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Abstract A novel state feedback design method is proposed in this paper for the stabilization
of polynomial systems with linear input structure. Using a static nonlinear feedback, the open
loop system is transformed to a complex balanced kinetic closed loop system with stoichiometric
subspace having maximum dimension, that is known to be stable. The feedback law is computed
using semidefinite programming where the objective function is used to adjust the performance
of the closed-loop system by tuning the largest eigenvalue of the state matrix of the linearized
closed-loop system. The approach is illustrated on a purely computational example followed by
a simple process system example.
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1. INTRODUCTION

Several kinds of important dynamical phenomena in na-
ture or technology can be modelled in the framework of
nonnegative systems having the property that the non-
negative orthant is invariant for the dynamics. Notable
examples are biochemical reaction networks, models of
disease and population dynamics, a wide range of mod-
els in the process industries, and certain economical or
transportation processes (Takeuchi, 1996; Érdi and Tóth,
1989; Hangos and Cameron, 2001).

Nonnegative systems have several interesting and useful
properties that can be utilized in dynamical analysis and
control design (Haddad et al., 2010; Farina and Rinaldi,
2000). Kinetic systems form an important class within
the family of nonnegative models with increasing research
interest in the last decade. The main reasons for this are
the following. Firstly, they are suitable for the modelling of
complex nonlinear dynamical behaviour, but have a math-
ematically simple and therefore computationally appealing
structure. Secondly, there are numerous (and continuously
increasing number of) strong results in the literature on
the relation between the graph structure and important
dynamical properties of kinetic systems (Feinberg, 1987;
Sontag, 2001; Angeli, 2009).

A central notion in our current work is the complex bal-
anced property of kinetic systems. Roughly speaking, com-
plex balancing means that the sum of the signed reaction
rates corresponding to any complex is zero at equilibrium,
and it was originally introduced to characterize the ther-
modynamic compatibility of reaction networks (Horn and
Jackson, 1972). It was shown that the equilibria of com-
plex balanced networks are at least locally asymptotically
stable within the so-called stoichiometric compatibility
classes, and it was conjectured for more than 40 years (for-
mulated in the Global Attractor Conjecture) that stability
is actually global with respect to the nonnegative orthant
(Craciun et al., 2009). An important and well-known spe-
cial case is formed by the class of deficiency zero weakly
reversible reaction networks that are complex balanced for
any set of positive reaction rate coefficients ensuring a ro-
bust stability property for such systems (Feinberg, 1987).
A recent fundamental result is the possible general proof of
the Global Attractor Conjecture (Craciun, 2015). Kinetic
systems are known to have a structural non-uniqueness
property meaning that different reaction graphs may give
rise to the same kinetic ODEs, where these graphs - the
kinetic realizations - can be determined efficiently using
optimization (Szederkényi and Hangos, 2011). It is also
known that important features like weak reversibility or
deficiency, and complex balance are realization properties.



Motivated by the above results, computation methods
were proposed in (Lipták et al., 2016) to transform nonlin-
ear polynomial systems into kinetic form via full state feed-
back. One sub-problem successfully solved in the frame-
work of linear programming was to achieve a complex
balance closed loop system with a prescribed equilibrium
point. The purpose of this paper is to improve this solution
by prescribing new performance specifications that will be
shown to lead to semidefinite programming (SDP).

2. BASIC NOTIONS

Kinetic systems are special types of positive polynomial
systems, their structure and properties form the basis of
the feedback design presented here.

2.1 Polynomial systems

Let us consider a polynomial dynamical system in the form

ẋ = f(x) = M ψ(x), (1)

where x ∈ Rn is the state vector and M ∈ Rn×m is the
coefficient matrix. The monomial mapping ψ : Rn 7→ Rm
is given by

ψj(x) =

n∏
i=1

x
Yij

i , j = 1, . . . ,m, (2)

where Y ∈ Zn×m≥0 is called the monomial or complex
composition matrix.

