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Abstract

In this letter we introduce a class of delayed kinetic systems derived from mass
action type reaction network models. We define the time delayed positive sto-
ichiometric compatibility classes and the notion of complex balanced time de-
layed kinetic systems. We prove the uniqueness of equilibrium solutions within
the time delayed positive stoichiometric compatibility classes for such mod-
els. In our main result we prove the semistability of the equilibrium solutions
for complex balanced systems with arbitrary time delays using an appropriate
Lyapunov-Krasovskii functional and LaSalle’s invariance principle. As a conse-
quence, we obtain that every positive complex balanced equilibrium solution is
locally asymptotically stable relative to its positive stoichiometric compatibility
class.

Keywords: Nonnegative systems; Kinetic systems; Chemical reaction
networks; Stability Theory; Time delay; Logarithmic Lyapunov–Krasovskii
functionals

1. Introduction

The class of kinetic systems has proven to be a useful representation of
nonnegative system models not only in biochemistry, but also in other areas
like population or disease dynamics, process systems, and even transportation
networks [1, 2, 3]. A network-based description is often advantageous to describe
key properties of potentially large, complex systems with many components [4,
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5]. Kinetic systems are naturally equipped with a network (i.e., directed graph)
structure called the reaction graph, which is the abstraction of a set of chemical
reactions, where the chemical complexes and reactions can be represented by
vertices and directed edges, respectively. One of the primary aims of chemical
reaction network theory (CRNT) is to discover relations between the dynamical
behaviour and the graph structure of kinetic systems [6, 7, 8]. Probably the
most widely known results of general importance in this field are the Deficiency
Zero and Deficiency One Theorems [9] and more recently the notion of absolute
concentration robustness [10]. An excellent overview of the mathematical
structure and dynamical properties of mass-action type kinetic systems also
emphasizing the significance of semistability can be found in [11].

The detailed balance property of a thermodynamic system, defined originally
by Boltzmann in the 19th century, means that at equilibrium, each elementary
reaction step is equilibriated by the corresponding reverse reaction. A more
general condition is complex balance, which requires that the signed sum of
incoming and outgoing reaction rates at equilibrium is zero for each complex in
a chemical reaction network [12, 13, 14]. It is worth remarking that complex
balance does not depend on a particular equilibrium (if there exist multiple
equilibria in a system), but it is a property of a chemical reaction network itself
[6]. For a historical review of the notions of detailed and complex balance,
see [15]. Generally, complex balance is related both to the structure and to the
parameters of chemical reaction networks. Firstly, complex balance implies that
each component of the reaction graph is strongly connected (i.e., the reaction
network is weakly reversible) [6]. It is also important that deficiency zero weakly
reversible reaction networks are complex balanced for any positive values of the
reaction rate coefficients [7, 9]. However, complex balance becomes a parameter-
dependent property when the deficiency of the network is higher than zero. The
main significance of complex balance in systems and control theory stands in
its stability implications [16]. According to the Global Attractor Conjecture,
complex balanced kinetic systems are globally stable in the positive orthant with
a logarithmic Lyapunov function that does not depend on the model parameters.
The conjecture was proved for several special cases such as one linkage class
networks [17], and a possible proof for the general problem has recently appeared
in [18]. Using the non-uniqueness of reaction graphs corresponding to kinetic
models [19], a feedback design method was proposed in [20] that transforms
a polynomial model into a complex balanced closed loop system via nonlinear
state feedback.

Time-delays are often present in natural and technological processes, and the
detailed mathematical treatment of such delays is sometimes necessary to model
and understand important observed dynamical phenomena [21, 22]. An excel-
lent summary of the fundamental results on nonnegative and compartmental
systems with time-delay can be found in Chapter 3 of [2], where simple alge-
braic necessary and sufficient conditions are given for the asymptotic stability
of delayed linear nonnegative models including linear compartmental systems.
Among other results, the semistability of an important special class of nonlinear
compartmental systems for arbitrary time-delays was shown in [23].
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Motivated by the above results, the purpose of this paper is to introduce
the complex balance condition for kinetic systems with delayed reactions, and
to study the stability properties of such systems using logarithmic Lyapunov-
Krasovskii functionals and LaSalle’s invariance principle.

