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Abstract Chemical reaction networks with arbitrary constant delays assigned
to the reactions are studied in this paper. The delayed models are approxi-
mated using the chain method known from the theory of differential equa-
tions. It is shown that important structural properties (such as reversibility
and deficiency) of the approximated models are preserved in the approximat-
ing reaction networks. Moreover, the approximation gives rise to a Lyapunov-
Krasovskii functional candidate for the original delayed systems that can be
efficiently used for stability analysis.

Keywords Reaction kinetic systems · Mass action kinetics · Time delay
systems

1 Introduction

Time delay may fundamentally influence the behaviour of dynamical systems,
e.g. it can have both stabilizing or destabilizing effect [10]. Therefore, the
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explicit mathematical description of state, actuation or measurement delays
might be necessary in many applications to obtain an acceptable mathematical
model for a given goal such as simulation, prediction or control. Well-known
examples are the drivers’ delayed reactions in modeling traffic jams [23], de-
layed epidemic models [19], or the role of delays in machine tool vibrations
[27].

The original physical picture behind deterministic reaction networks with
mass action kinetics does not contain delays. However, the presence of delay
might be a key element in the explanation of complex dynamical phenom-
ena (e.g., certain types of oscillations) in biochemical models [9,22]. Moreover,
the introduction of delay can be useful for a simplified description of chemi-
cal systems to contain less concentration variables than detailed mass action
mechanisms [25].

It is also important to mention that the class of kinetic systems having a
reaction network structure is very general within nonlinear nonnegative mod-
els [29,14]. This implies that many processes outside the chemical domain and
possibly containing delayed terms, such as population models, compartmen-
tal systems, epidemic processes or certain traffic networks can be formally
described as chemical reaction networks [2].

Therefore, several authors have elaborated on the analysis of delayed ki-
netic models. In [25] the notion of a ‘chemically acceptable model’ is intro-
duced requiring causality and the nonnegativity of the solution. Moreover,
conserved quantities in the form of constants of motions are also described
for delayed models. In [21], general models are introduced through the exten-
sion of mass action reaction networks, where the appearance of products is
delayed. Additionally, conditions for delay-induced instability are given using
graphs assigned to the models. Series of chemical reactions are simplified using
model-specific delay distribution functions in [7].

The chain method as an approximation approach to time delays appeared
independently in the theory of delayed differential equations within mathemat-
ics [24] and in mathematical modeling within chemical engineering. Convective
plug flows causing delays in process networks are commonly approximated us-
ing a series of continuously stirred tank reactors resulting in a so called cascade
approximation [6]. One of the first attempts to approximate a delayed kinetic
(non-mass-action) model with a set of ODEs containing auxiliary state vari-
ables was described in [20], where necessary conditions for instability were
also given. After its introduction, the chain method has been significantly im-
proved even recently with model class extensions and strong approximation
results [12,16]

Based on the above, the goal of this paper is to analyse delayed reaction
networks using the chain method that transforms delayed differential equations
to ODEs and preserves the kinetic property of the model. The structure of the
paper is the following. Section 2 contains the most important notations and
known results on kinetic models and the chain method. The structural and
dynamical analysis of the approximated kinetic models is described in Section
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3, while Section 4 contains general stability result for delayed kinetic systems
derived from the approximation. Finally, conclusions are drawn in Section 5.

2 Basic notions and tools

This section is devoted to introducing the studied class of chemical reaction
networks (CRNs) with and without delays, and our most important tool, the
chain method.

2.1 The studied model class: chemical reaction networks obeying mass action
law

Chemical reaction networks (abbreviated as CRNs) have been abstracted from
chemical kinetics. They consist of simple elementary irreversible reaction steps
Rk (with r reaction steps) taking place between n chemical species denoted
by X1, ..., Xn in the form

Rk :

n∑
i=1

yk,iXi

κk
GGGGGGA

n∑
i=1

y′k,iXi (1)

where the nonnegative integers yk,i and y′k,i are the stoichiometric coefficients.
The positive numbers κk > 0 are the reaction rate constants.

The linear combinations of the species appearing on the left and right hand
sides of the reaction steps (1) are called complexes

Ck =

n∑
i=1

yk,iXi, C′k =

n∑
i=1

y′k,iXi (2)

where the stoichiometric coefficients (arranged in vectors) yk and y′k describe
the composition of the complexes Ck (the source complex) and C′k (the prod-
uct complex), respectively. In the next, we will refer to the complexes with
their stoichiometric coefficients, such that Ck corresponds to yk. Therefore,
the set of complexes is defined as K ⊂ Zn+, and yk, y′k ∈ K.

