Proceedings of the 2009 | EEE International Conference on Mechatronics.
Mélaga, Spain, April 2009.

Throwing motion generation using nonlinear optimization on a
6-degree-of-freedom robot manipulator

Ferenc Lombai'!
'Faculty of Information Technology
Péter P4zmény Catholic University
Préter u. 50/A, H-1083 Budapest, Hungary
Email: lomfe@digitus.itk.ppke.hu, Tel: +3618864771
Fax: +3618864725

Abstract—A 6-degree-of-freedom rigid robot arm and its
throwing motion generation is described in this paper. The
trajectories for the joint variables are generated off-line as a cubic
spline obtained using general constrained nonlinear optimization,
taking into consideration limitations (position, speed, acceleration
and jerk) of the joint actuators, and the current limit of the
whole structure. The obtained trajectories are previously checked
to avoid collisions using oriented bounding boxes and their
separating axis theorem tests. The trajectory tracking of the
individual joint is done using a discrete-time constrained optimal
control technique.

I. INTRODUCTION

The capability of throwing was a great step in the human
evolution and the reproduction of throwing motions with a
robot manipulator is undoubtedly a challenging problem. The
interesting phenomena behind the human throwing is, that
people are capable to aim so close to a point far away, that
the release moment of their motion have to be chosen more
precisely, than that the time constant of a neuron (typically
above 1ms) would allow. Werner Heisenberg mentioned
this phenomena in [1] that also implies the necessity of
some precognition for such movements. This concept can be
implemented as a knowledge base of preprocessed motion
tasks, which can be used by higher level control methods that
will be the subject of further work.

Relatively few publications report results in the field of
throwing and almost all of them deal with lower degree-
of-freedom robot arms. In [2], the generation of a throwing
motion for a 2 DOF robot is described. The trajectory planning
takes into consideration torque, angular velocity and time
limits, while the controller includes a nonlinear dynamic
compensator and a parameter estimator to choose the best
time instant for the release of the thrown object. Among other
complex tasks (e.g. catching, batting and pushing), motion
planning experiments for throwing without grasping for low
degree-of-freedom robots are described in [3].

In this paper, we give a possible solution for the above
mentioned motion planning task by the use of general con-
strained nonlinear optimization as many other practical robotic
solutions do (see e.g. [4]-[6]). For this, we present an extended
implementation of the algorithm [7] for planning time-jerk
optimal trajectories on a 6-DOF robot arm. The original

978-1-4244-4195-2/09/$25.00 (c) 2009 |EEE

Gébor Szederkényil»?
2Systems and Control Laboratory
Computer and Automation Research Institute
Hungarian Academy of Sciences
Kende u. 13-17, H-1111 Budapest, Hungary
Email: szeder@scl.sztaki.hu, Tel: +3612796163
Fax: +3614667503

method has been significantly reworked to meet the specific
needs of our problem. Beyond the modified optimization
space and objective function, additional constraints involve the
nonlinear optimization related to joint variable limits and to
the instantaneous power consumption of the actuating motors.

The solution of the above mentioned problems are now
supported with effective software tools such as Matlab®) and
its Optimization Toolbox or the Mathematica environment for
numeric and symbolic computations.

The structure of the paper is the following. In section II
the problem is formulated and the assumptions are described,
section III contains the brief overview of the experimental
system’s hardware and software components. The description
of the algorithm can be found in section IV while section V
contains the applied trajectory tracking control scheme. The
most important simulation and measurement related results are
shown in section VI. Finally, a summary concludes the paper
in section VII.

II. DESCRIPTION OF THE PROBLEM

There are numerous conditions that influence the attributes
of a throwing motion but there are similarly many possible
metrics that can be constructed to measure the quality of
those motions. The most important motivation behind this
work is to generate possible motions and using the results,
investigate the dynamic capabilities of the robot arm. This
process can be considered as an optimization process in a high
dimensional space fragmented by strict nonlinear constraints.
The problem is further complicated by the well known fact that
the computation of the necessary inverse kinematic functions
are often produce irrelevant results or simply no solution
exists. Moreover, numerical instabilities can occur due to
the singularities in the jacobian too. Since the constrained
nonlinear optimization method that we will use is gradient
based, it is necessary to formulate the constraint and objective
functions (that are defined over a bounded field) as smooth as
possible.