Throughout the paper, we will use the following notations. If N is a posi-
tive integer, RN denotes the N -dimensional space of real column vectors. The

symbols RN+ and RN+ denote the set of (element-wise) positive and nonnegative
vectors in RN , respectively. For x, y ∈ RN+ , the vector x

y ∈ RN+ is defined by

(xy )
i

= xi

yi
for i = 1, . . . , N . For x, y ∈ RN+ , the vector exponential xy is defined

as xy =
∏N
i=1 x

yi
i . The mapping Ln : RN+ → RN is the element-wise logarithmic

mapping defined by (Ln(x))i = ln(xi) for x ∈ RN+ and i = 1, . . . , N . Recall that
ln(xy) = yTLn(x) for x ∈ RN+ and y ∈ RN , where (·)T denotes the transpose,
and Ln(xy ) = Ln(x) − Ln(y) whenever x, y ∈ RN+ . For every τ ≥ 0, the symbol

C = C([−τ, 0],RN ) denotes the Banach space of continuous functions mapping
the interval [−τ, 0] into RN with the norm ‖ψ‖ = sup−τ≤s≤0 |ψ(s)| for ψ ∈ C,
where | · | denotes the Eucledian norm in RN . Finally, let C+ = C([−τ, 0],RN+ )

and C+ = C([−τ, 0],RN+ ) denote the set of positive and nonnegative functions
in C.

2. Kinetic systems with time delays

In this section, we introduce mass-action kinetic systems with time delays
and show that they generate a nonnegative semiflow.

Consider the ordinary mass-action kinetic system [7]

ẋ(t) =

M∑
k=1

κk (x(t))yk [y′k − yk] , t ≥ 0, (1)

where x(t) ∈ RN+ is the state vector. We have a set of complexes K ⊂ ZN+
and there are M reactions between the complexes. As usual, ZN+ denotes the
set on nonnegative integers. Each reaction has a source and product complex
yk, y

′
k ∈ K, respectively, with a reaction rate constant κk > 0, k = 1, . . . ,M .

Solutions of (1) are determined by nonnegative initial vectors x(0) = η ∈ RN+ .
In this paper, we will consider the mass-action kinetic system with time delays

ẋ(t) =

M∑
k=1

κk [(x(t− τk))yk y′k − (x(t))yk yk] , t ≥ 0, (2)

where τk ≥ 0, k = 1, . . . ,M . In the special case τk = 0, k = 1, . . . ,M , Eq. (2)
reduces to the ordinary mass kinetic system (1). Solutions of (2) are gener-
ated by initial data x(t) = θ(t) for −τ ≤ t ≤ 0, where τ = max1≤k≤M τk is
the maximum delay and θ ∈ C+ is a nonnegative continuous initial function.
Throughout the paper, the solution of (2) with initial function θ ∈ C+ will be
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denoted by x = xθ. Note that the solutions of delay differential equations are
usually interpreted in C. For every t ≥ 0, xt ∈ C is defined by xt(s) = x(t + s)
for −τ ≤ s ≤ 0.

In the following theorem, we show that the semiflow generated by the time
delay kinetic system (2) is nonnegative.

Theorem 1. For every initial function θ ∈ C+, the solution xθ of (2) is non-
negative, i.e., xθt ∈ C+ for all t ≥ 0.

Proof. Eq. (2) can be written in the form

ẋ(t) = F (xt),

where F : C+ → RN is given by

F (φ) =

M∑
k=1

κk [(φ(−τk))yk y′k − (φ(0))yk yk] , φ ∈ C+.

It follows from the definition of the vector exponential that if φ ∈ C+ and
φi(0) = 0 for some i ∈ {1, . . . , N}, then

Fi(φ) =

M∑
k=1

κk(φ(−τk))yk (y′k)i ≥ 0.

Here φi and Fi denote the i-th coordinate function of φ and F , respectively.
The conclusion follows from Theorem 2.1 in Chap. 5 of [24]. Alternatively, we
can use the generalization of Proposition 3.1 of [2] to equations with multiple
delays.

