
Globally Stabilizing Feedback Control of

Process Systems in Generalized

Lotka-Volterra Form

A. Magyar a G. Szederkényi a K. M. Hangos a
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Abstract

In the present paper a globally stabilizing feedback controller design method is
proposed for process systems when the feedback structure is also assumed to be
in a QP-form. It is shown that such feedback structure can always be achieved for
process systems. By exploiting the special structure of the controller design problem,
existent iterative linear matrix inequality (ILMI) algorithm of [1] is applied to solve
the BMI feasibility problem underlying the design.

In addition, some partial results on placing the globally stable equilibrium point
with respect to the positive orthant have also been proposed that is only possible
in a fully actuated situation when the input variables are the intensive variables at
the inlet. Furthermore, some preliminary results in selecting the structure of the
QP-type feedback have also been presented.

Key words: nonlinear process systems, quasi-polynomial systems, bilinear matrix
inequalities

1 Introduction

It is widely known in process systems engineering that almost all process
systems are nonlinear in nature. Therefore, a number of papers and books
(see e.g. [2], [3]) have proposed nonlinear controller design methods of various
kind for more or less wide classes of nonlinear process systems.

The most popular method is to use model predictive controllers for nonlinear
process systems (see [4] for a recent review) where a detailed dynamic process
model is used in an optimization framework. This popularity is partially ex-
plained by the fact that dynamic models for simulation or prediction purposes
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are often available for existing plants. Modern heuristic black-box type con-
trol approaches, such as neural nets and fuzzy controllers, have also appeared
recently even in industrial practice.

At the same time, the results and approaches of modern nonlinear control
theory have not earned a wide acceptance in the field of process control except
for a few attempts (see e.g. [5], [6]). The reason for this lies partially in the
fact that modern nonlinear control methods are computationally hard, and are
only feasible for small scale systems in the general case. The problems with
nonlinear control techniques applied in the general case indicate that a solid
knowledge of the special characteristics of the nonlinear system in question
may significantly help in developing nonlinear controllers for process systems
with reasonably realistic complexity.

Quasi-polynomial (QP) systems play an important role in the modelling of
dynamical systems because a wide class of smooth nonlinear systems can be
easily transformed to QP form [7]. The stability properties of QP systems have
also been studied intensively recently [8], [9]. It has been shown [10], [11] that
local and global stability analysis of QP systems and their zero dynamics can
be efficiently performed by solving LMIs.

At the same time, there are only a few papers found in the literature about
the stabilizing control of Lotka-Volterra systems and only in special cases
(see, e.g. [12],[13]), but to the best of the authors’ knowledge no one has tried
to use the above mentioned theoretical and numerical tools of QP systems
in the framework of nonlinear control systems. The possibility of designing
globally stabilizing QP feedback to QP systems has been explored in our
previous conference paper [14] where the stability of zero dynamics of such
systems has also been investigated. The design problem was found to be a
BMI feasibility problem and the importance for feedback structure design has
also been recognized.

Meanwhile, some computationally effective numerical methods have been de-
veloped lately, that allow us to practically perform the stability analysis of
QP systems [15] by LMIs and the design of globally stabilizing feedback by
BMIs. A summary of linear and bilinear matrix inequalities and the available
software tools for solving them can be found in [16].

Thus the present paper aims to offer a computationally feasible globally sta-
bilizing feedback design method for process systems where both of the above
mentioned computationally effective numerical methods and the specialities of
the problem for process systems that are embedded in QP form are exploited.

The outline of the paper is as follows. We start with some essential notions on
quasi-polynomial and Lotka-Volterra systems in Section 2. Linear and bilin-

2



ear matrix inequalities, and stability analysis of quasi-polynomial and Lotka-
Volterra systems are also summarized in this section. The main contribution is
Section 3 which is about stabilizing feedback controller design, and its numer-
ical aspects. Thereafter, Section 4 presents some examples. Finally, Section 5
summarizes the main results of the paper and aims our future work.

2 Basic Notions

The elementary notions in the field of quasi-polynomial (QP) and Lotka-
Volterra (LV) systems are introduced in this section, together with the basic
results of their stability analysis and that of linear and bilinear matrix in-
equalities. In order to emphasize the similarity of QP and LV systems, QP
systems are also called generalized Lotka-Volterra (GLV) systems.

2.1 Quasi-Polynomial and Lotka-Volterra Models

2.1.1 QP models

Let us denote the element of an arbitrary matrix W with row index i and
column index j by Wij. Quasi-polynomial models are systems of ODEs of the
following form

ẏi = yi



Li +
m∑

j=1

Aij

n∏

k=1

y
Bjk

k



 , i = 1, . . . , n. (1)

where y ∈ int(Rn
+), A ∈ Rn×m, B ∈ Rm×n, Li ∈ R, i = 1, . . . , n. Furthermore,

L = [L1 . . . Ln]T . Let us denote the equilibrium point of interest of (1) as
y∗ = [y∗

1 y∗

2 . . . y∗

n]T . Without the loss of generality we can assume that
Rank(B) = n and m ≥ n (see [7]).

