed reversible reaction networks, since

many reaction networks occurring in natural or technological systems contain

linearly dependent column vectors in N .

The reaction polyhedron. It is easy to see from (4) that any vector ck ∈ R
n,

k = 1, . . . , n− r belonging to the kernel of N T defines a linear first integral:

cT
k x(t) = cT

k x(0) =: C0
k , ∀t ≥ 0, k = 1, . . . , n− r, (13)

since cT
k ẋ = 0. It is also known that the positive orthant denoted by R

+
n is

positively invariant for the dynamics (4) (see e.g., [8, 7]). For a given initial

condition x(0), equation (13) defines an r-dimensional invariant manifold

Mx0
which is a parallel translate of an r-dimensional subspace spanned by

the column vectors of N . The intersection of the positive orthant withMx0

is called the reaction polyhedron denoted by Ω(x0):

Ω(x0) =
{
x ∈ R

+
n | c

T
k (x− x0) = 0, k = 1, ..., n− r

}
, (14)

that is also invariant for the system dynamics.

The equilibrium manifold. From the assumption r ≤ n and from the rank

condition on N it follows that ẋ = 0 ⇔ W (x) = 0, which determines the

set of equilibrium points of the closed system. It is known from the sta-

bility theory of the studied subclass of reaction networks, that within each

reaction polyhedron, there is exactly one equlibrium point which is globally

stable in the space of positive concentrations (i.e., R
n
+), and globally asymp-

totically stable if the system’s dynamics is restricted to the r-dimensional

reaction polyhedron. Therefore, assuming that the value of x(0) is known, it

is common to study the dynamics of (4) restricted to Ω(x0) using the linear

equations (13) [15]. From this it also follows that the minimal representation

of a chemical reaction system (4) is r-dimensional. The equilibrium point of

interest will be denoted by x∗ throughout the paper.
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2.2 Generalized Hamiltonian systems

The form of generalized dissipative Hamiltonian systems we will use is defined

in [5]. In the autonomous case, this system class is defined by the differential

equations

ẋ = (J(x)−R(x))HT
x (x), (15)

where x ∈ R
n, H : R

n 7→ R is the Hamiltonian function, J(x) is an n × n

skew symmetric matrix (i.e. JT (x) = −J(x)), the energy conserving part

of the system, and R(x) = RT (x) is the so called dissipation matrix. Hx

denotes the gradient of H (row vector).

The time derivative of the Hamiltonian function is

Ḣ = Hx(x)(J(x)− R(x))HT
x (x) = (16)

Hx(x)J(x)HT
x (x)

︸ ︷︷ ︸

0

−Hx(x)R(x)HT
x (x). (17)

It is clear from (17) that the skew symmetricity of J implies that yTJ(x)y =

0, ∀x, y ∈ R
n, which means that H is a conserved quantity (first integral) of

the system if R = 0. These facts motivate us to use the notion of generalized

Hamiltonian systems.

It is also visible from (17) that if yTR(x)y ≥ 0, ∀x, y ∈ R
n (i.e. R is posi-

tive semidefinite), then the Hamiltonian function is nonincreasing. Of course,

this property might not be satisfied globally, but only in some neighborhood

of the equilibrium point.

It is important to note that in physical system models, the matrices J(x)

and R(x) often reflect the physical structure or topology of the system [5].

A further important remark clarifies the connection between the general-

ized Hamiltonian and the GENERIC [16] structures. The general equation

for the time-evolution of beyond-equilibrium systems is formalized in the so

called GENERIC structure that accounts for the reversible and irreversible

contributions of the total energy E(x) and the entropy S(x):

ẋ = L(x) · ET
x (x) + M(x) · ST

x (x), (18)

where x is a set of independent variables required for a complete description

of the system (e.g. energies, velocities, etc.) and Ex and Sx denote the
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gradients of E and S, respectively. In addition, the skew-symmetric matrix

L(x) and the positive semi-definite M(x) satisfy the so called degeneracy

properties:

L · ST
x (x) = 0 (19)

M ·ET
x (x) = 0 (20)

and the impositions of the First and Second Law of thermodynamics:

dE

dt
= 0 (21)

dS

dt
≥ 0 (22)

It is visible that taking into consideration eqs. (19)-(20), the algebraic struc-

ture of (15) matches the generic structure (18) with L = J , M = R and H

being a thermodynamic potential constructed from the linear combination of

the total energy and entropy of the system. However, the dissipative Hamil-

tonian structure does not require in general that the Hamiltonian function

should be separated into two physically meaningful parts like E and S in the

GENERIC framework.

3 Local Hamiltonian structure of reaction net-

works

Let us denote the forward and backward parts of the reaction rates in the

following way

pj(x) = k+
j

n∏

i=1

x
αij

i , qj(x) = k−
j

n∏

i=1

x
βij

i , j = 1, . . . , r (23)

We define the reaction space as follows (the x arguments are suppressed in p

and q):

zj = ln pj − ln qj, j = 1, . . . , r (24)

Note that the product RTzj (with R being the gas constant and T the tem-

perature) is the chemical affinity corresponding to the reaction step j [6].

8



In order to construct an invertible mapping between x and z, let us extend

(24) with the conserved quantities as additional coordinate functions in the

following way

z̄ = Ψ(x) (25)

where

z̄j = zj = ln

(

k+
j

k−
j

n∏

i=1

x
νij

i

)

, j = 1, . . . , r (26)

z̄k = cT
k−r · x, k = r + 1, . . . , n (27)

We assume that we know the value of x at any time instant, therefore z̄k in

(27) are known and constant. Furthermore, it is assumed that the Jacobian

of Ψ is full rank at any xi > 0, i = 1, . . . , n and this implies that the inverse

x = Ψ−1(z) exists in the whole positive orthant.

The time-derivative of zj is given by

żj =
1

pj
ṗj −

1

qj
q̇j =

1

pj

∂pj

∂x
ẋ−

1

qj

∂qj

∂x
ẋ =

=

[
1

x1

(α1j − β1j)
1

x2

(α2j − β2j) . . .
1

xn

(αnj − βnj)

]

ẋ (28)

Using (4) and (28), the time derivative of the vector z can be written as

ż = −N T Γ(x) · ẋ = −N T Γ(x)N ·W (x), (29)

where

Γ(x) = diag

(
1

x1
,

1

x2
, . . . ,

1

xn

)

. (30)

The rank of N is always r and xi > 0 for i = 1, . . . , n, therefore the matrix

N T Γ(x)N is nonsingular and positive definite at any fixed x, since it can be

written as P T P , where

P = (Γ(x))1/2N . (31)

This means, that the system (29) is at equilibrium if and only if W (x) = 0 i.e.

the unique equilibrium point in the z-coordinates is at zi = 0, i = 1, . . . , r.

Furthermore, from eqs. (2), (23) and (24) the reaction rates can be ex-

pressed as

Wj = pj − qj = exp(zj)qj − qj = qj [exp(zj)− 1] (32)
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Let us use the following notation:

F (x) = diag(q1(x), . . . , qr(x)) (33)

Let the Hamiltonian function H be defined as

H(z) =

r∑

j=1

q∗j [exp(zj)− zj − 1] (34)

where q∗i denotes the value of qi at the equilibrium point x∗. It is easy to

show that H is globally convex and bounded from below, therefore it can be

used as a Lyapunov function.