2.2 Kinetic systems, their dynamics and structure

We say that the system (1) is kinetically realizable with
the complex composition matrix Y if and only if

f(x) = Y Ak ψ(x), ∀x ∈ Rn≥0, (3)

where ψ(x) is generated by Y and Ak is a Kirchhoff
matrix, i.e. its off-diagonals are non-negative

[Ak]ij ≥ 0, ∀i 6= j,

and its column-sums are zero, i.e.

1TAk = 0.

The pair of matrices (Y,Ak) is called a kinetic realization
of the system (1). If there exists a complex composition
matrix Y such that the system (1) is kinetically realizable,
then this system is called a kinetic system. Note, that the
realization (Y,Ak) may not be unique even for a fixed
Y (see Szederkényi et al. (2011), Szederkényi (2010) and
Lipták et al. (2015)).

The non-negative orthant Rn≥0 is an invariant subspace

of kinetic systems, i.e. if x0 ∈ Rn≥0, then x(t) ∈ Rn≥0 for

all t ≥ 0 (Haddad et al. (2010)). Therefore, we are only
interested in the nonnegative orthant as state space.

The reaction graph The realization (Y,Ak) can be de-
scribed by a directed, weighted graph. The graph has m
vertices where the jth vertex Vj corresponds to the jth
column of the matrix Y . The edges are described by the
Kirchhoff matrix Ak. There exists an edge Vj → Vi in the
graph with the weight [Ak]ij if and only if [Ak]ij > 0.

Weak reversibility and complex balance The dynamic
properties of a kinetic system depend on some of the

structural properties of the reaction graph, most notably
on its connectivity and on its strong components.

A kinetic system is weakly reversible whenever there exists
a directed path from Vi to Vj in its reaction graph, then
there also exists a directed path from Vj to Vi. In graph
theoretic terms this means that all components of the
reaction graph are strongly connected components. It is
equivalent to the algebraic condition

Ak p = 0, (4)

where p is an arbitrary positive vector (see Theorem 3.1
of Gatermann and Huber (2002) and Proposition 4.1 of
Feinberg (1979)).

Clearly, the positive vector x∗ ∈ Rn>0 is an equilibrium
point of the kinetic system (Y,Ak) if and only if

Y Ak ψ(x∗) = 0. (5)

When ψ(x∗) ∈ ker(Ak), then the equilibrium point x∗ is
called a complex balanced equilibrium point. It is well-
known that if a system (Y,Ak) has a complex balanced
equilibrium point, then all of its positive equilibrium
points are complex balanced (Horn and Jackson (1972)).
Therefore, we can call a kinetic system complex balanced,
if (5) is confirmed for any equilibrium point x∗.

Remark : If a kinetic system is complex balanced then it is
weakly reversible, too (Horn (1972)).

The balanced Laplacian matrix L(x∗) at a complex bal-
anced equilibrium point x∗ of a kinetic system (Y,Ak) is
defined in (van der Schaft et al. (2015)) as

L(x∗) = −AkD(ψ(x∗)) (6)

where D(·) stands for diag(·). The left and right kernels
of the matrix L(x∗) are equal. Therefore, it is not only
column, but row conservative, too.

Stoichiometric subspace The state space of a kinetic
system (Y,Ak) can be partitioned into invariant affine
subspaces. The stoichiometric subspace S is defined as

S = span ({Yi − Yj | [Ak]ij > 0, ∀i 6= j}) , (7)

where Yi denotes the ith column of matrix Y . When the
system (Y,Ak) is weakly reversible (Feinberg (1979)), then

S = im(Y Ak). (8)

The positive stoichiometric compatibility classes are de-
fined as

Sx0
= (x0 + S) ∩ Rn>0, (9)

where x0 ∈ Rn>0 is an arbitrary element of the state space.
The manifold Sx0

is an invariant of the kinetic system
(Y,Ak).