3. Stoichiometric compatibility classes for delayed kinetic systems

Recall [7] that the stoichiometric subspace S for the ordinary mass-action
kinetic system (1) is defined by

S = span {y′k − yk | k = 1, . . . ,M} , (3)

and for each p ∈ RN+ the corresponding positive stoichiometric compatibility
class Sp is given by

Sp =
{
x ∈ RN+ | x− p ∈ S

}
. (4)

It is well know that the positive stoichiometric classes Sp are positively invariant
under the mass-action kinetic system (1), i.e. x(0) ∈ Sp implies x(t) ∈ Sp for
all t ≥ 0.

In this section we will extend the definition of the positive stoichiometric
classes to the time delayed kinetic system (2) and we prove their invariance
property.
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For each v ∈ RN , define the functional cv : C+ → R by

cv(ψ) = vT

[
ψ(0) +

M∑
k=1

(
κk

∫ 0

−τk
(ψ(s))yk ds

)
yk

]
, ψ ∈ C+. (5)

Let S⊥ denote the orthogonal complement of the stoichiometric subspace S
given by S⊥ = { v ∈ RN | vT y = 0 for all y ∈ S }. Now we can formulate
the definition of the positive stoichiometric compatibility classes for the delayed
kinetic system (2). For each θ ∈ C+, the positive stoichiometric compatibility
class of (2) corresponding to θ is denoted by Dθ and is defined by

Dθ = {ψ ∈ C+ | cv(ψ) = cv(θ) for all v ∈ S⊥}. (6)

It is easily seen that ψ ∈ Dθ if and only if ψ ∈ C+ and

ψ(0)− θ(0) +

M∑
k=1

(
κk

∫ 0

−τk
[(ψ(s))yk − (θ(s))yk ] ds

)
yk ∈ S. (7)

Therefore, if we ignore the delays in (2), i.e. τk = 0 for k = 1, . . . ,M , then the
above delayed positive stoichiometric compatibility classes coincide with the
positive stoichiometric compatibility classes of the ordinary kinetic system (1),
since Sp defined in Eq. (4) can equivalently be written as

Sp =
{
x ∈ RN+ | vTx = vT p for all v ∈ S⊥

}
.

We mention that Eq. (6) defines an equivalence relation and thus equiva-
lence classes for initial functions of the same delayed kinetic system. It is also
important to stress that positive stoichiometric compatibility classes are simple
linear manifolds in the state space for non-delayed models, while they are sets
of functions for delayed kinetic systems.

In the next theorem, we establish the invariance property of the above de-
layed positive stoichiometric compatibility classes.

Theorem 2. For every θ ∈ C+, the positive stoichiometric compatibility class Dθ
is a closed subset of C+. Moreover, Dθ is positively invariant under Eq. (2), i.e.

if ψ ∈ Dθ, then xψt ∈ Dθ for all t ≥ 0.

Proof. Let θ ∈ C+. The closedness of Dθ is a simple consequence of the continu-
ity of functionals cv, v ∈ S⊥. We will show that for every v ∈ S⊥ the functional
cv defined by (5) is constant along the solutions of Eq. (2). Indeed, if x is a
solution of (2), then we have for t ≥ 0,

d

dt
(cv(xt)) = vT

M∑
k=1

κk (x(t− τk))yk (y′k − yk)

=

M∑
k=1

κk (x(t− τk))ykvT (y′k − yk) = 0,
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the last equality being a consequence of the definition of S⊥. From this, we find
that if ψ ∈ Dθ, then for every v ∈ S⊥ and t ≥ 0,

cv(x
ψ
t ) = cv(x

ψ
0 ) = cv(ψ) = cv(θ)

and hence xψt ∈ Dθ. This show that Dθ invariant under Eq. (2).

4. Semistability for delayed complex balanced kinetic systems

Before we formulate our main stability criterion, we recall some definitions.
By a positive equilibrium of (1) or (2), we mean a positive vector x ∈ RN+ such
that x(t) ≡ x is a solution of (1) and (2), respectively. Note that Eqs. (1)
and (2) share the same equilibria satisfying the algebraic equation

M∑
k=1

κk(x)yk [y′k − yk] = 0. (8)

A positive equilibrium x is called complex balanced if for every η ∈ K,∑
k:η=yk

κk(x)yk =
∑

k:η=y′k

κk(x)yk , (9)

where the sum on the left is over all reactions for which η is the source complex
and the sum on the right is over all reactions for which η is the product complex.
Finally, an ordinary or delayed kinetic system is called complex balanced if it
has a positive complex balanced equilibrium.