Firstly, it is necessary to define a space in which each point
characterizes one throwing motion, construct the objective
function which gives the measure of the quality of a given
motion, and build a constraint function that ensures imple-
mentability. Both of these functions have to produce numeric

output for any inputs in a given range. Now let us see the
main factors that influence a throwing motion. To produce an
implementable throwing motion the following conditions have
to be fulfilled:

o The end-effector (EE) acceleration must change its sign
to release the thrown object.

o The cartesian position where the release occurs must be
a valid configuration for the robot.

o At this point the EE velocity has to be achievable within
joint velocity limitations.

« All the joints have to be able to accelerate to the release
velocity within joint position limits.

o Full deceleration must be achievable within the same joint
limits.

o The predefined maximal current consumption, joint ve-
locity, acceleration and jerk limitations must be fulfilled
during the whole movement.

e Furthermore, the robot has to avoid collision with itself
or with other parts of the environment.

During the motion planning, the following simplifications
and restrictions are performed:

o We assume that after the release time instant the contact
between the body and the robot breaks and no further
interaction occurs (sticking friction is neglected).

o The air drag is neglected, so the free body motion
simplifies to a parabolic function of time.

o The mass of the thrown body is neglected.

o We assume that the robot has active gripping mechanism
thus the orientation of the EE during the motion does not
influence implementability.

« The robot motion is searched as a set of two-segment
cubic splines, each describes a joint’s motion from an
initial zero velocity to another motionless state.

Finally the control algorithm, that is capable to drive both
position and speed precisely, has to actuate the robot through
the obtained joint space trajectory. During the last control part,
all the disturbances from real word have to be compensated,
especially but not limited to the full electric and dynamic
behavior of the actuators, and the robot dynamics including
mechanical self oscillations.

III. SYSTEM DESCRIPTION

The robotic arm contains six electrical motors (called Pow-
erCubes) mounted on each other in a chain like topology.
These are modular building blocks shipped by SCHUNK Intec
Inc. and have good dynamical properties. The layout of the
kinematic structure is similar to a published configuration [8]
which was designed for ball catching purposes using same
type but stronger motors. The robot is placed on the top of
a self-designed support made from steel plates and a tube to
maximize work space area and rigidity. Most of the coupling
elements are also self-designed polyamide type plastic pipes
to have a lightweight structure. The whole construction and its
3D structural model used for collision detection can be seen in
figure 1. Table I lists the modified Denavit-Hartenberg (MDH)

Fig. 1.

The robot arm and its collision detecting model.

parameters according to [9] and joint angle limits for the built
topology. The joint limits are due to the wiring along the robot
and they help to avoid collisions between the neighboring
links.

TABLE I
MODIFIED DENAVIT-HARTENBERG NOTATION AND ROTATIONAL LIMITS
1 i—1 a;—1 d; PCi,min Pci,maz
1 0° 0 0.27m —180° 180°
2 —90° 0.29m 0 —240° 60°
3 180° 0 0 —230° 50°
4 —90° 0 0.5 m —180° 180°
5 —90° 0 0 —115° 115°
6 90° 0 0.217 m —180° 180°

Table II lists the dynamical physical limits, namely the max-
imum velocity, acceleration, current consumption and output
torque.

TABLE II
ACTUATOR PHYSICAL LIMITS
motors PR-090 PR-070 PW-0701 PW-0702
velocity (°/sec) 149 149 248 320
acceleration (°/sec?) 596 596 992 1280
current (Amp@24V") 30 15 15 15
output torque (Nm) 206 73 54 28

Each module contains harmonic drive gearing with 1 : 161
reduction ratio and a built-in electronic PID controller. From
control point of view, each joint can be actuated and measured
as a discrete-time system through one 1 Mbit/sec CAN bus.
The PowerCubes, like many other industrial type modular
robotic components, use local PID controllers for position
or velocity control. However, there are no built in functions
to produce controlled torque or even acceleration. With the
provided C++ dynamic link library (DLL) the discrete-time ac-
celeration commands were generated using the so called ramp

velocity profile motion which is a sequence of acceleration,
constant speed and deceleration phases. The parameters (i.e.,
maximum acceleration and velocity during the ramp motion)
can be set for each motion command as upper limits. The
motors can be actuated with voltage commands as well and
thanks to the built-in 2000 slots/rotation incremental encoder
the repetition/measurement precision is about 0.02°. Also
the velocities can be read from the PowerCubes but their
numerical computation from the position data gives the same
degree of precision. The whole robot is powered by two DC
24V 30A power-supplies. The modules’ hardware version is
4614 for PowerCubes PR-090 and PR-070, and 3519 for PW-
070.

