
Stabilizing dynamic feedback design of quasi-polynomial systems using
their underlying reduced linear dynamics

Attila Magyar and Katalin M. Hangos and Gábor Szederkényi

Abstract— Based on the underlying dynamically similar lin-
ear system of a quasi-polynomial (QP) system [7], a dynamic
feedback controller for single input QP systems is proposed in
this work that can locally stabilize the closed-loop system using
a pre-defined quadratic control Lyapunov function. Since the
parameter matrix of the dynamically similar reduced linear
dynamics depends linearly on the feedback gain parameters,
the controller can be designed by solving LMIs. Conditions for
extending the controller design for obtaining a globally stable
closed-loop system are also investigated.

I. INTRODUCTION
Quasi-polynomial (QP) systems form a wide class of

smooth nonnegative systems and they clearly play an in-
creasingly important role in the modeling of dynamical
processes, particularly that of biochemical origin. The QP
system class was introduced and first analyzed in [1], [2].
In [1] it was shown that majority of smooth ODE models
can be algorithmically embedded into the QP form, and the
so-called quasi-monomial (QM) transformation was defined
under which the QP-model form is invariant. Furthermore,
the QM transformation splits the family of QP systems into
equivalence-classes, and in each class two simple canonical
forms were defined in [2]. QP systems are also called Gen-
eralized Lotka-Volterra (GLV) systems, because the mono-
mials of a QP system form a classical Lotka-Volterra (LV)
system in a transformed state space which is often of higher
dimension than that of the original QP system [4], [3]. Thus,
numerous properties of QP models like integrability, stability,
persistence or the existence of invariants can be examined
using the corresponding LV system, the qualitative properties
of which have been intensively studied for a long time [13].
Based on the above, we can say that LV models ”have
the status of a canonical format” within smooth nonlinear
dynamical systems [9]. Moreover, the simple matrix structure
characterizing QP models allows us to perform important
model analysis tasks using efficient numerical algorithms.
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In [6], the QP formalism was first extended to the discrete-
time case demonstrating that the LV system representation
plays an important role in that case, too. The conditions
for transforming neural network models to QP form are
considered in [10] where the most important conclusion
is that generalized LV systems are universal approximators
of certain dynamical systems, similarly to e.g. continuous-
time neural networks. It was shown using the examples of
biological networks in [11], that the formerly known QP
stability criterion can be extended to examine robust stability
with respect to the system parameters.

It was shown in [7], that an appropriately computed re-
duced linear dynamics can support the qualitative dynamical
analysis of such QP systems that otherwise do not show
complex nonlinear behavior (like limit cycles, chaos etc.).
A possible general form of nonlinear control systems in QP
form was first given in [15]. This representation was used
in [16] for the design of globally stabilizing nonlinear static
feedback leading to the solution of bilinear matrix inequal-
ities (BMIs). The purpose of this paper is to combine and
extend these results by addressing the efficient computation
of a stabilizing dynamical feedback for QP systems with a
simple general structure.

II. BASIC NOTIONS

A. Autonomous quasi-polynomial systems

The system dynamics of an autonomous QP system can be
described by a set of differential-algebraic equations (DAEs),
where the ordinary differential equations

dxi
dt

= xi

λi +

m∑
j=1

αijqj

 , i = 1, ..., n (1)

are equipped by the so called quasi-monomial (QM) rela-
tionships

qj =

n∏
i=1

x
βji

i (2)

that are apparently nonlinear (monomial-type) algebraic
equations. Two sets of variables are defined, that are (i)
the differential variables xi, i = 1, ..., n, and (ii) the quasi-
monomials (QMs) qj , j = 1, ...,m. The parameters of
the above model are collected in two rectangular matrices
[A]ij = αij , [B]ji = βji and a vector [Λ]i = λi.

In order to avoid degenerate cases, we assume m ≥ n.
It can be shown [4], that systems in the form (1) have a

special property which provides that the products M = BA
and N = B Λ are invariant for groups of models. This



way the class of quasi-polynomial models can be partitioned
according to the values of these products. Each of these
partitions can be represented by a so called Lotka-Volterra
model which is a special QP system with coefficient matrices
B = I , A = M and Λ = N ([4]).