Example 1: Simple CRN Consider two species, X1 and X2 that react in a
reversible reaction 2X1 � X2. Then the elementary reaction steps are

R1 : 2X1

κ1
GGGGGGAX2; R2 : X2

κ2
GGGGGGA2X1

The complexes are C1 = 2X1 and C2 = X2 with the stoichiometric coefficient
vectors y1 = [2 0]

T and y2 = [0 1]
T .
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The mass action law originates from the reaction rate expressions of chemical
reactions in mixtures of ideal gases, where the reaction rate of the kth reaction
step (1) under isotherm conditions is

ρk = κk

n∏
i=1

x
yk,i
i = κk x

yk (3)

where xi is the concentration of the specie Xi.

2.1.1 CRNs without time delay

The time evolution of the specie concentrations (i.e. the dynamics) of a CRN
obeying the mass action law can be described by an ordinary differential equa-
tion model (an ODE model) the structure of which is given by a signed directed
graph, the so called structure graph.

The ODE model The dynamics of an ordinary mass-action kinetic system [8]
with reaction steps (1) and reaction rates (3) can be described by an ODE in
the form

ẋ(t) =

r∑
k=1

κk (x(t))yk [y′k − yk] , t ≥ 0, (4)

where x(t) ∈ Rn+ is the state vector which describes the concentrations of
species. Solutions of (4) are determined by nonnegative initial vectors x(0) =
η ∈ Rn+.

Kinetic systems Let us consider the following general dynamical model

ẋ(t) = f(x(t)), (5)

where x(t) ∈ Rn and the coordinates functions of f are multivariate polyno-
mials in x. We call the system (5) kinetic, if there exist r > 0, and κk > 0,
yk, y

′
k ∈ Z̄n+ for k = 1, . . . , r such that (5) can be written in the form of (4).

The kinetic property is easy to check: according to [15], the necessary and
sufficient condition for kinetic realizability of a polynomial vector field is that
all coordinates functions of f in (5) must have the form

fi(x) = −xigi(x) + hi(x), i = 1, . . . , n (6)

where gi and hi are polynomials with nonnegative coefficients. In other words,
the model (5) is kinetic if and only if each monomial with a negative sign in
fi contains xi for i = 1, . . . , n, i.e. a kinetic model cannot contain negative
cross-effects.

Kinetic systems are known to be positive, i.e. the solution remains in the
nonnegative orthant if the initial condition was also there. We remark that the
representation (4) for a given polynomial model (5) is generally non-unique [5,
28].
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Reaction graph The structure of a CRN is described by a signed directed graph
called reaction graph. The vertices of a reaction graph are the complexes (i.e.
vj ∼ Cj), and the edges correspond to the reactions. There exits a directed

edge from vi to vj with edge weight κk if a reaction step Ci

κk
GGGGGGACj can be

found in the CRN.
A CRN is called weakly reversible if whenever there exists a directed path

from vi to vj in its reaction graph, then there exists a directed path from vj
to vi, too. In graph theoretic terms, this means that all components of the
reaction graph are strongly connected components.

CRN properties The most important properties of CRNs are their stoichio-
metric subspaces, complex balance and deficiency.

The stoichiometric subspace of a given CRN is defined as

S = span ({y′k − yk | for all k = 1, . . . , r}) . (7)

where ηk = y′k − yk are the so called reaction vectors.
Then, we can define the first integrals

ca(x(t)) = aTx(t), a ∈ S⊥, (8)

where d
dtca(x(t)) = 0.

Finally, we can introduce the positively invariant stoichiometric compati-
bility classes as follows

Sp =
{
x ∈ Rn+ | ca(x) = ca(p), ∀a ∈ S⊥

}
, (9)

where the elements of p are nonnegative. These classes are positively invariant
sets of the dynamical system (4), i.e if x(0) ∈ Sp then x(t) ∈ Sp for all t ≥ 0.
This means that the concentrations remain in the stoichiometric compatibility
class that is determined by their initial value.