IV. DESCRIPTION OF THE ALGORITHM
Initially, the following data is given:
1) task specific information
e Py, the target position in world frame
2) predefined robot specific constraint

e Pc,,;n, and Pc,, ., the joint position limits

e Ve, the joint velocity limits

e Ac, the joint acceleration limits

e Jc, the joint jerk limitations

e C,14z, the maximum allowed current consumption
of each module

o Cc, maximum output currents of the power supplies

o Tyay, a 4x4 homogeneous transformation defining
the position and release capable orientation of the
load with respect to the EE frame (EEF)

e robot kinematic (mDH parameters), dynamic and
collision avoidance model

3) optimization related variables and functions

e h = [py,7,w, F}, Hs,d,], optimization parameter
vector

e Py is the release position in world frame given by
spherical coordinates [0, ¢,]

e 7 and w defines orientation and angular velocity,
respectively measured around the z axis of Ty, at
the release time instance (referenced as the release
frame (RF) with respect to the world frame)

e Fj is the flight time of the thrown object from p,
to ptr

e H, is the duration of the whole movement

e d, is the ratio of the deceleration motion duration
with respect to H

e hy;, and h,,,, lower and upper bounds of the
search space, respectively

o J(h): R® — R, objective function

e U(h) : R® — RO6N*" s the constraint function,
where IV is the number of actuators while n is the
number of power supplies

The algorithm works as follows. In each iteration for the
given h input the solutions of the joint motions are searched
in the form of a two-segment cubic splines. This is done in
the following steps:

1) The cartesian position of p,,., the duration of the accel-
erating motion phase h, = (1 —d,.)H and the duration
of the deceleration time h, = d, H are computed.

2) Based on p,,., py and Fj, the initial velocity vector for
the body is computed as vy = %Fz + %,] where g
is the gravity vector.

3) The computation of the vector of joint angles (q,) are
performed according to the inverse kinematics relation-
ship, using p,), the orientation of vy, v and Tbalfl. From
the eight symbolically obtained different solutions, the
valid configurations are chosen within the two bounds
Pc,.in, and Pc,y,q,. If no valid solution exists both J(h)
and U(h) returns high predefined values. If multiple
valid solutions are found, the one which consumes less
current is chosen using the current consumption model
described later.

4) To compute the joint velocities (q,.) for a particular q,.
the inverse jacobian of the robot, p, vo, Tba”_1 and w
are used.

5) The solution for the joint motions is searched in the form
of cubic splines. Let Q,(¢) : R — RS, Q,(t) = a,t> +
b,t2 + ¢4t + d, denote such a multidimensional cubic
polynomial (over the interval [0, h,]) that starts from a
moveless state and have the desired position and velocity
at time h,, and similarly Q,(t) : R — RS, Q,(t) =
apt3 + bypt? + ¢yt + d,, defined on the interval [hy, Hy]
that gives the same position and first two derivatives as
Q. at time h, and zero velocity at time H. So the two
cubic polynomials are found by solving the following
system of equations:

Qa(ha): q, = Qb(ha)a
Qu(ha) = 4, = Qyha),
2,00)= 0= Qy(ha+hy),
Qu(ha) = 0= Qy(ha)

The solution is parameterized by h,, hp, q, and q,. and
given in the form below:

aa:—?i%, a”:_:’,qf:g
c, =0, ¢ =q, — q;féi
d.=gq, —q 2 dy =q, +4q,(—ha + b

Za —)
T3’ 3h?

The optimization can be started from different initial con-
ditions chosen randomly along all dimensions of h between
h,.;» and h,,,, using a general constrained nonlinear opti-
mization method such as the fmincon function in the Matlab
Optimization Toolbox.

The collision avoidance is solved using a model which
covers the rigid volume of the arm with oriented bounding
boxes (see fig. 1). The base and each link contains 3-5

boxes whose position and orientation are updated through
forward kinematics. None of these boxes allowed to have any
overlapping and this property is checked by separating axis
theorem tests [10]. Assuming that no joint limit violation is
present, the number of box collision checks can be reduced
considerably. This checking takes place for finely discretized
time instants of the optimized motion with zero tolerance (i.e.
no collision should occur at the examined time instants). This
computation have to be done separately because it produces
a binary (yes/no type) result for the possible occurrence of
collision.

A. Objective function

The objective function computes the weighted sum of terms
that characterize the behavior of the throwing motion, namely

N ty
J(h) :kTHs+ka7-+kJZ/ ('(‘].j)th (D)
j=1"0

where k7, kg, and kj, are positive weighting parameters. kr,
and k; correspond to time and jerk minimal movements, re-
spectively. Parameter kp helps to achieve slowly accelerating
but fast decelerating motion to ensure that that the robot really
loses contact with the thrown object after the time instance h,,.