2.3 Stability of a complex balanced kinetic system

The Global Attractor Conjecture (GAC) says the following
(Craciun et al. (2009)): a complex balanced kinetic system
(Y,Ak) has a unique positive equilibrium point in each
positive stoichiometric compatibility class Sx0

. Moreover,
the equilibrium points are globally asymptotically stable
for all positive initial condition x0 ∈ Rn>0 in its positive
stoichiometric compatibility class Sx0 with the following
Lyapunov function

V (x) =

n∑
i=1

xi(ln(xi)− ln(x∗i )− 1) + x∗i . (10)



Important special cases were proven in Anderson (2011)
and Gopalkrishnan et al. (2013). Moreover, a possible
general proof of the conjecture has recently appeared in
Craciun (2015).

Remark : The number of the positive equilibrium points
depends only on the dimension of S. Therefore, the addi-
tional condition

S = Rn (11)

is equivalent to the stability of the unique equilibrium
point in the positive orthant.

2.4 Linearization of a complex balanced kinetic system

The linearized version of the complex balanced kinetic
system (Y,Ak) around its positive equilibrium point x∗

is in the form (Johnston (2011))

∆ẋ = Y AkD(x∗)Y TD(1/x∗)∆x

= −Y L(x∗)Y TD(1/x∗)∆x,
(12)

where ∆x = x− x∗.

3. FORMULATION AND SOLUTION OF THE
FEEDBACK DESIGN PROBLEM

In this section, a stabilizing feedback design method for
polynomial systems is presented. The stability of the
closed-loop system is guaranteed as a novel semidefinite
constraint. To improve the local convergence rate of the
closed-loop system, the largest eigenvalue of the linearized
system is minimized. The obtained problem is formulated
as a semidefinite programming (SDP) problem. Assuming
that the proof in (Craciun, 2015) is correct, the asymptotic
stability of the equilibrium x∗ of the closed loop system
will actually be global.

3.1 Unique positive equilibrium point

In this subsection, the stoichiometric subspace is char-
acterized by a positive-semidefinite matrix. The direct
consequence of this result is the uniqueness of the complex
balanced equilibrium point. If the GAC holds, then the
unique equilibrium point will be globally asymptotically
stable.

Lemma 1. Let us consider a complex balanced kinetic
system (Y,Ak) with its balanced Laplacian matrix L(x∗).
Then the matrix Y (L(x∗) + L(x∗)T )Y T is positive-
semidefinite and satisfies

im(Y (L(x∗) + L(x∗)T )Y T ) = S. (13)

Proof. The transpose and sum of balanced Laplacian
matrices remain Laplacian matrices. Hence, the matrix
L(x∗) + L(x∗)T is a balanced and symmetric Laplacian
matrix which is positive-semidefinite (Mohar and Poljak
(1993)). Therefore, the matrix Y (L(x∗) + L(x∗)T )Y T is
positive-semidefinite, too. Then eq. (13) is a direct con-
sequence of the Theorem 4.3.3 in the article of Johnston
(2011). �

The following Theorem is a direct consequence of Lemma
1. It gives a positive-definite condition of the full dimen-
sional stoichiometric subspace in the complex balanced
case.

Theorem 2. Let us consider a complex balanced kinetic
system (Y,Ak) with its balanced Laplacian matrix L(x∗).
Then, S = Rn if and only if

Y (L(x∗) + L(x∗)T )Y T > 0. (14)

Proof. ⇒ If im(Y (L(x∗) + L(x∗)T )Y T ) = Rn, then
Y (L(x∗) + L(x∗)T )Y T is invertible. Therefore,
Y (L(x∗) + L(x∗)T )Y T is positive-definite.
⇐ If Y (L(x∗) + L(x∗)T )Y T is positive-definite, then it is
invertible. Therefore, im(Y (L(x∗) +L(x∗)T )Y T ) = Rn. �

3.2 Asymptotically stabilizing feedback design

The open-loop model We assume for the feedback design
that the equations of the open loop polynomial system
with linear input structure are given as

ẋ = M ψp(x) +Bu, (15)

where x ∈ Rn is the state vector, u ∈ Rr is the input,
ψp ∈ Rn → Rmp contains the monomials of the open-

loop system generated by Yp ∈ Zn×mp

≥0 , M ∈ Rn×mp and

B ∈ Rn×r.