1) Decomposition of the parameter matrices: Further-
more, the rectangular matrices A and B are assumed to have
full rank. Therefore, they admit a decomposition in the form

B =

[
B∗

B

]
=

[
B∗

NB B
∗

]
, (3)

A =
[
A∗ A

]
(4)

where A∗ and B∗ are square invertible matrices. Note, that
B = NB B

∗ and NB = BB∗−1.
2) Stability analysis: Henceforth it is assumed that x∗ is

a positive equilibrium point, i.e. x∗ ∈ int(Rn+) in the quasi-
polynomial case and similarly q∗ ∈ int(Rm+ ) is a positive
equilibrium point in the quasi-monomials. For QP systems
there is a well known candidate Lyapunov function family
([3],[5]), which is in the form:

V (q) =

m∑
i=1

ci

(
qi − q∗i − q∗i ln

qi
q∗i

)
, (5)

ci > 0, i = 1 . . .m,

where q∗ =
[
q∗1 . . . q∗m

]T
is the equilibrium point

corresponding to the equilibrium x∗ of the original quasi-
polynomial system (1).

One can determine the global asymptotic stability of an
autonomous QP system with its characterizing similarity
matrix M = BA by checking the feasibility of the following
LMI

CM +MT C ≺ 0 (6)

for a diagonal matrix C with positive elements ([14]), i.e.
C = diag{c1, ..., cm}, ci > 0, where ’≺ 0’ denotes the
negative definiteness of a symmetric matrix.

The chance of proving global stability can be somewhat
extended using the time reparametrization transformation
(see [18]), however, the numerical problem to be solved turns
to a bilinear matrix inequality.

B. Dynamically similar reduced linear system

Translated X-factorable transformation [12] of an au-
tonomous QP system, together with the reduction of the
linearly dependent part of a non-minimal linear ODE can
be applied to construct a dynamically similar reduced (and
minimal) linear ordinary differential equations (ODE) [7] as
follows. The decomposition of the parameter matrices A and
B in (4) and (3) is used to compute the coefficient matrix

M∗
red = B∗A∗ +B∗ABB∗−1 = B∗(A∗ +ABB∗−1) (7)

where M∗
red ∈ Rn×n characterizes the reduced dynamically

similar ODE. The phase portrait of this ODE is dynamically
similar to that of the original autonomous QP systems in the
positive orthant if they have a joint equilibrium point there.

It is important to emphasize, that the above translated X-
factorable transformation transforms the phase portrait of the
state space, but not the state variables. Therefore, the original
autonomous QP system and its reduced linear counterpart
are only locally dynamically similar in the neighborhood of
an equilibrium point but not equivalent.

III. QP SYSTEMS WITH DYNAMIC QP FEEDBACK

Motivated by the above described advantageous properties
of autonomous QP systems, we aim at finding a controller
structure that renders an open-loop QP-system to be in au-
tonomous QP-form also in closed-loop. This can be achieved
by using either a static QP feedback (see [16]), or by defining
a suitable dynamic QP feedback controller.

A. Extended and feedback quasi-polynomial systems

As we have seen before, the original QP system model
(1) corresponds to an autonomous system, that should be
extended by a suitable input structure to describe the
effect of the manipulable inputs . In [16] an input-affine
extension is proposed where the nonlinear input function is a
quasi-polynomial expression. However, a much simpler input
structure can be used in most of the real applications.

In the area of process systems, for example, the typical
control inputs are the flow rates of the inlet and outlet
streams. The state equations originate from mass, component
mass and energy balances in this case, and the input appears
in these equations as a bi-linear xiu-type term (see [17]
for details). This situation has motivated us to introduce the
simple feedback structure below.

1) The feedback structure: In order to obtain a sufficiently
general but computationally tractable control system , the
following single input QP feedback structure is proposed.