It is possible that for a particular value of h the objective
function cannot be evaluated because no configuration is
capable to reach the given release position and orientation.
In this case, a high objective function value is returned. It
must be admitted that this solution may degrade optimization
performance. We note however, that there exist some optimiza-
tion methods, that are able to handle unsuccessful objective
function evaluations.

B. Constraints

To find only implementable solutions all the given con-
straints have to be fulfilled, namely

q;t) < Pe ... j=1,...,N)
¢(t) > Pej ., j=1,...,N 3)
lg;(t)] < Ve, j=1,...,N 4)
lg;(t)] < Ac¢j, j=1,...,N (5)
|q;(t) < Jej, j=1,...,N, (6)

where N is the number of actuators, Pc; . and Pc;
indicates minimum and maximum joint positions, furthermore
Vej, Ac; and Jc; are given velocity, acceleration and jerk
bounds, respectively for each joint j. Other necessary but
more difficult constraints are applied, regarding the power
consumption of the robot arm, namely

Lit) < Chazi, j=1,...,.N (7

te[g,lt%}itb} i) < i J (7

I.(t) < C k=12 8

te[IOI,lt%)itb] Z HORE > o ®
j€Elisty,

where list;, lists the index of motors connected to the kth
power supply, and I;(¢) is the current consumed by the jth

motor at time ¢, more precisely

I;(t) = Kp,lg; (1) + Knrjlmi(a(t), at), a(?))], ©)

where Kp; represents constant slope between joint velocity
and current consumption of motor j, Kps; is the slope
of the linear correspondence between armature current and
output torque for the jth motor and 7;(q(t),q(t),q(t)) is the
computed torque acting on joint j in the actual robot state,
regarding desired position, velocity and acceleration of the
joints.

The solutions for Q,(¢) and Q,(¢) are monotone functions,
so the constraints (2)-(3) can be checked by computing only
Q,(0) and Qy(hy + hp). The left hand sides of inequalities
(4) will reach their maximum at h,, thus it is only necessary
to compute either Q,(ha) or Qy(he). For constraints (5), the
only Q,(0) and Qy(hq + hy) have to be considered, while
the computation of (4) simplifies to choosing the maximum
values from 6|a, | and 6|a,|. For the current consumption limits
we used the simplifying assumption that motor dynamics is
dominant over load torques, which means that currents mainly
depend on motor velocities. Thus only 7(Q,(ha), Q,(ha),0)
have to be computed to determine the I;(h,)’s.

C. Initial conditions and parameters

In general optimization problems, the initial condition has
a great role both in the overall running time and the conver-
gence properties. Thus, some kind of exploration was used to
store information about those evaluation attempts that did not
produce valid solution. Every time the constraint function is
called, if the inverse kinematic solution exists, the computed
output is checked which inequalities are completely fulfilled
from (2)-(8). Then the parameter vector is stored in a database
according to which of the inequalities are satisfied. When the
optimization is started next time, the initial condition can be
set close to those values that previously produced (at least par-
tially) valid solution. Practically, the most complete solution is
preferred, and this iteration is done till the optimization finds
an optimal solution.

V. THE CONTROLLER

Based on the fact that the actuating motors have enough
power and they have built-in PID controllers, a decentralized
higher level control scheme was used based on the individual
trajectory tracking control of the joints. Let us denote the
position and velocity of joint 7 by z1; and 2 ;, respectively.
Furthermore, let us assume that the manipulable input variable
is the joint acceleration command (v;). If we denote the
reference for z1; and zo; by 21,¢f,; and 29,y s, respectively,
then the tracking error system can be written as

€1, = €24, €2; =1U; (10)

where e1; = 21 — Zirefi» €2 224 — Z2ref; and
U; = U; — Zorefs. Thus, by the asymptotic stabilization of
the dynamics (10) the asymptotic tracking of the reference
trajectory is assured.

There are known physical constraints for the acceleration in-
puts v; that must be satisfied during operation. The minimum-
maximum values for v in the case of the different joints can
be given in the following vector form

—/+1[10.4 10.4 10.4 10.4 16.6 22.3]rad/sec?
(11)
Furthermore, we know the minimum and maximum accelera-
tion values of the designed joint trajectories and denote them
by @min and ez, respectively. From this, it is clear that
the physical constraints (11) will be fulfilled, if the following
inequalities hold for the transformed input « in (10):

Umin/max =

Umin,i — Amin,i S Uq S Umax,i — Amax,i; for i = 17 s 76
12)
The following well-known result from linear control theory is
used for the design of a state feedback with input constraints
[11].