Using Eqs. (29), (32) and (34) we can write

ż = −N T Γ(x)N · F (q) · (F (q∗))−1 ·HT
z (z) (35)

or shortly

ż = −G(x) ·HT
z (z) (36)

where

G(x) = N TΓ(x)N · F (q) · (F (q∗))−1 (37)

and HT
z denotes the gradient transpose of H . Using the assumption that Ψ

is invertible, (36) can be written as

ż = −G(Ψ−1(z̄)) ·HT
z (z) (38)

It is easy to see, that G + GT is positive definite in a neighborhood of the

equilibrium point, since it is smooth with respect to x in the positive orthant

and

G(x∗) = N TΓ(x∗)N · F (q∗) · (F (q∗))−1 = N T Γ(x∗)N (39)

However, it cannot be guaranteed for an arbitrary reaction network that

G + GT is positive definite in the whole concentration space. Therefore we

can state the following proposition

Proposition 1 For any closed reaction kinetic system of the form (4) with

independent elementary reactions, there exists a neighborhood U around the

equilibrium point z∗ = 0, where the system admits a dissipative Hamiltonian

description with Hamiltonian function (34).
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Physical interpretation The G matrix in the Hamiltonian description

reflects the connectivity properties of the reaction network (N together with

the chemical composition of the complexes defines the graph structure of the

system). It is also visible that G(x∗) is symmetric and G looses its symmetry

outside the equilibrium point. The Hamiltonian function H contains the

scaled chemical affinities, but it is rather an abstract construction and not

the total energy of the system as in the case of most mechanical and electrical

systems.

In a thermodynamic sense, the local definiteness of G+GT is related to the

so-called entropy production function given by the product of thermodynamic

fluxes and forces:

Ḃ = −zT ·W = −
r∑

j=1

ln
pj

qj

(pj − qj) (40)

where the transformed entropy function B in the space of the chemical con-

centrations is defined as

B(x) =

n∑

i=1

xi

(

ln

(
xi

x∗
i

)

− 1

)

+ x∗
i (41)

It is known that B (which is a measure of the inner dissipation of the system)

is globally convex in the positive orthant and it is nonincreasing in time

(see, e.g. [8]). Therefore Ḃ is globally negative semidefinite but it is only

locally concave (as a function of the concentrations) in a neighborhood of

the equilibrium point determined by the topology of the reaction network

and the kinetic constants. Ḃ loses its concavity in the so called far from

equilibrium region of the concentration space [12]. This property can be a

source of complex nonlinear behavior (e.g. multiple steady states or nonlinear

oscillations) when the system is opened and the exchange of material with

its environment is permitted that can be modeled as external manipulable

(or disturbance) inputs [14].
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4 Examples

4.1 Global dissipative Hamiltonian description

Let the reaction system with six species P11,P12,P13,P21,P22, and P23 (together

with the corresponding concentrations x1, x2, . . . , x6, respectively) and four

complexes P11 + P12, P13, P21 + P22 and P23 be given in the following form.

P11 + P12

k+
1−→←−

k−
1

P13 (42)

P21 + P22

k+
2−→←−

k−
2

P23 (43)

The matrices characterizing the reaction network are given by

N T =

[

−1 −1 1 0 0 0

0 0 0 −1 −1 1

]

(44)

Γ(x) = diag

(
1

x1
, . . . ,

1

x6

)

, F (x) = diag(q1(x), q2(x)), (45)

and

G(x) =





(x−1

1
+x−1

2
+x−1

3
)x3

x∗

3

0

0
(x−1

4
+x−1

5
+x−1

6
)x6

x∗

6



 (46)

We can see that G is globally positive definite in the whole positive orthant,

which means that the reaction system admits a global dissipative Hamilto-

nian structure. Based on the above calculations, it is easy to see that any

set of independent reactions of the type

δi∑

j=1

cijPij

k+
i−→←−

k−
i

ni∑

l=δi+1

cilPil, δi < ni, i = 1, . . . , r (47)

defines a global dissipative Hamiltonian structure.
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4.2 Local dissipative Hamiltonian description

4.2.1 Model of the reaction network

Consider the following simple reaction network with three species (P1, P2,

P3) and four complexes P1 + P2, P3, P2 + P3 and 2P3:

P1 + P2

k+
1−→←−

k−
1

P3 (48)

P2 + P3

k+
2−→←−

k−
2

2P3 (49)

The matrix N of the system is written as

N =






−1 0

−1 −1

1 1




 (50)