The notion of complex balance originally comes from the study of the ther-
modynamic compatibility of reaction networks. An equilibrium point x ∈ Rn+
of the system (4) is called complex balanced if for every ξ ∈ K,∑

k:ξ=yk

κk(x)yk =
∑

k:ξ=y′k

κk(x)yk , (10)

where the sum on the left is over all reactions for which ξ is the source complex
and the sum on the right is over all reactions for which ξ is the product com-
plex. Thus complex balance of an equilibrium point expresses that the reaction
fluxes producing and consuming a complex ξ are equal for each complex.
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It is well-known [26] that if (4) has a positive complex balanced equilibrium
x, then any other positive equilibrium is complex balanced and the set of all
positive equilibria E can be characterized by

E = {x̃ ∈ Rn+ | Ln(x̃)− Ln(x) ∈ S⊥}. (11)

Every positive complex balanced equilibrium x is at least locally asymptot-
ically stable relative to its positive stoichiometric compatibility class Sx with
the known logarithmic Lyapunov function which is independent of the rate
coefficients and it has the form

V (x) =

n∑
i=1

xi g

(
xi
xi

)
, (12)

where g(r) = r ln r + 1− r.
According to the Global Attractor Conjecture, the complex balanced equi-

librium x is not only local, but a global attractor in the positive stoichiometric
compatibility class Sx [4]. Important special cases were proven in [1] and [11].
Moreover, the possible general proof of the conjecture has recently appeared
in [3].

Deficiency (denoted by δ) is a fundamental property of a reaction network
and it is defined as [8]:

δ = m− l − s, (13)

where m is the number of distinct complexes, l is the number of linkage classes
(graph components) and s is the dimension of the stoichiometric subspace.
The deficiency depends only on the structure of the CRN, so it is a robust (i.e.
parameter-independent) property.

According to the Deficiency Zero Theorem, the positive equilibrium points
of a weakly reversible CRN with zero deficiency are complex balanced [8].
Therefore, the deficiency is a very useful measure for studying the dynamical
properties of reaction networks and for establishing parameter-independent
(at least) local stability conditions.

2.1.2 Chemical reaction networks with time delay

In bio- or enzyme-kinetics one often faces with reactions that have a certain
dormant period, i.e. there is a time delay between the availability of the reac-
tants and the starting of the reaction itself. This may be a consequence of a
non-modelled slow initializing reaction step (or steps) that produce an enzyme
or a catalyst to the reaction. Examples of such kinetic schemes are e.g. in [21]
and [7].

Motivated by the above, the mass-action CRN with time delays will be
considered in the form of a delay differential equation

ẋ(t) =

r∑
k=1

κk [(x(t− τk))yk y′k − (x(t))yk yk] , t ≥ 0, (14)
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where τk ≥ 0, k = 1, . . . , r are the time delays. In the special case of τk = 0,
k = 1, . . . , r, Eq. (14) reduces to the ordinary mass action law CRN model (4).

Solutions of (14) are generated by initial data x(t) = θ(t) for −τ ≤ t ≤ 0,
where τ = max1≤k≤r τk is the maximum delay and θ ∈ C+ is a nonnegative
vector-valued continuous initial function over the time interval [−τ, 0], and C+
is a set of such functions. For every t ≥ 0, xt ∈ C+ is defined by xt(s) = x(t+s)
for −τ ≤ s ≤ 0 which is a segment of the solution.

Reaction graph with time delay We can simply extend the reaction graph de-
scribing the structure of a CRN with delays as follows. In case of a delayed
reaction Rk with a reaction rate constant κk > 0 and a delay τk > 0, the edge
weight of the edge corresponding to the reaction will be the pair κk, τk.

Note that multiple parallel edges between complexes may exist in this case
with different delays.

The properties of CRNs with time delay It is easy to see, that the most impor-
tant properties of CRNs, (weak) reversibility, complex balance and deficiency,
can be simply extended to the case with time delay.

Example 2: Simple CRN with delay Consider again two species, X1 and X2

that react in a reversible reaction 2X1 � X2, and let us have a third reaction
converting X2 to 2X1 with a delay. Then the elementary reaction steps are

R1 : 2X1

κ1
GGGGGGAX2; R2 : X2

κ2
GGGGGGA2X1; R3 : X2

κ3, τ3
GGGGGGGGGGA2X1

The corresponding reaction graph is depicted in Fig. 1. The time evolution is
described by the following delay differential equations

ẋ1(t) = −2κ1x
2
1(t) + 2κ2x2(t) + 2κ3x2(t− τ3)

ẋ2(t) = κ1x
2
1(t)− κ2x2(t)− κ3x2(t)

(15)

where x = [x1, x2]T ∈ R2

+ are the states, κi > 0 are the reaction rate constants
and τ3 > 0 is the time delay of the third reaction.