2.1.2 Lotka-Volterra models

The above family of models is split into classes of equivalence [17] accord-
ing to the values of the products M = B · A and N = B · L. The Lotka-
Volterra form gives the representative elements of these classes of equivalence.
If rank(B) = n, then the set of ODEs in (1) can be embedded into the fol-
lowing m-dimensional set of equations, the so called Lotka-Volterra model:

żj = zj

(

Nj +
m∑

i=1

Mjizi

)

, j = 1, . . . ,m (2)
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where

M = B · A, N = B · L,

and each zj represents a so called quasi-monomial :

zj =
n∏

k=1

y
Bjk

k , j = 1, . . . ,m. (3)

2.1.3 Input-affine QP system models

An input-affine nonlinear system model with state vector y, input vector u

and output vector η

ẏ = f(y) +
p
∑

i=1

gi(y)ui

η = h(y) (4)

is in QP-form if all of the functions f , g and h are in QP-form. Then the
general form of the state equation of an input-affine QP system model with
p-inputs is:

ẏi = yi



L0i
+

m∑

j=1

A0ij

n∏

k=1

y
Bjk

k



+

(5)

+
p
∑

l=1

yi



Lli +
m∑

j=1

Alij

n∏

k=1

y
Bjk

k



ul

where

i = 1, . . . , n, A0, Al ∈ Rn×m, B ∈ Rm×n,

L0, Ll ∈ Rn, l = 1, . . . , p.

The corresponding input-affine Lotka-Volterra model is in the form

żj = zj

(

N0j
+

m∑

k=1

M0jk
zk

)

+
p
∑

l=1

zj

(

Nlj +
m∑

k=1

Mljk
zk

)

ul (6)

where

j = 1, . . . ,m, M0,Ml ∈ Rm×m, N0, Nl ∈ Rm, l = 1, . . . , p,

4



and the parameters can be obtained from the input-affine QP system’s ones
in the following way

M0 = B · A0

N0 = B · L0

Ml = B · Al

Nl = B · Ll

l = 1, . . . , p.

(7)

2.1.4 Rewriting non-QP ODE models into QP-form

A wide class of nonlinear autonomous systems with smooth nonlinearities can
be embedded into QP-form [18] if they satisfy two requirements.

(1) The set of nonlinear ODEs should be in the form:

ẏs =
∑

is1,...,isn,js

ais1...isnjs
yis1

1 . . . yisn

n f(y)js , (8)

ys(t0) = y0
s , s = 1, . . . , n

where f(y) is some scalar valued function, which is not reducible to quasi-

monomial form containing terms in the form of
∏n

k=1 y
Γjk

k , j = 1, . . . ,m
with Γ being a real matrix.

(2) Furthermore, we require that the partial derivatives of the model (8) fulfil:

∂f

∂ys

=
∑

es1,..,esn,es

bes1..esnes
yes1

1 . . . yesn

n f(y)es

The embedding is performed by introducing a new auxiliary variable

η = f q
n∏

s=1

yps

s , q 6= 0. (9)

Then, instead of the non-quasi-polynomial nonlinearity f we can write the
original set of equations (8) into QP-form:

ẏs =

(

ys

∑

is1,...,isn,js

(

ais1...isnjs
ηjs/q

n∏

k=1

y
isk−δsk−jspk/q
k

))

, s = 1, . . . , n (10)

where δsk = 1 if s = k and 0 otherwise. In addition, a new quasi-polynomial
ODE appears for the new variable η:
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η̇ = η

[
n∑

s=1

(

psy
−1
s ẏs +

∑

isα,js
esα,es

aisα,js
besα,es

qη(es+js−1)/q ×

×
n∏

k=1

y
isk+esk+(1−es−js)pk/q
k

)]

, α = 1, . . . , n. (11)

It is important to observe that the embedding is not unique, because we can
choose the parameters ps and q in (9) in many different ways: the simplest is
to choose (ps = 0, s = 1, ..., n; q = 1).

If we set the initial values of the newly introduced variables according to
(9) then the dynamics of the embedded system is equivalent to the original
non-QP system described in (8). Since the embedded QP system includes the
original differential variables yi, i = 1, . . . , n, it is clear that the stability of
the embedded system (10)-(11) implies the stability of the original system (8).

It is important to note that QP models originate from embedding have some
unusual dynamic properties because their trajectories range only a lower di-
mensional manifold of the QP state space. Thus they can be regarded as
”hidden” differential-algebraic (DAE) system models with rank deficient A

parameter matrices.

2.1.5 QP models of process systems

The nonlinearities of a lumped parameter process system model are of two
types from the viewpoint of their QP-form representation. The nonlinearities
originating from the sources (e.g. reaction or transfer rates) appear in the f

function of the input-affine state-space model (4) and they are not necessarily
in QP-form. Therefore, the above described embedding of such models into
QP-form is of great practical importance.