The state feedback law We assume a polynomial feedback
of the form

u = Kpψp(x) +Kcψc(x) = K ψ(x), (16)

where ψc ∈ Rn → Rmc contains the additional monomials
generated by Yc ∈ Zn×mc

≥0 . The matrices Kp ∈ Rr×mp and

Kc ∈ Rr×mc are the feedback gains. Then, the closed-loop
system can be written as

ẋ = [M +BKp | BKc]ψ(x) = M(K)ψ(x), (17)

where M(K) is the coefficients matrix of the closed loop
system which depends in an affine way on the feedback
gain K = [Kp | Kc].

3.3 Feedback computation

The goal of the feedback is to transform the given open-
loop system (15) into a complex balanced closed-loop
system with a given/desired equilibrium point x∗ using
a suitably extended monomial set. The problem will be
formulated as a semidefinite programming problem.

The monomials of the feedback Before the optimization,
we have to determine the new monomimals of the feedback
ψc(x). In the case of S = Rn, a necessary condition is

Rn = span(
{
Y i − Y j | ∀i 6= j

}
), (18)

where Y i is the ith column of the matrix Y = [Yp | Yc]
while Yp and Yc describe the monomials corresponding
to ψp(x) and ψc(x), respectively. When eq. (18) is not
fulfilled, then there does not exist a closed loop system
which satisfies eq. (11).

Therefore, if the monomials of the open-loop system rep-
resented by the columns of matrix Yp are not rich enough,
i.e.

span(
{

[Y p]i − [Y p]j | ∀i 6= j
}

) ⊂ Rn

the additional monomials, i.e. additional columns in Y are
needed to achieve eq. (18).

It is important to note that the choice of the new mono-
mials is generally not unique, and it has an impact on the



achievable control performance. Therefore, the selection
of the new monomials is an important tuning knob of the
proposed feedback design method.

The basic constraints The first constraint is used to
guarantee that the solution will be a kinetic realization
of the closed-loop system. It is in the form

M(K) = Y Ak, (19)

where Ak ∈ R(mp+mc)×(mp+mc) and K ∈ Rr×(mp+mc)

are decision variables of the problem and Y is given.
The Kirchhoff property is required for matrix Ak, so the
following constraints are included as well:

1TAk = 0 (20)

[Ak]ij ≥ 0 ,∀i 6= j. (21)

The resulting system (Y ,Ak) should be complex balanced,
which is ensured by the following constraint:

Akψ(x∗) = 0, (22)

that is a linear constraint in Ak, because the equilibrium
point x∗ is given before the optimization.

Uniqueness of the desired equilibrium point We can
guarantee the uniqueness of the desired equilibrium point
x∗ with setting the stoichiometric subspace S = Rn.
This can be formulated as a semidefinite constraint (see
Theorem 2.)

Y (L(x∗) + L(x∗)T )Y
T
> 0, (23)

where L(x∗) is the balanced Laplacian matrix of Ak in the
point x∗.

Performance Since the constraint set is formulated in a
way that all the solutions are guaranteed to be complex
balanced with S = Rn. Therefore, we can be sure that all
eigenvalues of the closed-loop system have negative real
parts. Hence, a suitable performance of the feedback design
can be achieved by minimizing the largest eigenvalue of the
linearized closed-loop system

min
{

Re(λmax(−Y L(x∗)Y
T
D(1/x∗)))

}
, (24)

where λmax denotes the eigenvalue of its argument with
the largest real part.

In the general case, the problem (24) is a non-smooth
optimization problem. Therefore, we consider the relaxed
version (Boyd and Vandenberghe (2004)) of the above
objective (24):

min
{
λmax(−Y L(x∗)Y

T
D(1/x∗)−D(1/x∗)Y L(x∗)TY

T
)
}
.

(25)

This objective contains a symmetric matrix in the argu-
ment, therefore its eigenvalues are negative real numbers.