The stoichiometric subspace is

S = span
([
−2

1

])
and S⊥ = span

([
1
2

])
.

The deficiency of this model is δ = 2 − 1 − 1 = 0, and the reaction graph
is weakly reversible, so this model is complex balanced, too.

The dimension of S is one, therefore the system (15) has infinitely many
positive equilibria. It is easily verified that x1 = x2 = κ2+κ3

κ1
is an equilibrium

of (15). Then, we can construct the set of the positive equilibriums by (11) as
follows

E =

{
x ∈ R2

+ |
[

ln(x1)− ln(κ2+κ3

κ1
)

ln(x2)− ln(κ2+κ3

κ1
)

]
∈ S⊥

}
. (16)
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Fig. 1 Reaction graph of the example model (15)

2.2 Summary of the chain method

The analysis of nonlinear delayed differential equations is generally difficult
due to the infinite dimension of the phase-space [10]. To overcome this diffi-
culty, delayed terms were approximated by a sequence of first order differential
equations in [24] thus approximating delayed differential equations by a set of
ODEs. It was shown in [24] that if the initial function of the delayed system
is sufficiently smooth, then the solution of the approximating ODE converges
uniformly to the solution of the original delayed model on any finite time
interval [0, T ].

An important generalization of the chain method was proposed in [13],
where the authors showed that under additional conditions often fulfilled by
physical models, the approximation uniformly converges to the original so-
lution on the whole infinite time-horizon [0,∞). These results were further
improved in [17], where sufficient conditions were given for the convergence of
the approximation on [0,∞) for a more general class of ODEs with Lipschitz-
continuous nonlinearities.

In order to formally introduce the chain approximation method, we assume
that the system model has the following form

ẋ(t) = f(x(t)) + h(x(t− τ))H, ∀t ≥ 0, (17)

where x(t) ∈ Rn is the state vector, τ > 0, f : Rn → Rn, h : Rn → R
are continuous functions, H ∈ Rn is a constant vector, and x(t) = θ(t) for
−τ ≤ t ≤ 0 is the continuous initial function. The approximating set of ODEs
with a chain containing N new state variables (‘compartments’) denoted by
vi for i = 1, . . . , N is the following

ż(t) = f(z(t)) +
N

τ
vN (t)H

v̇1(t) = h(z(t))− N

τ
v1(t)

v̇i(t) =
N

τ
vi−1(t)− N

τ
vi(t), 2 ≤ i ≤ N

(18)

with z(0) = θ(0), and vi(0) =
∫ −(i−1) τN
−i τN

h(θ(s))ds, 1 ≤ i ≤ N . Note that
z(t) ∈ Rn and vi(t) ∈ R, i = 1, . . . , N .

We remark that the model (18) forms a special case of the one studied
in [16], since the delayed term in (17) is written as the product of a scalar-
valued function h and a constant vector H. Therefore, vi(t) for i = 1, . . . , N
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are scalars in (18). Naturally, the results proved in [16] are valid for our model,
too.

In the next section, we will show that considering a delayed kinetic system
(14), its approximation in the form of (18) is formally a non-delayed kinetic
system with additional first order reactions, and we will study its relation to
the original delayed model.

3 Analysis of delayed kinetic models through approximation

In order to analyse the properties of approximated delayed kinetic models,
we will first apply the chain method in this section for a special case of such
systems with just a single delayed reaction. The results can be then easily
generalised for the multiple delay case.