The specialities of the input function gi The specialities of the input
function gi of the input-affine state-space model (4) originate from the fact
that the inputs of process systems are most often realized through either
inlet mass or component mass flow-rates, or alternatively, intensive variables
at the inlet, like temperatures or concentrations. This means that they act
through the inlet convection term [19] of the conservation balances that are
transformed into state equations. As convection is bilinear in a mass flow-rate
and an intensive variable (such as concentration, temperature or pressure),
the nonlinear input function gil(y) is most often a simple homogeneous linear
function of the corresponding state variable yi:

(1) gil(y) = const · yi when the mass flow-rates are the input variables, or
(2) gil(y) = const∗ when the intensive variables at the inlet are the inputs.
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Case (1) implies that the parameters Al = 0 in (5) and Ml = 0 in (6).

The above special form is, of course, not valid, when a QP state equation
originates from variable embedding.

2.1.6 A simple fermentation example

A simple fermentation example illustrates the way of embedding non-QP sys-
tem models into QP-form and the special properties of process system models
in QP-form. Consider a simple fermentation process with non-monotonous re-
action kinetics that is described by the non-QP input-affine state-space model

Ẋ = µ(S)X + (XF−X)F
V

Ṡ = −µ(S)X
Y

+ (SF−S)F
V

µ(S) = µmax
S

KS+S
,

(12)

where the inlet substrate and biomass concentrations denoted by SF and XF ,
are the manipulated inputs. The variables and parameters of the model to-
gether with their units and parameter values are given in Table 1.

The system has a unique locally stable equilibrium point in the positive or-
thant:






X̄

S̄




 =






0.6500

0.4950




 (13)

with steady-state inputs






X̄F

S̄F




 =






0.6141

4.3543




 .

By introducing a new differential variable Z = 1
KS+S

one arrives at a third
differential equation

Ż = − 1
(KS+S)2

· dS
dt

= −Z2 ·
(

−µmax

Y
SXZ + (SF−S)F

V

)

=

= Z
(

µmax

Y
SXZ2 + F

V
SZ − SF

F
V

Z
)

(14)

that completes the ones for X and S. Thus the original system (12) can be rep-
resented by three differential equations in input-affine QP-form characterized

7



by the following matrices:

A0 =








µmax 0 0 0 0 0

0 0 −µmax

Y 0 0 0

F
V 0 0 0 µmax

Y 0








A1 =








0 F
V 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0








A2 =








0 0 0 0 0 0

0 0 0 F
V 0 0

0 0 0 0 0 −F
V








B =

















0 1 1

−1 0 0

1 0 1

0 −1 0

1 1 2

0 0 1

















L0 =








−F
V

−F
V

0








L1 = L2 =








0

0

0








.

(15)

The six quasi-monomials of the QP system model given by the matrices (15)
are

SZ, X−1, XZ, S−1, SXZ2, Z.

2.2 Linear and bilinear matrix inequalities

A (non-strict) linear matrix inequality (LMI) is an inequality of the form

F (x) = F0 +
m∑

i=1

xiFi ≤ 0, (16)

where x ∈ Rm is the variable and Fi ∈ Rn×n, i = 0, . . . ,m are given sym-
metric matrices. The inequality symbol in (16) stands for the negative semi-
definiteness of F (x).

One of the most important properties of LMIs is the fact, that they form a
convex constraint on the variables, i.e. the set S = {x | F (x) ≤ 0} is convex
and thus many different kinds of convex constraints can be expressed in this
way [20], [21]. It is important to note that a particular point from the convex
solution set S can be selected using additional criteria (e.g. different kinds of
objective functions) [20]. Standard LMI optimization problems are e.g.:
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• linear function minimization:

minimize cT x

subject to F (x) > 0

• generalized eigenvalue problem:

minimize λ

subject to λB(x) − A(x) > 0, B(x) > 0, C(x) > 0

• convex problem:

minimize log det A(x)−1

subject to A(x) > 0, B(x) > 0,

where c ∈ Rm, A,B and F are symmetric matrices that are affine functions
of x.

A bilinear matrix inequality (BMI) is a diagonal block composed of q matrix
inequalities of the following form

Gi
0 +

p
∑

k=1

xkG
i
k +

p
∑

k=1

p
∑

j=1

xkxjK
i
kj ≤ 0, i = 1, . . . , q (17)

where x ∈ Rp is the decision variable to be determined and Gi
k, k = 0, . . . , p,

i = 1, . . . , q and Ki
kj, k, j = 1, . . . , p, i = 1, . . . , q are symmetric, quadratic

matrices.

The main properties of BMIs are that they are non-convex in x (which makes
their solution numerically much more complicated than that of linear matrix
inequalities), and their solution is NP-hard [16], so the size of the tractable
problems is limited. However, there exist practically applicable and effective
algorithms for BMI solution [22], [23], or [1]. Similarly to the LMIs, additional
criteria can be used to select a preferred solution point of a feasible BMI from
its solution set.