Using the above relaxed objective a semidefinite program-
ming problem can be formulated for the feedback design
as follows:

min−t (26)

subject to

Y L(x∗)Y
T
D(1/x∗) +D(1/x∗)Y L(x∗)TY

T − tI ≥ 0,
(27)

where t is a variable of the optimization. Choosing larger
t values lead to solutions with smaller λmax values, hence
closed-loop systems with faster local convergence.

By putting together the constraints described in (19)-
(23), (27) and considering (26) as the objective function,
the SDP optimization problem can be constructed. The
parameters of the optimization are the monom composi-
tion matrix Y and the desired equilibrium point x∗. The
decision variables of the optimization are the Kirchhoff
matrix Ak, the set of feedback gains K and the auxiliary
variable t.

Note that the formulated optimization problem may not be
feasible. In this case we may choose additional monomials
in the polynomial feedback to make the problem feasible.

4. EXAMPLES

In the following, we present the applicability of the pro-
posed design technique on two different examples. The
algorithms were implemented in MATLAB (2012) using
the YALMIP modelling language Löfberg (2004). MOSEK
(2015) was used to solve the SDP problems.

4.1 Computational example

In this section, the proposed design method is demon-
strated by a computational example. The open-loop model
is unstable and does not have any complex balanced real-
ization.

Let the open-loop system be given as

ẋ =

[
5 −5 −3
4 3 −5
−1 0 2

]
︸ ︷︷ ︸

M

 x1x2x3x21x2
x1x

2
2


︸ ︷︷ ︸

ψp(x)

+

[
1
1
0

]
︸︷︷︸
B

u. (28)

Let the desired equilibrium point be chosen as x∗ =

[1 2 4]
T

. It is easy to see that condition (18) is not fulfilled.
Therefore, we choose a new monomial ψc(x) = x3 to be
able to achive S = Rn.

Now let us apply the feedback design method which is
proposed in this paper. The optimization problem de-
scribed by (19)-(23), (27) and the objective function (26)
is formulated by plugging in x∗ and

Y =

[
1 2 1 0
1 1 2 0
1 0 0 1

]
. (29)

The result of the SDP problem is the following feedback
gain:

K = [−10.1912 1.0000 3.0000 12.3824 ] . (30)

The closed-loop system is complex balanced with the
equilibrium point x∗ and the locally linearized model has
the eigenvalues λ = {−2.8562,−7.0820,−78.3564}. Fig.
1 shows the time domain simulation of the closed loop
system with five different initial values.

The effect of the chosen feedback monomials As it was
mentioned in section 3.3.1, we can choose different new
feedback monomials ψc(x) such that the condition (18) is
fulfilled. In order to illustrate the effect of this choice on
the controller design, we present two different choices and
their resulting feedback design.



Figure 1. Time domain simulation of the closed loop
system from Subsection 4.1 with 5 different initial
values.

• The choice of the monomial ψc(x) = x1x3 results in
an infeasible problem.

• With the choice ψc(x) = x1x2, the problem will be
feasible, but the achieved performance in terms of
the largest closed loop eigenvalue λmax = −2 is larger
than that of the above design (with ψc(x) = x3), that
is −2.8562. This results a slower local convergence of
the design with ψc(x) = x1x2.

4.2 Process control example

Hereby we consider the open chemical reaction network
which is presented in Lipták et al. (2016) Section 5.2. Let
us recall the set of chemical reactions involved:

2X1 +X3 7→ X1 +X2, X1 +X2 7→ X1 +X3,

X1 +X3 7→ X1 +X2, X1 + 2X2 7→ X1 +X2,

X1 + 2X2 7→ X1 +X3

where all the reaction rate constants are equal to 1
and isothermal conditions are held. We assume constant
volume, hence the outflow appears in open-loop system
model as three different linear reaction in the form Xi 7→ ∅,
where ∅ is the zero complex.

The inlet concentrations of the species X1 and X2 are con-
sidered as input variables. Their nonnegativity is ensured
by requiring non-negative feedback gains.