It is well-known [25] that if Eq. (1) and hence (2) has a positive complex
balanced equilibrium x, then any other positive equilibrium is complex balanced
and the set of all positive equilibria E can be characterized by

E = {x̃ ∈ RN+ | Ln(x̃)− Ln(x) ∈ S⊥}. (10)

Now we formulate the main result of the paper about the semistability of com-
plex balanced equilibria of delayed kinetic systems in the sense of the fol-
lowing definition. A positive equilibrium x of Eq. (2) is called semistable if
it is Lyapunov stable and there exists δ > 0 such that if θ ∈ B̂δ(x), then
xθ(t) converges to a Lyapunov stable equilibrium of (2) as t → ∞. As usual,
B̂δ(x) = {ψ ∈ C | ‖ψ−x‖ ≤ δ }. For more details on the notion and application
of semistability, see [2].

Theorem 3. Every positive complex balanced equilibrium of the delayed kinetic
system (2) is semistable.

As a preparation for the proof of Theorem 3, we establish an auxiliary result
about the uniqueness of complex balanced equilibria in the positive stoichio-
metric classes of delayed kinetic systems .
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Theorem 4. Suppose that the delayed kinetic system (2) is complex balanced.
Then for every θ ∈ C+ the corresponding delayed stoichiometric class Dθ con-
tains at most one positive equilibrium.

Proof. Let θ ∈ C+. Suppose that x̃ and x are complex balanced equilibria
belonging to Dθ. From the characterization (7) of Dθ, we find that

x̃− x+

M∑
k=1

(
κk

∫ 0

−τk
[x̃yk − xyk ] ds

)
yk ∈ S.

This, together with (10), yields

0 = (Ln(x̃)− Ln(x))T

[
x̃− x+

M∑
k=1

(
κk

∫ 0

−τk
[x̃yk − xyk ] ds

)
yk

]

=

N∑
i=1

(ln(x̃i)− ln(xi)) (x̃i − xi) +

M∑
k=1

κkτk (ln(x̃yk)− ln(xyk)) (x̃yk − xyk) .

Since (ln(a) − ln(b))(a − b) ≥ 0 whenever a, b > 0 with equality if and only if
a = b, this is possible only if x̃i = xi for all i = 1, . . . , N .

Now we are in a position to give a proof of Theorem 3. It will be based
on the Lyapunov-Krasovskii method and LaSalle’s invariance principle [2], [26],
[27], [28].

Proof of Theorem 3. We will use the following two inequalities. For every a, b ∈
R,

ea(b− a) ≤ eb − ea, (11)

with equality if and only if a = b. For every b > 0 there exists c > 0 such that
for all x > 0,

x
[
ln(x)− ln(b)− 1

]
+ b ≥ c ln

[
1 + (x− b)2

]
≥ 0. (12)

Inequality (11) is not new. It is a simple consequence of the mean value theorem
applied to the exponential function. Inequality (12) is less obvious. Its proof is
given in the Appendix.

Consider the candidate Lyapunov–Krasovskii functional V : C+ → R+ de-
fined by

V (ψ) =

N∑
i=1

(
ψi(0)(ln(ψi(0))− ln(xi)− 1) + xi

)
+

M∑
k=1

κk

∫ 0

−τk
{(ψ(s))yk [ln((ψ(s))yk)− ln(xyk)− 1] + xyk} ds

(13)

for ψ ∈ C+. Clearly, V (x) = 0. We will show that there exists a continuous
strictly increasing function α : [0,∞)→ [0,∞) with α(0) = 0 such that

V (ψ) ≥ α(|ψ(0)− x|), ψ ∈ C+, (14)
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where | · | is the Euclidean norm in RN . By virtue of (12), the second sum
in (13) is nonnegative and the first sum in (13) can be estimated from below
using the first inequality in (12). Thus, (12) implies the existence of positive
constants ci, 1 ≤ i ≤ N , such that for all ψ ∈ C+,