2.3 Global stability analysis of QP and LV models

Henceforth it is assumed that y∗ is a positive equilibrium point, i.e. y∗ ∈
int(Rn

+) in the QP case and similarly z∗ ∈ int(Rm
+ ) is a positive equilibrium

point in the LV case. For LV systems there is a well known candidate Lyapunov
function family [9],[8], which is in the form:

V (z) =
m∑

i=1

ci

(

zi − z∗i − z∗i ln
zi

z∗i

)

, (18)
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ci > 0, i = 1 . . . m,

where z∗ = (z∗1 , . . . , z
∗

m)T is the equilibrium point corresponding to the equilib-
rium y∗ of the original QP system. The time derivative of the of the Lyapunov
function (18) is:

V̇ (z) =
1

2
(z − z∗)(CM + MT C)(z − z∗) (19)

where C = diag(c1, . . . , cm) and M is the invariant characterizing the LV form.
Therefore the non-increasing nature of the Lyapunov function is equivalent to
a feasibility problem over the following set of LMI constraints:

CM + MT C ≤ 0

C > 0
(20)

where the unknown matrix is C, which is diagonal and contains the coefficients
of (18). It is important to note that the strict positivity constraint on ci can
be somewhat relaxed in the following way [8]: if the equations of the model (1)
are ordered in such a way that the first n rows of B are linearly independent,
then ci > 0 for i = 1, . . . , n and cj = 0 for j = n + 1, . . . ,m still guarantee
global stability.

It is examined and proved in [8] and [9] that the global stability of (2) with
Lyapunov function (18) implies the boundedness of solutions and global stabil-
ity of the original QP system (1). It is stressed that global stability is restricted
to the positive orthant int(Rn

+) only for QP and LV models, because it is their
original domain (see the definition in (1)).

It is also important that the global stability of the equilibrium points of (1)
with Lyapunov function (18) does not depend on the value of the vector L as
long as the equilibrium points are in the positive orthant [8]. This fact will
allow us to place the equilibrium point of the closed loop system during the
stabilizing controller design (see section 3.3).

The possibilities to find a Lyapunov function that proves the global asymptotic
stability of a QP system can be increased by using time-reparametrization [11].

3 Globally Stabilizing Feedback Design

If the state feedback is in QP-form then the closed loop system will also be
in QP-form and its stability can be conveniently investigated by using LMIs
if the feedback parameters are known and fixed. However, the solution of
the QP feedback design problem with its structure fixed requires to solve a
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BMI problem, that is the subject of this section. In addition, some structural
feedback design results are also proposed in this section.

Unfortunately, the solution of the feedback design problem does not auto-
matically provide tools for the design of the steady-state point of the system.
Therefore, the basic conditions of steady-state point placing is also discussed
here.

3.1 The controller design problem

Globally stabilizing QP state feedback design problem for QP systems can be
formulated as follows. Consider arbitrary quasi-polynomial inputs in the form:

ul =
r∑

i=1

kilq̂i, l = 1 . . . , p (21)

where q̂i = q̂i(y1, . . . , yn), i = 1, ..., r are arbitrary quasi-monomial functions
of the state variables of (5) and kil is the constant gain of the quasi-monomial
function q̂i in the l-th input ul. The closed loop system will also be a QP
system with matrices

Â = A0 +
p
∑

l=1

r∑

i=1

kilAil, B̂, (22)

L̂ = L0 +
p
∑

l=1

r∑

i=1

kilLil. (23)

Note that the number of quasi-monomials in the closed-loop system (i.e. the di-
mension of the matrices) together with the matrix B̂ may significantly change
depending on the choice of the feedback structure, i.e. on the quasi-monomial
functions q̂i.

Furthermore, the closed loop LV coefficient matrix M̂ can also be expressed
in the form:

M̂ = B̂ · Â = M0 +
p
∑

l=1

r∑

i=1

kilMil.

Then the global stability analysis of the closed loop system with unknown
feedback gains kil leads to the following bilinear matrix inequality

M̂T C + CM̂ = MT
0 C + CM0 +

p
∑

l=1

r∑

i=1

kil

(

MT
il C + CMil

)

< 0. (24)

The variables of the BMI are the p × r kil feedback gain parameters and
the cj, j = 1, ..,m parameters of the Lyapunov function. If the BMI above
is feasible then there exists a globally stabilizing feedback with the selected
structure.
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3.2 Numerical solution of the controller design BMI

This section deals with the numerical aspects of the globally stabilizing con-
troller design problem.

3.2.1 Numerical solution based on bilinear matrix inequalities

There are just few software tools available for solving general bilinear matrix
inequalities that is a computationally hard problem. In some rare fortunate
cases with a suitable change of variables quadratic matrix inequalities can
be rewritten as linear matrix inequalities (see e.g. [20]). Unfortunately, the
structure of the matrix variable of (24) does not fall into this fortunate problem
class, so the previously mentioned idea cannot be used.

In Matlab environment the TomLab/PENBMI solver [24] can be used effec-
tively to solve bilinear matrix inequalities. Rewriting the above matrix in-
equality (24) in the form (17) one gets the following expression which can be
directly solved by [24] as a BMI feasibility problem:

m∑

j=1

cjM̄0,j +
m∑

j=1

p
∑

l=1

r∑

i=1

cjkilM̄il,j < 0

−c1 < 0 (25)
...

−cm < 0.

The two disjoint sets of BMI variables are the cj parameters of the Lyapunov
function and the kil feedback parameters. The parameters of the problem
M̄0,j (M̄il,j, respectively) are the symmetric matrices obtained from M0 (Mil,
respectively) by adding the m×m matrix that contains only the j-th column
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of M0 (Mil, respectively) to its transpose:

M =










m11 · · · m1j · · · m1m

...
. . .