1) Only one new monomial qm+1 = u is introduced
that is the input variable itself.

2) The new monomial appears linearly in the original
state equations

ẋi = xi

λi +

m∑
j=1

αijqj + γiu

 , i = 1, . . . , n.

(8)
3) The dynamical quasi-polynomial feedback is con-

structed with the same monomials as in the original
system extended by the new one ( qn+1 = u )

u̇ = u

κ+

m∑
j=1

kjqj + kγu

 (9)

Then the closed-loop system can be seen as an autonomous
QP system, with an additional state variable xn+1 = u and
an additional quasi-monomial qm+1 = u.

2) Equilibrium points: Let us denote the positive equilib-
rium point of the original autonomous QP system by x∗, that
satisfies the nonlinear algebraic equation

−λi =

m∑
j=1

αijq
∗
j , i = 1, . . . , n (10)



where q∗j =
∏m
i=1(x∗i )

βji . The parameter κ in the feedback
equation (9) can be always (for any controller parameter kγ)
chosen such that the equilibrium point u∗ is a given positive
value, and satisfies

0 = κ+

m∑
j=1

kjq
∗
j + kγu

∗ (11)

The equilibrium point of u will shift the equilibrium point
of the original system to a new one x∗ that satifies

−λi =

m∑
j=1

αijq
∗
j + γiu

∗, i = 1, . . . , n (12)

but now q∗j =
∏m
i=1(x∗i )

βji . In order to ensure that the
shifted equilibrium point remains in the positive orthant,
one should add linear constraints (upper bounds) on the
controller parameters γi, i = 1, ..., n, when these parameters
are determined by solving the stabilizing controller design
LMI. These upper bounds will depend on the chosen u∗.

A possible solution for the problem of equilibrium point
shifting is to introduce an additional static QP state feedback
[16].

B. Decomposition of the closed-loop parameter matrices

The representing closed-loop parameter matrices Ã and B̃
have now the following form

B̃ =

 B∗ 0
0T 1

B 0

 , (13)

Ã =

 A∗

γ1
...
γn

A

k1 . . . kn kγ kn+1 . . . km

 (14)

Then we can easily recognize the invertible blocks B̃∗ of
B̃ and Ã∗ of Ã, that are

B̃∗ =

[
B∗ 0
0T 1

]
, B̃∗−1 =

[
B∗−1 0

0T 1

]
, (15)

Ã∗ =

 A∗ γ

k1 . . . kn kγ

 , γ =

 γ1
..
γn

 . (16)

C. The dynamically similar reduced linear dynamics

In order to stabilize the closed-loop system, its locally dy-
namically similar linear counterpart is constructed first using
the X-factorable transformation described in sub-section II-
B.

The parameter matrix M̃∗
red ∈ Rn+1×n+1 of the reduced

dynamically similar ODE can be obtained by using the
closed-loop parameter matrices Ã and B̃ from (14) and (13)
substituted into (7) as

M̃∗
red =

[
M∗
red B∗γ

k1 . . . kn kγ

]
(17)

Here again we note, that the linear ODE with parameter ma-
trix M̃∗

red is only locally dynamically similar to the original

closed-loop system in a neighborhood of the equilibrium
point of interest .

The following properties of M̃∗
red are important from the

stabilizing controller design purposes
(i) The matrix M̃∗

red depends linearly on the controller
parameters k1, .., kn, kγ .

(iii) It does not depend on the rest of the controller param-
eters kn+1, .., km (recall, that m ≥ n).

(iii) The matrix M̃∗
red depends linearly on the input coeffi-

cient parameters γ1, .., γn.
(iv) One can easily check the stability of the closed loop

system with controller parameters k1, .., kn, kγ and in-
put coefficient parameters γ1, .., γn.

IV. STABILIZING DYNAMIC FEEDBACK DESIGN

The constant feedback gains in (9) will be chosen in order
to stabilize the closed-loop system. These parameters are
collected in the following vectors

k =
[
k1 ... kn kγ

]T
,

ke =
[
k1 ... kn kγ kn+1 ... km

]T
γ =

[
γ1 ... γn

]T
,

.