V (ψ) ≥
N∑
i=1

ci ln
[
1 + (ψi(0)− xi)2

]
≥ γ

N∑
i=1

ln
[
1 + (ψi(0)− xi)2

]
= γ ln

N∏
i=1

[
1 + (ψi(0)− xi)2

]
≥ γ ln

(
1 +

N∑
i=1

(ψi(0)− xi)2
)

= γ ln
(
1 + |ψ(0)− x|2

)
,

where γ = min1≤i≤N ci. Thus, (14) holds with

α(r) = γ ln(1 + r2), r ≥ 0.

Next, it follows that the Lyapunov-Krasovskii directional derivative along tra-
jectories of (2) is given by

V̇ (xt) =

M∑
k=1

κk Ln

(
x(t)

x

)T
[(x(t− τk))yk y′k − (x(t))yk yk]

+

M∑
k=1

κk (x(t))yk
(

ln

({
x(t)

x

}yk)
− 1

)

−
M∑
k=1

κk (x(t− τk))yk
(

ln

({
x(t− τk)

x

}yk)
− 1

)

=

M∑
k=1

κk

[
(x(t− τk))yk ln

({
x(t)

x

}y′k)
− (x(t))yk ln

({
x(t)

x

}yk)]

+

M∑
k=1

κk

[
(x(t))yk ln

({
x(t)

x

}yk)
− (x(t− τk))yk ln

({
x(t− τk)

x

}yk)]

+

M∑
k=1

κk [(x(t− τk))yk − (x(t))yk ]

=

M∑
k=1

κk x
yk

(
x(t− τk)

x

)yk [
ln

({
x(t)

x

}y′k)
− ln

({
x(t− τk)

x

}yk)]

+

M∑
k=1

κk x
yk

[(
x(t− τk)

x

)yk
−
(
x(t)

x

)yk]
.
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By virtue of (11), we have for each k = 1, . . . ,M ,(
x(t− τk)

x

)yk [
ln

({
x(t)

x

}y′k)
− ln

({
x(t− τk)

x

}yk)]

≤
(
x(t)

x

)y′k
−
(
x(t− τk)

x

)yk
with equality if and only if for each k = 1, . . . ,M ,(

x(t)

x

)y′k
=

(
x(t− τk)

x

)yk
.

From this, we find that

V̇ (xt) ≤
M∑
k=1

κk x
yk

[(
x(t)

x

)y′k
−
(
x(t)

x

)yk]

=
∑
η∈K

(
x(t)

x

)η  ∑
k:η=y′k

κkx
yk −

∑
k:η=yk

κkx
yk

 = 0,

where the last equality follows from the complex balanced property (9). This
implies that the complex balanced equilibrium x of (2) is Lyapunov stable.

Choose ε such that 0 < ε < min1≤i≤N xi so that B̂ε(x) ⊂ C+. The Lyapunov

stability of the equilibrium x implies the existence of δ > 0 such that if θ ∈ B̂δ(x),
then xθt ∈ B̂ε(x) for all t ≥ 0. We will show that for every θ ∈ B̂δ(x) the solution
xθ(t) converges to a Lyapunov stable equilibrium of (2). Let

R = {ψ ∈ B̂ε(x) | V̇ (ψ) = 0 }.

From the previous calculations, we find that

R =

{
ψ ∈ B̂ε(x) |

(
ψ(0)

x

)y′k
=

(
ψ(−τk)

x

)yk
for k = 1, . . . ,M

}
.