...
. . .

...

mm1 · · · mmj · · · mmm










↓

M̄j =

















0 · · · m1j · · · 0
...

...
...

m1j · · · 2mjj · · · mmj

...
...

...

0 · · · mmj · · · 0

















.

Note that for low dimensions (i.e. for m < 3) there are practically feasible
methods for circumvent the BMI feasibility problem [25] but these cannot be
extended to the practically important higher dimensional case.

3.2.2 Numerical solution based on iterative LMIs

Because of the NP-hard nature of the general BMI solution problem, it is
worthwhile to search for an approximate but numerically efficient alternative
way of solution. As shown below, the special structure of the QP stabilizing
feedback design BMI feasibility problem allows us to apply a computationally
feasible method for its solution that solves an LMI in each of its iterative
approximation step. The iterative LMI (ILMI) algorithm used for static output
feedback stabilization (see e.g. in [1]) will be used for this purpose.

In order to be able to use the ILMI algorithm, it is necessary to write up the QP
stabilizing feedback design problem as a static output feedback stabilization
problem for LTI systems. In what follows the globally stabilizing feedback
design BMI (24) is used in the form

(M0 + ΘK)T C + C(M0 + ΘK) < 0. (26)
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where

Θ =






1st
︷ ︸︸ ︷

M1, . . . ,Mp, . . . ,

rth
︷ ︸︸ ︷

M1, . . . ,Mp




 , K =
























k11 · Im×m

...

k1p · Im×m

...

kr1 · Im×m

...

krp · Im×m
























.

The above problem is equivalent to a LTI output feedback stabilization prob-
lem

(A + BFC)T P + P (A + BFC) < 0

with M0 corresponding to the state matrix A, Θ playing the role of the input
matrix B, and K serving as FC and P is the unknown matrix variable of
the problem. It is apparent that the matrix parameters and variables have a
special structure for quasi-polynomial systems.

The ILMI algorithm does not aim at finding the complete feasible set of the
BMI (26) but computes an optimal solution point with minimal trace of C if
the BMI is feasible. The ILMI algorithm solves a linear objective function min-
imizing LMI and a generalized eigenvalue problem in each step. The scheme
of the algorithm is the following:

Step 1: Let Q > 0, the parameter of the algorithm. Solve the Riccati equation

MT
0 C + CM0 − CΘΘT C + Q = 0, (27)

for C (not necessarily diagonal).

i = 1, X1 = C.

Step 2: Solve the following optimization problem for Ci, K and αi:
Minimize αi subject to the LMI constraint






MT
0 Ci + CiM0 − XiΘΘT Ci − CiΘΘT Xi + XiΘΘT Xi − αiCi (ΘT Ci + K)T

ΘT Ci + K −I




 < 0,

Ci = diag(ci1, . . . , cim) > 0

(28)
α∗

i denotes the minimized αi.
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Step 3: If α∗

i ≤ 0, K is a stabilizing feedback gain. STOP.
Step 4: Solve the following optimization problem for Ci and K:

Minimize trace(Ci) subject to the LMI constraints (28) using αi = α∗

i .
Denote C∗

i as the Ci that minimizes trace(Ci).
Step 5: If ‖Xi − C∗

i ‖ < δ, GOTO Step 6. Else set i = i + 1 and Xi = C∗

i and
GOTO Step 2.

Step 6: The system may not be stabilizable by a quasi-polynomial feedback.
STOP.

It is important to note that for QP systems with rank deficient M0 = B · A
some additional techniques are needed because the algorithm fails for singular
M0 matrices. One possible way is using singular perturbation on M0:

M̃0 = M0 − ε · Im×m, ε > 0.

If this way (M̃0, Θ) become stabilizable then the algorithm can be applied.

According to [1] the algorithm is convergent although sometimes we may not
achieve a solution because α not always converges to its minimum. The proper
selection of initial Q affects the convergence of the algorithm, a suitable selec-
tion of Q that guarantees the immediate convergence can be found in [1].

It is important to emphasize here, that the computationally feasible ILMI
algorithm can be used to test the feasibility of the associated BMI, and then
the final design can be performed by a constrained optimization method using
a suitable controller performance criterion in the feasible case.

3.3 Placing the equilibrium point of the QP system

After solving the globally stabilizing feedback design BMI the resulting Lotka-
Volterra system has a globally asymptotically stable equilibrium point in the
positive orthant. This steady-state equilibrium point y∗ can be determined
from the steady-state version of the closed loop quasi-polynomial system (1)

0 = yi



L̂i +
m∑

j=1

Âij

n∏

k=1

y
B̂jk

k



 , i = 1, . . . , n. (29)

By excluding the non strictly positive equilibrium states one only has to deal
with the equation:

0 = L̂i +
m∑

j=1

Âij

n∏

k=1

y
B̂jk

k , i = 1, . . . , n (30)

where the parameters L̂i and Âij depend linearly on the feedback parameters
according to the equations (22) and (23).
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However, with the BMI (24) it is not possible to prescribe the equilibria of
the closed loop system but only to globally stabilize it. So it is necessary to
introduce extra parameters to the feedback in order to be able to place the
positive steady state point anywhere in the positive orthant as needed. The
feedback structure has to be constructed in a way that the parameters that
are used in the steady state point placing problem appear in the vector L̂

of the closed loop quasi-polynomial system. This way the parameters of the
equilibrium placing are separated from the stabilizing feedback design BMI’s
parameters. The feedback has the form

u = K(k, y) + D(δ, y) (31)

where K(k, y) is the feedback structure with the parameters for the BMI, and
D(δ, y) has the form so that the components of the parameter vector δ appear
in the vector L of the closed loop QP system. It is important to note that the
QP input (21) is linear in both of the parameters k and δ.

One can further simplify the QP input structure (21) for process systems
if the input variables are selected to be the intensive variables at the inlet,
i.e. gi(y) = const∗ (see sub-section 2.1.5). Then we can use a linear term
Di(δi, yi) = δiyi in the feedback (31) to take care of the placing of the steady-
state point, and the other term for stabilizing the closed loop system.

3.3.1 Fully actuated case

In this case the QP system has at least one designated input for each of the n

state equations. The steady state point of these systems can be put anywhere
in the positive orthant.

0 = Li(δ) +
m∑

j=1

Aij

n∏

k=1

y
∗Bjk

k , i = 1, . . . , n (32)

where Li(δ) is a linear function of the δ parameters of the problem and y∗ =
(y∗

1, . . . , y
∗

n)T is the desired equilibrium. That is, δ can be determined from a
linear system of equations.

3.3.2 Partially actuated case

If the system has k < n different inputs, then there are no general results for
QP models. However, in the Lotka-Volterra case there is some possibility of
shifting some components of the equilibrium point. If the LV coefficient matrix
M can be transformed into an upper block triangular matrix by row and
column changes then it means that the first k coordinates of the equilibrium
point can be prescribed at will independently of the remaining n − k.
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Note that if the system does not belong to the above two classes then it is not
possible to redesign its equilibrium point with the above technique.

3.3.3 Rank deficient (embedded) systems

In case of systems that are not originally in quasi-polynomial form (see sub-
section 2.1.4 for embedding into QP-form) all the above hold with some spe-
cialities. It is known that for such QP systems that their trajectories range
only a lower dimensional manifold of the QP state space and their parameter
matrix A is rank deficient. With this understanding one has to design the
equilibrium point of the system (if it is possible to design at all, see section
3.3.2) into this lower dimensional manifold.

3.4 Feedback structure design

Of course, the feedback structure selection affects heavily the solution of the
BMI. The results of zero dynamics analysis of QP-systems [14] indicate that a
fortunate choice of a QP-type feedback can simplify the dynamics of a closed-
loop system in such a way that the number of quasi-monomials may drastically
decrease. This way the dimension of the LV system, and the size of the BMI
to be solved can also be drastically reduced.

In certain special cases it is possible to change the entire system dynamics to
a desired one while this possibility depends on the number of available inputs.
An example of this is shown in section 4.

3.4.1 Fully actuated case

Suppose, that we have an input affine QP system in the form:

ẏi = fi(y) + gi(y)ui = yi



L0i
+

m∑

j=1

A0ij

n∏

k=1

y
Bjk

k



+

(33)

+yi



Lii +
m∑

j=1

Aiij

n∏

k=1

y
Bjk

k



ui, i = 1 . . . , n,

i.e. every equation has a designated input. Suppose in addition that the desired
closed-loop system dynamics is given in the form:

ẏi = hi(y), i = 1, . . . , n (34)
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where hi are quasi-polynomial functions.

It is obvious that (33) can be transformed into (34) with the following feedback
structure:

ui = −
fi(y)

gi(y)
+

hi(y)

gi(y)
, gi(y) 6= 0. (35)

It can be seen that in general case the expression fed back to the input is not
a QP, but a rational function.

Fortunately, the input function gi in the denominator of the above formulae
(35) is a simple linear function gi(y) = const · yi or gi(y) = const∗ for process
systems (see sub-section 2.1.5), therefore the feedback remains a QP function
for process systems implying the closed-loop system dynamics to remain in the
QP system class.

3.4.2 Partially actuated case

The other case is when there are not as many different inputs as equations
i.e. the QP system can be arranged into the form

ẏp = fi(y) + gp(y)up = yp



L0p
+

m∑

j=1

A0pj

n∏

k=1

y
Bjk

k



+

(36)

+yp



Lpp
+

m∑

j=1

Appj

n∏

k=1

y
Bjk

k



up, p = 1 . . . , k

ẏq = fq(y) = yq



L0q
+

m∑

j=1

A0qj

n∏

k=1

y
Bjk

k



 , q = k + 1 . . . , n. (37)

This way only the first k equations can be modified freely:

up = −
fp(y)

gp(y)
+

hp(y)

gp(y)
, gp(y) 6= 0, p = 1, . . . , k.