Theorem 1. Consider the linear system & = Az + Bu,
where x € R™, ©v € RP, A € R"*™, B € R"™ P, There
exists a stabilizing state feedback K such that for every initial
condition x(0) with ||z(0)|| < 1, the resulting control input
u = Ku satisfies [|u(t)| < wmae for ¢ > 0 if and only if

there exists a positive definite symmetric n x n matrix () and a
pxn matrix Y such that the following linear matrix inequality
(LMI) constraints are satisfied:

—AQ-QAT —BY -Y*'B" >0
2

[RC } >0, (13)

If the LMIs (13) are feasible, then the feedback gain can

be computed as K = YQ~!. (We note that °> 0’ ad *>

0’ in (13) denote positive definiteness and semidefiniteness,

respectively.)

To apply Theorem I, we have to symmetrize the input
constraints (12). This does not introduce significant conser-
vatism in this case, since the obtained minimum and maximum
bounds for the control inputs are almost symmetric to zero.
Furthermore, a linear state transformation is applied that
transforms the set of possible initial conditions into the unit
circle.

The controller implementation was programmed in a se-
quential manner using time stamping for all incoming and
outgoing data. In the presence of six motors on the CAN
bus, the time between two forthcoming extended ramp mo-
tion command to the same motor was approximately 17
ms. The PowerCube’s acceleration reference is given as the
maximum acceleration value parameter of the mentioned
PCube_moveRampFExtended command. In this case, the
module internal circuitry tries to reach the given maximal
acceleration and this limit can be updated with every extended
motion command. Only a suitable target position have to be
given beside the desired acceleration value to guide the motors
in the appropriate direction. For example, this value can be
the module’s actual position 3 rad which guarantee that the
started ramp motion acceleration phase is not finished until
the next command cycle ends on the CAN bus.

VI. SIMULATION AND MEASUREMENT RESULTS
A. Optimization results

In figure 2, valid and optimized trajectories can be seen for
the target position Py, = [1.0,1.0, —1.0] m. On the bottom of
the figure, the computed overall current consumption is drawn.
The dashed lines show the current consumption for the two
power supplies. The optimization was done with parameter
values kr = 15, kg = 20, and k; = 0.01, furthermore the
search space was limited by

™ Y
hmin =735y 5=
[27 25
™ T

™
hmaw —[5, 5, 107 T, 5, 30, 20, 04},

0.5, -, —g, 0.3,0.2,0.04]

and the optimized output was

h = [0.493, —0.465, 0.858, 0.583, —1.098, 0.586, 0.920, 0.391].

——rad - - rad/sec --rad/sec?

Rkt PP

Jomt1
o
1
1
1
1
‘g
I
1
]
]

i

Joint,
o
1
1
1
},
I

f".’
—— e T

T

Joint,

LA o Lo-

Joint,

Joint5
NONS
I
]
1
‘i
\

.
~—"

Jointy
ohoo
1

=N
cwo R

Amp

T T T T T T I — T T 1
0 009 0.18 028 037 046 0.550.60.64 074 083 092

time (sec)

Fig. 2. Optimized trajectory within maximum current constraints.

During the development of the algorithm it turned out,
that even for a short range throwing motion the DC motors
consume a lot of current due to the high joint velocities at
release time. It also became clear, that even more than current
limits, the joint position limitations and the collision avoidance
restriction badly reduced the set of feasible solutions and
necessitate the collection of partially feasible solutions.

B. Joint control measurements

The robot arm was driven through an optimized throwing
trajectory to check tracking error and overall current consump-
tion in practice. The optimization parameters were ky = 0.1,
kp =—-10, ks = —10, kp = 20 and ko = 1. Figure 3 shows
position (line) and velocity (dashed line) tracking errors for
each joint, which after an initial 0.1 second transient stays
under 0.05 rad and 0.1 rad/sec, respectively. The time scale

and time lags can be shown on the bottom of the picture. The
measured current consumption is plotted on the upper axis.
The measured (continuous line) values follow the predicted
consumption (dashed line) but the unmodeled effects like the
frictional terms and mechanical resonances cause a variating
shift between measured and computed currents.