(18)

A. Locally stabilizing feedback

In order to obtain a locally stabilizing dynamic feedback
controller (9), we can make the reduced dynamically similar
ODE of the closed-loop system stable, because this system
and the original one will be both stable in the neighborhood
of a chosen equilibrium point. Equation (17) shows that the
matrix M̃∗

red depends linearly on k and γ in (18). Therefore
we can choose a positive definite symmetric matrix P̃ (P̃ =
P̃T , P̃ � 0), and solve the following LMI for k and γ

P̃ M̃∗
red + (M̃∗

red)
T P̃ ≺ 0. (19)

1) Stability region: The domain of attraction, i.e. the
stability region of the locally stabilizing controller can in
principle be estimated by solving an LMI for its corner
points [20], [21] using the fact, that the matrix P̃ gives
rise to a quadratic Lyapunov function in the reduced linear
state space. However, further studies are needed to take into
account the effect of the non-invertible similarity transfor-
mation between the original autonomous QP system and its
reduced linear counterpart.

B. Globally stabilizing feedback

The above locally stabilizing dynamic feedback design
shows, that one has some degrees of freedom to use for
making this design globally stabilizing, too. For this purpose
we can use the full feedback vector ke in (18) together with
appropriately choosing the parameter matrix P̃ . We aim at
finding ke such that

C M̃(ke, γ) + M̃T (ke, γ)C ≺ 0 (20)



for a diagonal matrix C with positive elements, i.e. C =
diag{c1, ..., cm+1}, ci > 0.

From the decomposition of the parameter matrices Ã and
B̃ from (14) and (13), and from M̃ = B̃ Ã we obtain

M̃ =


B∗A∗ B∗γ B∗A

k1 . . . kn kγ kn+1 . . . km

BA∗ Bγ BA

 .
(21)

This shows that M̃ depends linearly on the controller pa-
rameters ke and γ. Therefore, with a fixed C, (20) is a
linear matrix inequality with unknowns ke and γ. We remark
that if (20) is fulfilled for a positive diagonal C, then M̃
is called diagonally stabilizable. Diagonal stabilizability is a
much more severe condition than the solvability of a classical
Lyapunov equation like (19) with a non-diagonal P matrix
[14], and algebraically it has only been characterized for
at most 3 × 3 matrices. Since ke and γ contain altogether
m + n + 1 parameters, it can be expected that the chance
for the solvability of (20) is generally decreasing when the
problem size (i.e. n) is increasing, but special system struc-
tures can often be used for assuring and proving diagonal
stabilizability [14]. It is a straightforward idea to search ke,
γ and C parallelly that leads to a BMI problem (known to
be NP-hard), but we will not elaborate on this in the current
paper.

V. CASE STUDIES

The above feedback design methods are illustrated on
nonlinear chemical reaction network examples.

A. Stabilizing dynamic feedback of the Brusselator dynamics

1) Brusselator: The results of section IV are illustrated
on a chemical reaction network called Brusselator [22] which
is described by the set of ODEs (22)

ẋ2 = (k12 x
∗
1 + k32 x

∗
3) + (−k21 − k23 − k67 x∗5)x2−

−k54 x32 + k45 x
2
2x4 + k76 x

∗
6 x4 + γ1 x2 (u− u∗)

ẋ4 = −k45 x22 x4 + k54 x
3
2 + k67 x

∗
5 x2 − k76 x∗6 x4

+γ2 x4 (u− u∗)
(22)

The parameter values kij = 1, ∀i, j, u∗ = 10, x∗1 = x∗3 = 1,
x∗5 = 16, and x∗6 = 0.5 (with u = 10) result in an oscillating
behavior of the open loop system (22) around the positive
equilibrium [x∗2, x

∗
4]T = [1, 11 1

3 ]T . It is apparent, that the
system is originally in the form (8).