The closed loop system with the above structure is

ẏp = hp(y), p = 1, . . . , k

ẏq = fq(y), q = k + 1, . . . , n.
(38)

18



3.4.3 Degenerated case

When there is an input that is assigned to more than one equations the above
change of dynamics cannot be used in general. Choosing one equation to
change with the input one can destroy the QP form of the other equations
having the same input. Of course in special cases it is possible to have useful
results, for example in the case of zero dynamics [14].

3.5 Output performance estimation

Using the advantageous form of the derivative of the control Lyapunov func-
tion, it is possible to give an upper bound on the norm of certain output
functions of the monomials. The requirements for this are the following (see
[20] or [26]):

φ1(‖z − z∗‖) ≤ V (z) ≤ φ2(‖z − z∗‖) (39)

where φ1 and φ2 are class K functions (a continuous function α belongs to
class K if it is strictly increasing and α(0) = 0), and

V̇ (t) ≤ −wT (t)w(t), ∀t > 0 (40)

where w is an appropriately selected (performance) output of the system, i.e.,
w = h(z), with h : Rm 7→ Rk, k ≤ m.

If (39) and (40) are satisfied, then the following inequality holds for the 2-norm
of the output:

‖w‖2
2 =

∫ τ

t0
wT (t)w(t)dt ≤ V (z(t0)), ∀τ > t0 (41)

It is easy to see from the special form of (18) that the lower and upper estimates
in (39) can be given (e.g. componentwise) for V on any open neighborhood
U ⊂ Rm

+ of z∗.

Let us choose the performance output w as a linear function of the centered
monomials, i.e.

w = E(z − z∗) (42)

where E ∈ Rk×m. Using (19) and (42), the condition (40) for the closed-loop
system can be written as

1

2
(z − z∗)(CM̃ + M̃T C)(z − z∗) ≤ −(z − z∗)T ET E(z − z∗) (43)

that is equivalent to the feasibility of the following LMI:

1

2
(CM̃ + M̃T C) + ET E ≤ 0 (44)
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Using (44), it is possible to check whether the solution of a feedback design
problem satisfies a given performance criteria (defined by matrix E). If not,
then by solving an LMI feasibility problem, it can be easily examined (with
fixed feedback parameters), whether there exists such a positive definite diag-
onal C matrix that satisfies both the stability and the performance criteria.

4 Examples

In the following, some simple process system examples are proposed for the
BMI based stabilizing controller design problem discussed so far. The first two
are simple continuously stirred tank reactor (CSTR) examples with second
order chemical reactions where the system model is naturally in a QP-form.
The last one is the simple fermentation example described in sub-section 2.1.6
that has an embedded rank deficient QP model.

4.1 Partially actuated process system example in QP-form

The system of this example is a simpler variant of the fermentation process of
subsection (2.1.6) with SF being the manipulable input:

Ẋ = µmaxSX − F
V

X

Ṡ = −µmax

Y
SX + F

V
(SF − S).

(45)

The parameter values can be seen in Table 2. The quasi-polynomial form of
the model is:

Ẋ = X (S − 2)

Ṡ = S (−X + 2S−1SF − 2) .
(46)

The system has an asymptotically stable wash-out type equilibrium point










X∗

S∗

S∗

F










=










0

1

1










.

The feedback structure was chosen to be

SF = k1S
2 + δ1S.
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The closed loop system with the above structure is

Ẋ = X (S − 2)

Ṡ = S (−X + 2k2S + 2(δ1 − 1)) .
(47)

It is apparent, that the above QP model (47) is also the Lotka-Volterra model
of the system. The LV matrices of the system are the following ones:

M =






0 1

−1 2k1




 , N =






−2

2(δ1 − 1)




 .

It is noticeable that matrix M is not upper triangular, i.e. the equilibrium
cannot be manipulated partially based on the results of section 3.3.2. However,
with a fortunate choice of δ1 (e.g. δ1 = 2.5) one can modify the value of the
(non wash-out type) equilibrium of system (47). It is important to note, that
in this case the equilibrium will be positive, but one cannot decide its value.
The other free parameter (k1) can be used for stabilizing this equilibria. So
k1 and the two parameters of the Lyapunov function are given to the ILMI
algorithm. It gives the following results:

k1 = −0.0013, C =






1.2822 0

0 1.2822




 .

Fig. 1. shows the feasibility region of the globally stabilizing BMI problem
and the solution given by the ILMI algorithm. The obtained feedback with
parameters k1 and δ1 globally stabilizes the system in the positive orthant.
Indeed, the closed loop system has a unique equilibrium state in the positive
orthant int(R2

+) with eigenvalues having strictly negative real part:






X̄

S̄




 =






2.9948

2.0000




 .

4.2 Fully actuated process system example in QP-form

The second process system example is of the same fermentation process exam-
ined in the previous example but this time biomass is also fed to the reactor
with manipulable inlet concentration XF . The parameters of the system are
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Fig. 1. BMI feasibility region for Example 4.1

the same as in the previous case.