The forward and backward reaction rates are

p1 = k+
1 x1x2, q1 = k−

1 x3 (51)

p2 = k+
2 x2x3, q2 = k−

2 x2
3 (52)

From the above equations, the components of the vector W are calculated as

W1 = p1 − q1 = k+
1 x1x2 − k−

1 x3 (53)

W2 = p2 − q2 = k+
2 x2x3 − k−

2 x2
3 (54)

Using N and W , the equations of the reaction system are the following

ẋ1 = k−
1 x3 − k+

1 x1x2 (55)

ẋ2 = k−
1 x3 − k+

1 x1x2 + k−
2 x2

3 − k+
2 x2x3 (56)

ẋ3 = k+
1 x1x2 − k−

1 x3 + k+
2 x2x3 − k−

2 x2
3 (57)
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4.2.2 Dissipative Hamiltonian structure of the closed system

The coordinates-transformation Ψ is given by

z̄1 = ln

(
p1

q1

)

= ln

(
k+

1

k−
1

x1x2x
−1
3

)

(58)

z̄2 = ln

(
p2

q2

)

= ln

(
k+

2

k−
2

x2x
−1
3

)

(59)

z̄3 = x2 + x3 (60)

Then the inverse transformation Ψ−1 can be calculated as

x1 =
k+

2 k−
1

k−
2 k+

1

exp(z̄1 − z̄2) (61)

x2 =
k−

2 z3 exp(z̄2)

k−
2 exp(z̄2) + k+

2

(62)

x3 =
k+

2 z̄3

k−
2 exp(z̄2) + k+

2

(63)

We can see from eqs. (58)-(63) that Ψ and Ψ−1 are globally defined in the

positive orthant of the space of concentrations.

The dissipative Hamiltonian structure (36) for the model (55)-(57) is

computed as

[

ż1

ż2

]

= −

[
1
x1

+ 1
x2

+ 1
x3

1
x2

+ 1
x3

1
x2

+ 1
x3

1
x2

+ 1
x3

]

·

[
x3

x∗

3

0

0
x2

3

(x∗

3
)2

]

·HT
z (z) (64)

where

Hz =
[

k−
1 x∗

3(exp(z1)− 1) k−
2 (x∗

3)
2(exp(z2)− 1)

]

(65)

For the forthcoming calculations, the values of the reaction rate constants

k+
1 , k−

1 , k+
2 , k−

2 were chosen to be uniformly 1. The dissipativity region (i.e.

the region inside which the matrix G + GT is positive definite) and the level

sets of H for x∗ = [1 5 5]T in the (x1, x2) and (z1, z2) planes can be seen

in Figs 1 and 2, respectively. It is visible that the dissipative Hamiltonian

description is valid in a wide neighborhood of the equilibrium point for the

selected reaction polyhedron.
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5 Conclusions

It has been shown in this paper that closed reversible reaction networks with

independent elementary reactions admit a global pseudo Hamiltonian and a

local dissipative Hamiltonian structure with clear physical meaning around

any equilibrium point. The Hamiltonian structure has been described in

a transformed coordinates system called the reaction space which is gener-

ally of lower dimension than the concentration space. The structure matrix

which is a smooth function of the concentrations depends on the topology

of the reaction network and the coefficients of the Hamiltonian function de-

pend on the reaction polyhedron on which the system dynamics evolve. The

theoretical results have been illustrated by two simple examples.
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the (x1, x2) plane

 1  5  10 15
 26.5

−8 −6 −4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

z1

z2

equilibrium point

level sets of H

boundary of dissipativity region

Figure 2: Dissipativity region and level sets of the Hamiltonian function in

the (z1, z2) plane

18


	Introduction
	Basic notions
	The basic structure of reaction kinetic networks
	Generalized Hamiltonian systems

	Local Hamiltonian structure of reaction networks
	Examples
	Global dissipative Hamiltonian description
	Local dissipative Hamiltonian description
	Model of the reaction network
	Dissipative Hamiltonian structure of the closed system


	Conclusions