Let us introduce the dynamic feedback law of the form
(9)

u̇ = u
(
κ+ k1 x

2
2 + k2 x2 x4 + k3 x

−1
2 + k4x

−1
2 x4+

+k5x
3
2 x

−1
4 + k6x2 x

−1
4 + kγ u

)
(23)

with the following decomposed exponent and coefficient

matrices

B̃ =



2 0 0
1 1 0
0 0 1
−1 0 0
−1 1 0
3 −1 0
1 −1 0



Ã =

 −1 1 γ1 2 1
2 0 0

−1 0 γ2 0 0 1 16
k1 k2 kγ k3 k4 k5 k6


The corresponding parameter matrix M̃∗

red of the underlying
reduced linear dynamics depends linearly on the control
parameters k and γ as follows.

M̃∗
red =

 −5 3 2 γ1
14.5 −15.5 γ1 + γ2
k1 k2 kγ


2) Locally stabilizing feedback design: For the locally sta-

bilizing feedback design, it is enough to solve the Lyapunov
inequality (19) for symmetric matrices (see Section IV-A).
In our case the positive definite symmetric matrix P̃ with
randomly chosen integer elements is

P̃ =

 1 0 0
0 2 1
0 1 3

 ,
for which the LMI (19) can be solved. (Note that the basic
principle of generating P̃ was to extend an initial positive
definite diagonal matrix with random off-diagonal elements
preserving positivity.) For example,

k =
[

2 −4.4963 −3.4963
]

γ =
[
−2 9.9925

] (24)

is a feasible solution, which means, that (24) locally stabi-
lizes the system. Figure 1 shows a trajectory of the closed
loop system with κ = 0 evolving to the strictly positive,
locally stable steady state x∗ = [1.529, 0.295, 0.758]T . The
dynamics of the underlying reduced linear system centered
to x∗ is also presented in Figure 1.

After setting u(0) = 0.758 (i.e. to its steady state value),
a simulation-based analysis was performed to explore the
domain of attraction (DOA) of the closed loop system.
The controlled system was simulated from different initial
values obtained by gridding a part of the nonnegative or-
thant of the (x1, x2) space. All the solutions from the box
([0, 1000], [0, 1000]) were found to converge to x∗, and no
such point in the nonnegative part of the state space was
found (even outside of this box) that did not belong to
the DOA corresponding to x∗. This result suggests that the
restrictive condition of diagonal stabilizability is often not
necessary for the (global) stability of the closed loop QP
system.



3) Globally stabilizing feedback design: The LMI (20)
has been also formulated for the Brusselator closed loop
dynamics using

M̃ = B̃ Ã

however, the LMI could not be solved for any diagonal
Lyapunov function parameter matrix C. This means, that the
global stability of the system (although it was expected from
the DOA analysis) could not be proven using the selected
Lyapunov function family.

1.551.61.651.7

0.25
0.3

0.35

0.7

0.75

0.8

x1x2

u

Linear dynamics
Brusselator

Fig. 1. Some trajectories of the underlying linear dynamics (dashed) and
the Brusselator dynamics.

B. Stabilizing dynamic feedback design for a Lotka-Volterra
model

The presented stabilizing feedback design methods is
represented using a Lotka-Volterra model, which is widely
used in population dynamics [19]. It is important to note,
that the dynamics of the quasi-monomials qi of a QP system
form a Lotka-Volterra system. Moreover, it is easy to see, that
Lotka-Volterra systems are special QP systems with B = I .

1) Lotka-Volterra model: Consider the Lotka-Volterra
population dynamics defined by the following equation

ẋ1 = x1 (8− 2x1 − 3x2 − 2x3 − 0.1x4 + γ1u)
ẋ2 = x2 (7− x1 − 2x2 − x3 + γ2u)
ẋ3 = x3 (8− x1 − 2x2 − 2x3 + γ3u)
ẋ4 = x4 (1.1− 0.1x3 − x4)

(25)

The above system has no equilibrium in the strictly positive
orthant, i.e. the Lyapunov function in (5) cannot be used for
stability analysis in the open loop case.