The open-loop system is defined as

ẋ =

[−1 0 0 0 −1 0 0
1 −1 −3 1 0 −1 0
−1 2 2 −2 0 0 −1

]
︸ ︷︷ ︸

M



x21x3
x1x2
x1x

2
2

x1x
2
3
x1
x2
x3


︸ ︷︷ ︸
ψp(x)

+

[
1 0
0 1
0 0

]
︸ ︷︷ ︸

B

u.

(31)

Note that for perfectly stirred process systems with out-
flow there appears always a unit matrix I as a block of
the open loop complex composition matrix Y , therefore

condition (18) is always fulfilled. Thus there is no need for
adding new monomials in the feedback, unless we find that
the optimization problem is not feasible or the obtained
control performance is not satisfactory.

Let the desired equilibrium point be x∗ = [1 1 1]. In Lipták
et al. (2016) the following feedback is proposed:

u1 = x1 + x3 , u2 = x21x3 + x2 + x3 (32)

which transforms the system into a complex balanced one.
Note, that in this case ψc(x) is an empty vector. The
corresponding non-negative feedback gain K is

K =

[
0 0 0 0 1 0 1
1 0 0 0 0 1 1

]
. (33)

The obtained closed loop system is linearized around
the equilibrium point x∗ to get its eigenvalues λ =
{−1,−2,−12}.
Now let us apply the feedback design method which is
proposed in this paper. While considering the same open-
loop system, our aim is to find a non-negative feedback
K ′ which ensures faster local convergence while keeping
the feedback structure unchanged. To accomplish that, the
optimization problem described by (19)-(23), (27) and the
objective function (26) is formulated by plugging in x∗ and

Y =

[
2 1 1 1 1 0 0
0 1 2 0 0 1 0
1 0 0 2 0 0 1

]
. (34)

By solving the resulting SDP problem the following feed-
back gain is obtained:

K ′ =

[
0 0 0 0 0.3402 1.0969 0.5629
0 0 0 0 2.3472 0.2157 0.4371

]
. (35)

Again, the eigenvalues of the linearized closed loop system
are computed resulting in λ′ = {−1.9144,−2.8688,
− 11.6609}.
As it can be seen λ′max < λmax showing that feedback gain
K ′ ensures faster local convergence.

The time-domain behaviour of the two closed-loop sys-
tems are simulated using the two different feedback
gains (K, K ′) starting with the initial condition x0 =
[0.7679, 1.1746, 1.2170]. The simulation results are shown
in Fig. 2, where we can see that indeed a faster local
convergence could be achieved by the new feedback design
method.

Note, that the closed loop system has a stoichiometric
subspace with dimension 3 so the equilibrium point x∗

is unique and asymptotically stable.

5. CONCLUSIONS

A novel state feedback design method is proposed in this
paper for the asymptotically stabilization of polynomial
systems with linear input structure. A static nonlinear
feedback structure is selected with possibility to include
new monomials in the feedback gain. This way the open
loop system can be transformed to a complex balanced
kinetic closed loop system with a stoichiometric subspace
of maximal dimension, that is known to be (at least)
asymptotically stable.

The feedback law is computed using semidefinite program-
ming. The objective function is chosen to be the largest



Figure 2. Time domain simulation of the closed loop sys-
tems from Subsection 4.2. Trajectories called ”Initial”
are obtained from the system described in Lipták
et al. (2016) while ”New” trajectories are generated
by the controller designed by the method proposed
in the this paper, using feedback gains K and K ′,
respectively. Note the difference in the speed of con-
vergence.

eigenvalue of the state matrix of the linearized closed-
loop system, that enables to adjust the performance of the
closed-loop system by finding the fastest local convergence
to the specified equilibrium point.

The approach is illustrated on two simple examples. The
first one is a computational example where the effect of
selecting the additional new monomials in the feedback
is illustrated. Finally, a simple process system example is
also given.

Further work will be focused on extending our method to
handle parametric uncertainty, similarly to our previous
results Lipták et al. (2016).
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