3.1 Model equations of approximated delayed kinetic models

Let us assume that only the last (rth) reaction is delayed (i.e. τk = 0 for
k = 1, . . . , (r − 1) and τr > 0). With this assumption, the delayed kinetic
system (14) can be written as

ẋ(t) =

r−1∑
k=1

κk (x(t))yk [y′k − yk] + κr [(x(t− τr))yry′r − (x(t))yryr] . (19)

Then, we can construct the approximating system by using the chain
method described in eq. (18) with h(x(t− τr)) = κr(x(t− τr))yr and H = y′r
as follows

ż(t) =

r−1∑
k=1

κk (z(t))yk [y′k − yk] +
N

τr
vN (t)y′r − κr(z(t))yryr

v̇1(t) = κr(z(t))
yr − N

τr
v1(t)

v̇i(t) =
N

τr
vi−1(t)− N

τr
vi(t), 2 ≤ i ≤ N,

(20)

with the initial conditions

z(0) = θ(0), and vi(0) = κr

∫ −(i−1) τrN
−i τrN

(θ(s))yrds. (21)

It is easy to see, that the approximating equations are kinetic, since all the
functions on the right hand side of (20) match the sign conditions given in Eq.
(6). Moreover, it is also clear from the equations that the delayed reaction is
replaced by a chain of first order reaction steps where the concentrations of
the newly introduced first-order complexes are vi for i = 1, . . . , N .

In a similar way, any delayed reaction can be approximated by a series of
first order reaction steps involving new auxiliary species forming new complexes
by themselves.
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Fig. 2 Reaction graph of the approximating model of Example 2 with model Eqs. (22).
The delayed reaction is replaced by a chain of first order reactions compared to the original
reaction graph in Fig. 1.

Example 2 (Continued) Using the above described chain method, we can con-
struct the approximating ODEs of the original model (15) as follows

ż1(t) = −2κ1z
2
1(t) + 2κ2z2(t) +

N

τ3
vN (t)

ż2(t) = κ1z
2
1(t)− κ2z2(t)− κ3z2(t)

v̇1(t) = κ3z2(t)− N

τ3
v1(t)

v̇i(t) =
N

τ3
vi−1(t)− N

τ3
vi(t), 2 ≤ i ≤ N,

(22)

where z = [z1, z2]T ∈ R2

+ and v ∈ RN+ are the states, and N ≥ 2 is the
number of the auxiliary states v. The initial conditions are z(0) = θ(0) and
vi(0) = κ3

∫ −(i−1) τ3N
−i τ3N

θ2(s)ds.
Fig. 2 shows the reaction graph of the approximation with the auxiliary

species, complexes and reactions but without delay.
In order to illustrate the effect of the approximation on the dynamics of

the original system and its approximations, Fig. 3 depicts the time domain
simulation of the delayed system and the approximating system with different
number of compartments, i.e. with different values of N .

3.2 Important properties of approximating kinetic models

We have already seen in Subsection 3.1, that the approximating model of a
kinetic system with time delays is kinetic, therefore it is positive, too. In addi-
tion, any delayed reaction was approximated by a chain of first order reaction
steps involving new auxiliary species forming new complexes by themselves,
that implies the properties of the resulting approximating CRN model.

Connectivity and weak reversibility The delayed reaction is replaced by a chain
of first order reaction. Therefore, the number and strong connectivity of the
reaction graph components are not changing. This means that the number of
linkage classes remains the same (l′ = l), and if the original reaction graph
is weakly reversible, then the reaction graph of the approximation is weakly
reversible, too.
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Fig. 3 Time domain simulation of the delayed system (15) and the approximating system
(22) with the parameters κ1 = 1, κ2 = 1, κ3 = 5, τ3 = 0.5 and constant initial condition.
The blue lines correspond to the states of the original delayed system x(t). The dashed
lines correspond to the first two states of the approximation z(t) with different number
of compartments. The red, green, magenta and black dashed lines show the case N =
2, 50, 100, 500, respectively. The larger N results in better approximation.

Stoichiometric subspace The dimension of the state space increases from the
original n (reflecting the number of species) to (n+N) with theN new auxiliary
species. Therefore, we extend the original complex vectors with N zeros ŷi =[
yTi 0T

]T and ŷ′i =
[
y′Ti 0T

]T for i = 1, . . . , r. Then, we can partition the
stoichiometric subspace of the approximating model S ′ ⊆ Rn+N as follows

S ′ = S ′1 ⊕ S ′2 ⊕ S ′3, (23)

where ⊕ denotes the direct sum of the vector spaces. The vector spaces S ′1,S ′2
and S ′3 are defined as follows

S ′1 = span ({ŷ′i − ŷi | i = 1, . . . , r}) ,
S ′2 = span ({ei+1 − ei | i = (n+ 1), . . . , (n+N − 1)}) ,
S ′3 = span (en+1 − ŷr) .