2) Locally stabilizing dynamical feedback design: The
control aim is to design a dynamical controller that locally
stabilizes the system around a positive equilibrium point. The
feedback law is given in the form (9), i.e.

u̇ = u (κ+ k1x1 + k2x2 + k3x3 + k4x4 + kγu) (26)

The closed loop QP (actually, Lotka-Volterra) system can be
described by the following parameter matrices:

B = B∗ = diag{1, 1, 1, 1, 1}

M̃∗
red = M̃ = A∗ = A =


−2 −3 −2 −0.1 γ1
−1 −2 −1 0 γ2
−1 −2 −2 0 γ3
0 0 −0.1 −1 0
k1 k2 k3 k4 kγ


The selection of the positive definite symmetric matrix P

has been made randomly (see Section V-A.2) using some
heuristics from the feedback structure. The choice

P =


54 −76 3 −24 0
−76 178 1 32 0

3 1 18 11 −8
−24 32 11 338 −18

0 0 −8 −18 18


resulted in a feasible solution for the locally stabilizing
feedback design LMI:

k =
[

0 0 0 −11.0120 −13.6700
]

γ =
[

0 0 −9.9878
]
.

(27)

Using the control parameter κ = −2.34, the system could
be shifted to the following stable positive equilibrium point

x∗ = [6.2, 6.1, 1, 1, 0.171]T .

3) Globally stabilizing dynamical feedback: The control
aim is to design a dynamical controller that globally stabi-
lizes the system in the positive orthant. The feedback law is
the same as in the previous case (26). The parameter matrix
of the corresponding LMI (20) is:

M̃ = A∗ = A =


−2 −3 −2 −0.1 γ1
−1 −2 −1 0 γ2
−1 −2 −2 0 γ3
0 0 −0.1 −1 0
k1 k2 k3 k4 kγ


The globally stabilizing feedback design LMI (20) could not
be solved for C = I . So in this case the parameter matrix
C of Lyapunov function (5) has been introduced as extra
variables in (20). Of course, the problem to be solved became
a bilinear matrix inequality with two sets of variables one set
containing the controller parameters and another constructed
from the diagonal elements of C. A possible feasible solution
for the BMI (28) is the following one

k =
[

1 −1 −1 0 −12.6
]

γ =
[
−1 −2 −3

]
C = diag{1, 1.97, 4.6, 1, 2.3},

(28)

which means, that the global stability of the closed loop
system using control parameters k and γ can be proven using
the Lyapunov function (5) with parameter matrix C.

It is important to note, that the feedback with parameters
(28) globally stabilizes the system, only if there exists an
equilibrium point of the closed loop system in the positive
orthant.

Using (11) the choice κ = 13.6 ensures, that the closed
loop system has a globally asymptotically stable equilibrium
point in

x∗ = [1, 1, 1, 1, 1]T . (29)



VI. CONCLUSION AND FUTURE WORK

In this paper a simple specially parametrized dynamic
QP feedback controller is proposed for locally stabilizing
a QP system. Based on the underlying dynamically similar
linear system of a QP system [7], the dynamic QP feedback
controller is designed to stabilize the closed-loop system
using a pre-defined quadratic control Lyapunov function.

It has been shown, that the parameter matrix of the dy-
namically similar reduced linear dynamics depends linearly
on the feedback gain parameters, this way the stabilizing
feedback controller design problem is equivalent to a linear
matrix inequality. With the positive definite symmetric
parameter matrix of the quadratic Lyapunov function fixed,
the controller parameters can be computed by solving an
LMI. The domain of attraction of the closed loop system is
also investigated. We found that the usual diagonal stability
condition for the global stability of the closed-loop system
may be too restrictive.

Further work includes to develop a domain of attraction
analysis method for the locally stabilized closed-loop system.
The relaxation of the diagonal stability condition for global
stability will also be investigated. The selection of the
feedback structure will also be improved based on the struc-
tural properties of the underlying linear dynamics and the
dynamically similar chemical reaction network realization
[7] of the system.
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