Let M be the largest set in R which is invariant under Eq. (2). We will show
that every element ofM is a complex balanced equilibrium of (2). Let ψ ∈M
and write x = xψ for brevity. Rewrite Eq. (2) in the form

ẋ(t) =
∑
η∈K

 ∑
k:η=y′k

κkx
yk

(
x(t− τk)

x

)yk
−
∑

k:η=yk

κkx
yk

(
x(t)

x

)yk η.
Since M⊂ R is invariant, we have that xt ∈ R for all t ≥ 0 and hence

ẋ(t) =
∑
η∈K

(
x(t)

x

)yk  ∑
k:η=y′k

κkx
yk −

∑
k:η=yk

κkx
yk

 η = 0
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for t ≥ 0, where the last equality is a consequence of the complex balanced
property (9). Thus, x = xψ is a constant solution of (9) and hence ψ ≡ x̃ is
a complex balanced equilibrium . Now suppose that θ ∈ B̂δ(x). As noted
before, xθt ∈ B̂ε(x) for all t ≥ 0. By the application of LaSalle’s invari-
ance principle [27], we conclude that ω(θ) ⊂ M, where ω(θ) = {φ ∈ C |
there exists tn →∞ such that xθtn → φ } is the omega limit set. On the other
hand, since θ ∈ Dθ and according to Theorem 2 the stoichiometric class Dθ is
closed and invariant, it follows that ω(θ) ⊂ Dθ. Thus, ω(θ) ⊂ M ∩ Dθ. As
shown before, every element of M is a complex balanced equilibrium of (2),
while Theorem 4 implies that Dθ contains at most one positive equilibrium.
Hence ω(θ) = {x̃} for some x̃ ∈ E and xθ(t) → x̃ as t → ∞. The Lyapunov
stability of the complex balanced equilibrium x̃ follows from the first part of
the proof.

Remark. In the previous proof we have shown that for every positive initial
function θ from a neighborhood of the complex balanced equilibrium x of (2)
the stoichiometric class Dθ contains exactly one positive equilibrium. A sim-
ple modification of the above proof can be used to show that if system (2) is
comlexed balanced then Dθ contains exactly one positive equilibrium whenever
the closure of the forward orbit O+

θ = {xθt | t ≥ 0 } remains in C+. This
last condition certainly holds if the solution xθ is persistent in the sense that
lim inft→∞ xθi (t) > 0 for each i = 1, . . . , N .

Let x be a positive complex balanced equilibrium of Eq. (2). Theorem 4
implies that x is the only positive equilibrium in its positive stoichiometric
compatibility class Dx. This, together with Theorem 3 yields the following
analogue of a known result for ordinary kinetic systems.

Theorem 5. Every positive complex balanced equilibrium x of the delayed ki-
netic system (2) is locally asymptotically stable relative to its positive stoichio-
metric compatibility class Dx.

It is easy to see that for zero delay, V (ψ) in Eq. (13) is simplified to the
classical logarithmic Lyapunov function known from the literature (see, e.g.
[9, 17]), namely

V (x) =

N∑
i=1

[xi(ln(xi)− ln(x̄i)− 1) + x̄i] (15)

where x̄ is a complex balanced equilibrium.
We note that the idea of the functionals in Eqs. (5) and (13) emerged from

the approximation of delayed kinetic models using the so-called chain method,
which is described in [29].

5. Example

In this section, we will illustrate our results and notations on a simple exam-
ple. The studied system is intentionally low dimensional in order to be able to
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simply illustrate the relations and differences between non-delayed and delayed
kinetic systems.

Let the time delayed complex balanced kinetic system be given by a re-
versible reaction 2X1 � X2 containing one undelayed and a delayed reaction as
follows

2X1
κ1=1−−−→ X2, X2

κ2=2,τ2−−−−−→ 2X1.

Then, the corresponding time-delay differential equation is

ẋ(t) = 1

(
(x1(t))2

[
0
1

]
− (x1(t))2

[
2
0

])
+ 2

(
x2(t− τ2)

[
2
0

]
− x2(t)

[
0
1

])
,

(16)

where x = [x1, x2]T ∈ R2

+ are the states and τ2 is the time delay of the sec-
ond reaction. It is easily verified that [2, 2]T is a positive complex balanced
equilibrium of (16). The stoichiometric subspace is

S = span
{

[−2, 1]T
}

and S⊥ = span
{

[1, 2]T
}
.