(24)

The intersection of these vector spaces S ′1 ∩ S ′2 ∩ S ′3 contains only 0. The
dimensions are dim(S ′1) = s, dim(S ′2) = N − 1 and dim(S ′3) = 1. Therefore,
s′ = dim(S′) = s+N .

Deficiency As it is shown above, the chain approximation of a delay kinetic
model changes the structural properties in such a way that the deficiency
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remains the same with the approximation. This is seen if one substitutes the
modified properties l′, m′ and s′ to the defining equation (13):

δ′ = m′ − l′ − s′ = m+N − l − s−N = m− l − s = δ (25)

Equilibrium points and complex balance It is easy to check that when the orig-
inal system (19) has the positive equilibrium point x, then the approximation
system (20) has a positive equilibrium (z, v) in the form

z = x,

vi = κr
τr
N
zyr = κr

τr
N
xyr , i = 1, . . . , N.

(26)

The reaction rates of the chain in the equilibrium (z, v) are equal to the reac-
tion rate of the delayed reaction in the equilibrium x, i.e. κrxyr . Therefore, if
the equilibrium point of the original system x is complex balanced, then the
equilibrium point of the approximation system (z, v) is complex balanced, too.

3.3 Stability analysis of delayed kinetic models

First integrals of the approximation Let us consider the following linear func-
tion of the states

cNa (z(t), v(t)) = aT

[
z(t) +

N∑
i=1

vi(t)yr

]
, a ∈ S⊥, (27)

where S is the stoichiometric subspace of the original delayed system (19).
The linear function (27) is a first integral of the approximation system (20),
because

d

dt
cNa (z(t), v(t)) = aT

[
ż(t) +

N∑
i=1

v̇i(t)yr

]

=

r−1∑
k=1

κk (z(t))yk aT [y′k − yk]︸ ︷︷ ︸
0

+
N

τr
vN (t) aT [y′r − yr]︸ ︷︷ ︸

0

= 0,

(28)

where y′k − yk ∈ S for k = 1, . . . , r and a ∈ S⊥.
Then, we would like to conclude the first integrals of the delayed system

(19). For this, we are looking for the ’limit functional ’ ca : C+ → R such that
if N → ∞ then cNa (z(t), v(t)) → ca(xt). By using the properties of the chain
method, we consider the following approximations denoted by the sign ≈

z(t) ≈ x(t), vi(t) ≈ κr
∫ t−(i−1) τrN

t−i τrN
(x(s))yrds ≈ κr

τr
N

(
x(t− i τr

N
)
)yr

. (29)
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Let us substitute (29) into (27), then

cNa (z(t), v(t)) ≈ cNa (xt) = aT

[
x(t) + κr

N∑
i=1

τr
N

(
x(t− i τr

N
)
)yr

yr

]
. (30)

If N →∞, then

cNa (xt)→ ca(xt) = aT

x(t) + κr

t∫
t−τr

(x(s))yrds yr

 . (31)

that gives the first integral of the original delayed model.

Lyapunov function of the approximating system Let us assume that the de-
layed system (19) has the complex balanced equilibrium x. Then, the equilib-
rium point of the approximation system (z, v) is complex balanced, too.

Therefore, we can construct the logarithmic Lyapunov function V N (z(t), v(t))
of the approximation as follows

V N (z(t), v(t)) =

n∑
i=1

zi(t) g

(
zi(t)

zi

)
+

N∑
i=1

vi g

(
vi(t)

vi

)

=

n∑
i=1

xi g

(
zi(t)

xi

)
+ κrx

yr

N∑
i=1

τr
N
g

(
1

κr

N

τr

vi(t)

xyr

)
,

(32)

where g(r) = r ln r + 1 − r. Here we used Eqs. (26) relating the equilibrium
points of the original and the approximated models.

Similarly to the previous paragraph, we are looking for the ’limit functional ’
V : C+ → R+ such that if N → ∞ then V N (z(t), v(t)) → V (xt). For this, let
us substitute (29) into (32), then

V N (z(t), v(t)) ≈ V N (xt) =

n∑
i=1

xi g

(
xi(t)

xi

)
+

+ κrx
yr

N∑
i=1

τr
N
g

((
x(t− i τrN )

x

)yr)
.