Ẋ = µmaxSX + F
V

(XF − X)

Ṡ = −µmax

Y
SX + F

V
(SF − S)

(48)

The quasi-polynomial form of the model is:

Ẋ = X (S + 2X−1XF − 2)

Ṡ = S (−X + 2S−1SF − 2) .
(49)

Note that (49) is also the Lotka-Volterra model of the system. The manip-
ulable inputs are XF and SF . The system has no equilibrium in the strictly
positive orthant but has one asymptotically stable wash-out equilibrium on
the boundary













X∗

S∗

X∗

F

S∗

F













=













0

1

0

1













.
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The feedback structure is chosen to be

XF = k1X
2 + δ1X

SF = k2S
2 + δ2S.

Parameters k1 and k2 are to stabilize the system, δ1 and δ2 will be used to
shift the equilibrium. The closed loop system is

Ẋ = X (2(δ1 − 1) + S + 2k1X)

Ṡ = S (2(δ2 − 1) − X + 2k2S)) .

The iterative BMI algorithm yielded the following parameters for the feedback
and the Lyapunov function:

k1 = −1.0004, k2 = −1.0004, C =






1.0004 0

0 1.0004




 .

We would like to prescribe a strictly positive equilibrium instead of the original
one. Suppose that the desired equilibrium is at






X̃

S̃




 =






0.5

0.5




 .

Expressing the values of δ1 and δ2 from the state equations in which the desired
equilibrium point is substituted in yields

δ1 = 1.2502, δ2 = 1.7502.

Indeed, the closed loop system with the determined parameters k1, k2, δ1, δ2

has an asymptotically stable equilibria in [X̃, S̃]T .

It is apparent that in this example with a higher degree of freedom it was
possible to shift the steady state point of the system.
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4.3 Feedback design for the simple fermentation example

The following example is of the fermentation process (12). The QP-embedded
model of the fermenter is the following 3 dimensional system:

Ẋ = X ·
(

−F
V

+ µmaxSZ + F
V

X−1XF

)

Ṡ = S ·
(

−F
V
− µmax

Y
XZ + F

V
S−1SF

)

Ż = Z ·
(

F
V

SZ + µmax

Y
SXZ2 − F

V
ZSF

)

.

Using a wise choice of the feedback structure, the quasi-monomials of the
closed loop system may decrease. In our case the feedback structure is chosen
to be

XF = k1SXZ + δ1X

SF = k2SXZ + δ2S.

The closed loop QP system is then

Ẋ = X ·
(

−F
V

+
(

µmax + k1
F
V

)

SZ
)

Ṡ = S ·
(

−F
V

+
(

−µmax

Y
+ k2

F
V

)

XZ
)

Ż = Z ·
(

F
V

SZ +
(

µmax

Y
− k2

F
V

)

SXZ2
)

.

Note, that for the globally stabilizing feedback design phase parameters δ1,
and δ2 are set to zero, since they will be used for shifting the equilibrium of
the closed loop system to the original fermenter’s one. It is apparent that the
closed loop system has only 3 quasi-monomials: SZ,XZ, SXZ2.
The solution of the BMI problem gives the feedback gain parameters

k1 = −1.5355

k2 = 43.6516,

which makes the system globally asymptotically stable (in the positive or-
thant) with the Lyapunov function (18) having parameters:

c1 = 0.0010, c2 = 0.0761, c3 = 0.0760.

The equilibrium (13) of the open loop fermenter can be reset by expressing
δ1, and δ2 from the steady-state equations. This gives δ1 = 1.7152, δ2 =
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−20.9293, so the equilibrium point (13) of the fermentation process (12) is
globally stabilized.

5 Conclusions and future work

An optimization based globally stabilizing controller design technique for pro-
cess systems in QP form was presented in this paper. The problem with QP-
type state feedback structure is equivalent to a bilinear matrix inequality feasi-
bility problem with one variable set for the controller parameters and another
one for the Lyapunov function parameters. The use of an existent iterative
LMI algorithm is possible because of the special structure of the problem.

In addition, some partial results on placing the globally stable equilibrium
point have also been proposed that is only possible in a fully actuated situation
when the input variables are the intensive variables at the inlet.

The results concerning output performance estimation gives a solid basement
for the selection of an appropriate objective function that - supplemented with
the BMI feasibility problem - gives rise to a controller design procedure that
also takes performance specifications into account.

Although some preliminary results in selecting the structure of the QP-type
feedback have also been presented, the development of a systematic method
for feedback structure selection based on the present results is the target of
future research.
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Tables

Table 1
Variables and parameters of the fermenter model (12)

X biomass concentration [g
l ]

S substrate concentration [gl ]

SF substrate feed concentration [gl ]

XF biomass feed concentration [g
l ]

F inlet feed flow-rate 1.0000 [ l
h ]

V volume 97.8037 [l]

Y yield coefficient 0.0097 -

µmax, kinetic parameter 0.0010 [ 1
h ]

Ks kinetic parameter 0.5 [ l
g ]

Table 2
Variables and parameters of the fermenter model (45)

X biomass concentration [g
l ]

S substrate concentration [gl ]

F inlet feed flow-rate 2 [ l
h ]

V volume 1 [l]

SF substrate feed concentration [gl ]

Y yield coefficient 1 -

µmax, kinetic parameter 1 [ 1
h ]
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