— position error (rad) wweeen velocity error (rad/sec)

~02rs
.E 0.(1) A
g 01 teaunymenens®’ v b
02
02
£ ot i T Lo)
] 0(1) |7'L T i)
g
02 3
= A S . :
3 Y e e e T = -
02
02
<7 01
£ 0
S o1 e Ty
o2 S
02
+£° 01
£
L 01
02
04
© I,
£ O.g H Sussinivy O
S 02
04
30
a2
g 18
< 12
6
0
0 14 M
£ 12} i e
a 10 } T T T T T T T T T
0 0.1 02 03 04 05 06 07 08 09
time (sec)
Fig. 3. a) Reference tracking measurements for joint 2, b) Phases of the

implemented throwing motion

C. Motor parameter estimation

To compute current consumption for each motor j, two
parameters had to be determined, namely Kj;; and Kp;.
K p; was measured as the average current consumption of the
Jth motor at stabilized maximal velocities for constant voltage
input without any inertial load. Than the the slope of the linear
relationship was determined by regression. Values for Ky
were determined by measurement pairs of computed loads and
currents that compensated them. Then obtaining linear regres-
sors between joint torques and applied currents represented by
slopes stored as Ky ;’s. The resulted parameters are listed in
Table III, signed (*) values are given by the manufacturer.

VII. CONCLUSIONS AND FUTURE WORK

The throwing motion generation of a 6-DOF rigid robot arm
was shown in this paper. The trajectory tracking of the joints is
performed using a discrete-time linear controller. The proposed
solution is implemented on a real system, and the early
measurements show good results. The final aim is the real-
time use of the the proposed motion generation method, but

TABLE III
ACTUATOR PARAMETERS

motor; Kp;(secAmp/rad) Kpr;(Amp/Nm)
1,2,3 2.9116 0.1419
4 0.7347 0.0567
5 0.4871 0.013*
6 0.1572 0.025*

this may necessitate the modification of some components of
the algorithm and/or the change of the computation hardware
platform possibly to a processor array (the different versions
of which are widely available today). The proposed linear
approximation for current consumption estimation gave usable
results, but additional work to polish the current model is
needed. Currently, the implemented optimization can be used
to obtain preprocessed motion tasks for higher level control
methods.

VIII. ACKNOWLEDGEMENTS

This research was partially supported by the grant no.
OTKA K67625. The second author is a grantee of the Bolyai
Janos Research Scholarship of the Hungarian Academy of
Sciences. Special thanks are given to Prof. Tamds Roska
for his great support and guidance during the project. The
authors also thank for all the help and review supported
by the members of the robotic laboratory at the Faculty of
Information Technology of Péter PAzmany Catholic University.

REFERENCES

Werner Heisenberg. Physics and beyond; encounters and conversations,
volume 42 of World perspectives. Harper & Row, New York, NY, USA,
1971. Translated from the German by Arnold J. Pomerans.

[2] N. Kato, K. Matsuda, and T. Nakamura. Adaptive control for a throwing
motion of a 2 DOF robot. In Proc. of the 4th International Workshop
on Advanced Motion Control, AMC ’96-MIE, volume 1, pages 203-207,
1996.

[3] KM. Lynch and M.T Mason. Dynamic nonprehensile manipulation:
controllability, planning and experiments. [International Journal of
Robotics Research, 18 (1):1999, 1998.

[4] S.M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[5] J. E. Bobrow. Optimal robot plant planning using the minimum-time
criterion. IEEE Journal of [see also IEEE Transactions on Robotics and
Automation] Robotics and Automation, 4(4):443—450, August 1988.

[6] L. C. T. Wang and C. C. Chen. A combined optimization method
for solving the inverse kinematicsproblems of mechanical manipulators.
IEEE Transactions on Robotics and Automation, 7(4):489-499, August
1991.

[71 A. Gasparetto and V. Zanotto. A technique for time-jerk optimal
planning of robot trajectories. Robotics and Computer-Integrated Man-
ufacturing, 24:415-426, 2008.

[8] C Smith and H.I. Christensen. Using cots to construct a high perfor-
mance robot arm. In 2007 IEEE International Conference on Robotics
and Automation, pages 4056—4063, Rome, Italy, 2007.

[9] JohnJ. Craig. Introduction to robotics: mechanhics and control. Pearson
Prentice Hall, Berlin, Germany, third edition, 2005.

[10] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hierarchical
structure for rapid interference detection. Computer Graphics, 30(An-
nual Conference Series):171-180, 1996.

[11] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix

Inequalities in Systems and Control Theory. SIAM Books, 1994.