The dimension of S is one, therefore Eq. (16) has infinitely many positive equi-
libria given by the set

E =

{
x ∈ R2

+ |
[

ln(x1)− ln(2)
ln(x2)− ln(2)

]
∈ S⊥

}
. (17)

For x ∈ E , consider the set Xx of those positive constant functions which belong
to Dx:

Xx =

{
η ∈ R2

+ |
[

η1 − x1
(1 + 2τ2)(η2 − x2)

]
∈ S

}
. (18)

According to Theorem 5, if θ ≡ η ∈ Xx is close to the equilibrium x ∈ E , then
xθ(t)→ x as t→∞.

Figure 1 shows the phase portrait of the system (16) with τ2 = 0.5 and
with different constant initial conditions. The initial conditions are chosen such
that the corresponding solutions converge to three different equilibria. Figure 2
shows the time domain behavior of the system (16) when there are different
time delays, but the initial conditions are same.

6. Conclusions

In this paper a class of delayed kinetic systems is introduced, where different
constant time-delays can be assigned to the individual reactions of the network.
The complex balance property is defined for this system in a straightforward
way. It is shown that the equilibrium solutions of complex balanced kinetic
systems can be directly obtained from the equilibria of the corresponding non-
delayed kinetic system. Therefore, the complex balance property of a delayed
network can be checked in the same way as in the non-delayed model. The notion
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Figure 1: The phase portrait of the system (16) with τ2 = 0.5. The red dash curve shows
the equilibrium set E of the network. The black dash-dot lines show the set of points for
which the corresponding constant initial functions result in the same equilibrium point. The
green dashed lines show three stoichiometric compatibility classes of the non-delayed network
having the same structure and reaction rate coefficients as the delayed one. The blue curves
show the solution trajectories of (16) with different constant initial functions.
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Figure 2: The phase portrait of the system (16) with different time delays τ2 = {0.05, 0.1, 0.5}
and with the same constant initial function defined by η = [0.5 0.5]T . The red dashed line
shows the equilibrium set E of the network. The black dash-dot line shows the positive
stoichiometric compatibility class of the undelayed system having the same structure and
reaction rate coefficients as the delayed one. The blue curves show the solution trajectories
of (16) with different time delays.
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of stoichiometric compatibility classes is extended to delayed networks. It is
shown that contrary to the classical mass action case, these classes are no longer
linear manifolds in the state space. The uniqueness of equilibrium solutions
within a time delayed positive stoichiometric compatibility class is proved for
delayed complex balanced models. By introducing a logarithmic Lyapunov-
Krasovskii functional and using LaSalle’s invariance principle, the semistability
of equilibrium solutions in complex balanced systems with arbitrary time delays
is also proved. As a consequence, a positive complex balanced equilibrium is
always locally asymptotically stable relative to its positive stoichiometric class.
The obtained results further underline the significance of the complex balance
principle in the theory of dynamical systems. In the light of [17] and [18], an
interesting question is whether the asymptotic stability of a delayed complex
balanced system is global relative to its positive stoichiometric class.
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Appendix

We give a proof of inequality (12). Let b > 0 be fixed. For x > 0, define

f(x) = x [ ln(x)− ln(b)− 1] + b

and
g(x) = ln

[
1 + (x− b)2

]
.

Since f ′(x) = ln(x) − ln(b) for x > 0, f ′ < 0 on (0, b) and f ′ > 0 on (b,∞).
This implies that f has a strict minimum at x = b. Hence f(x) > f(b) = 0
for x ∈ (0, b) ∪ (b,∞). Clearly, the same inequality holds for g. A repeated
application of l’Hospital’s rule yields

lim
x→b

f(x)

g(x)
=

1

2b
.

Therefore the function h : (0,∞)→ R defined by

h(x) =


f(x)

g(x)
for x ∈ (0, b) ∪ (b,∞)

1

2b
for x = b
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is positive and continuous. Since x ln(x) → 0 as x → 0+, h can be extended
continuously to the interval [0,∞) by

h(0) = lim
x→0+

h(x) =
b

ln(1 + b2)
.

Since limx→∞ h(x) = ∞, there esists T > 0 such that h(x) > h(0) for all
x > T . The continuity of h implies the existence of c = min0≤x≤T h(x). Since
h(x) > h(0) ≥ c > 0 for x > T , we have that h(x) ≥ c for all x ≥ 0 which
implies the desired inequality (12).
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