(33)

If N →∞, then

V N (xt)→ V (xt) =

n∑
i=1

xi g

(
xi(t)

xi

)
+ κrx

yr

t∫
t−τr

g

((
x(s)

x

)yr)
ds. (34)

and we obtain the Lyapunov function of the original delayed model, that is
used for stability analysis in [18].

Example 2 (Continued) Fig. 4 demonstrates the convergence property of
V N (z(t), v(t)) with the example system (15) comparing the functional V (xt)
and its approximations V N (z(t), v(t)) with different Ns.
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Fig. 4 This figure corresponds to the simulation of the delayed (15) and the approximation
system (22) with same parameters and initial conditions as Fig. 3. The blue lines shows
the value of the functional V (xt). The dashed lines correspond to the values of the function
V N (z(t), v(t)) with different Ns. The red, green, magenta and black dashed lines show the
case N = 2, 50, 100, 500, respectively. The plot shows the convergence V N (z(t), v(t)) →
V (xt).

4 General stability results

The results of the previous section can be generalized to kinetic models of the
form (14) containing multiple constant delays. The detailed stability proofs
of complex balanced delayed kinetic systems using the Lyapunov-Krasovskii
functional presented in this section can be found in [18].

The functional (31) is generalized first in order to prove that it is a first
integral of the system (14). The generalized functional ca : C+ → R has the
form

ca(xt) = aT

[
x(t) +

r∑
k=1

(
κk

∫ t

t−τk
(x(s))ykds

)
yk

]
, a ∈ S⊥. (35)

that contain a sum of delayed terms (for k = 1, ..., r) compared to the single
delay case in Eq. (31).

Then we can define the positive stoichiometric compatibility classes of θ ∈
C+ in the case of time delay such that

Dθ =
{
ψ ∈ C+ | ca(ψ) = ca(θ), ∀a ∈ S⊥

}
. (36)

Note that Dθ is a set of functions and it is a generalization of the stoichiometric
compatibility class Sp of the CRNs without delay (see in Eq. (9)). Similarly
to Sp, the solutions of the delayed model remain in the delayed stoichiometric
compatibility class Dθ if the initial value function θ is in this set, too.
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Fig. 5 Phase portrait of the system (20) with the parameters κ1 = 1, κ2 = 1, κ3 = 5,
τ3 = 0.2. The red dashed line shows the set of equilibria. The black dot-dashed lines show the
set of initial states (with constant initial functions) corresponding to the same equilibrium.
The green dashed lines are the stoichiometric compatibility classes of the non-delayed system.
The blue lines show the solution trajectories with different constant initial functions

In the general case, the Lyapunov-Krasovskii functional V : C+ → R+ of
the delayed system has the form

V (xt) =

n∑
i=1

xi g

(
xi(t)

xi

)
+

r∑
k=1

κkx
yk

∫ t

t−τk
g

((
x(s)

x

)yk)
ds. (37)

that also contain a sum of delayed terms (for k = 1, ..., r) compared to the
single delay functional in Eq. (34).

The above functional is used to prove that every positive complex balanced
equilibrium x of the delayed kinetic system (14) is locally asymptotically stable
relative to its positive stoichiometric compatibility class Dx.

Example 2 (Continued) Let us investigate the dynamics of the delayed model
(15) assuming positive constant initial functions θ that belong to Dx where x
is from the set of the equilibrium points, i.e. x ∈ E . All these trajectories with
such a constant initial value function will go to x in the limit with t→∞.

At the same time, the equilibrium points of the delayed and no-delayed
CRNs coincide, so the trajectories of the non-delayed CRNs will also go to x
in the limit, and their trajectories will be in Sx, that is a line in this case.

Fig. 5 shows the phase portrait of the original delayed model in the example
(15). The simulation is started from different constant initial functions.
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5 Conclusions

Mass action law chemical reaction networks with delays assigned to the reac-
tions were considered in this paper. The delayed models were approximated
using the modified chain method known from the theory of delay differential
equations.

It was shown that important structural properties (such as weak reversibil-
ity and deficiency) of the approximated models are preserved in the approxi-
mations. Moreover, a Lyapunov-Krasovskii functional candidate was proposed
using the approximation for the original delayed systems that can be efficiently
used for stability analysis.

The proposed notions and results were demonstrated using a simple chem-
ical reaction network with two species, two complexes, three reactions and a
single delay.

Further work will be directed to use the structural relationship between
the delayed and approximated models for model structure simplification for
bio-chemical reaction networks.
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